
Generating Combinatorial Test Suite for Interaction
Relationship

Wang Ziyuan Nie Changhai Xu Baowen

School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China
Jiangsu Institute of Software Quality, Nanjing, 210096, China

{wangziyuan, changhainie, bwxu}@seu.edu.cn

ABSTRACT
Combinatorial testing could detect the faults triggered by the
interactions among factors in software. But in many cases, the
pair-wise, N-way and even the variable strength combinatorial
testing may lead test suite redundancy and fault detect ability
decreasing, because these methods do not make sufficient
consideration on the actual factors interaction. In this paper, a
new interaction relationship based combinatorial testing model
was proposed to cover the actual factor interactions in software by
extending the conventional combinatorial testing model and IO
relationship testing model. The new method may be more
effectively than existed combinatorial testing methods without
decrease of the fault detect ability. Furthermore, two test suite
generation algorithms for interaction relationship based
combinatorial testing were also presented. Finally, we compared
our algorithms with some similar test generation algorithms in IO
relationship testing model, and the experience result showed the
advantage of our algorithms.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –Testing
tools

General Terms
Algorithms, Experimentation.

Keywords
Software testing, combinatorial testing, interaction relationship,
test generation

1. INTRODUCTION
As a complex logic system, software may be affected by many
factors, such as system configurations, internal events, external
inputs etc. The software faults may be triggered by not only some
single factors but also the interactions of these factors. So as an
effective testing approach, combinatorial testing, which can detect
the faults triggered by these factors and their interactions, was

widely used in practical.

Many works have been done in the field of combinatorial test
generation. For example, some heuristic methods to generate
combinatorial test suite were proposed by Cohen D M et al [1],
Lei Y et al [2], Tung Y W et al [3], and Cohen M B et al [4]
respectively. Some algebraic test generation approaches were
proposed by Kobayashi N and Tsuchiya T [5], William A W [6].
And there are also some search-based methods such as simulated
annealing algorithm [7], generic algorithm and ant colony
algorithm [8] being proposed. Schroeder P J et al compared the
fault detection effectiveness of N-way combinatorial testing and
random testing [9]. In 2006, Zhang J et al proposed a backtrack-
based algorithm for combinatorial test generation [10] and Yilmaz
C et al research the advantage of combinatorial testing in size of
test suite and fault detection effectiveness [11].

All works on combinatorial testing, including pair-wise, N-way
(N≥2) and even variable strength combinatorial testing, are on the
assumption that there are pair-wise or N-way interaction among
any two or N factors. But as there are not always interactions
among any N factors in software, the test suite used by
conversional combinatorial testing may still have redundancy and
its fault detection ability could be also strengthened farther more.
So if we can make use of more information about actual factors
interaction relationship in software to design test suite, the size of
test suite may be reduced while the fault detection effectiveness
may be increased. Some interaction relationships in software,
such as input-output (IO) relationships, have been discussed by
Schroeder P J et al detailedly. And some corresponding test
generation algorithms to cover the input-output relationships were
also given [12][13] [14][15].

In this paper, we extend the model of conventional combinatorial
testing and generalize the model of IO relationship based testing,
to propose a new combinatorial testing model that interaction
relationship based combinatorial testing, as the supplement of
pair-wise, N-way and variable strength combinatorial testing.
Rather than, we also research the method to generate
combinatorial test suite to cover the interaction relationship, and
present a serial of new combinatorial test generation algorithms.

 The remainder of this paper is organized as follows. Section 2
describes the basic model and definitions. Section 3 reviews
related works and analyze the existed problems. Two test suite
generation algorithms are presented separately in section 4 and
section 5. Section 6 compares our test generation algorithms with
others. Finally, make a conclusion and point out the future works.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SOQUA'07, September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-724-7/07/09...$5.00

55

2. DEFINITIONS
Suppose that the software system under test (SUT) may be
affected by n factors (or parameters) and each factor fi has a[i]
(1≤i≤n) discrete valid values. Let F={f1, f2,…, fn} denote the set
of factors, and Vi={1, 2,…, a[i]} (1≤i≤n) denotes the value set of
fi without loss of generality. In this paper, we also suppose that all
factors are independent, which means that there are not
constraints between factors and their values.

Definition 1 The n-tuple test= (v1, v2,…, vn) (v1∈V1, v2∈V2,…,
vn∈Vn) is a test case for the SUT.

Next, we discuss the interactions among factors. As the factor of
software may interact with each other, a group of factors that have
interaction with each other can be formed as a subset r of F. That
means there is a |r|-way interaction among the factors in this
subset, where |r| is the cardinality of r. So for any subset such as
this r, the combinatorial test suite is needed to cover all valid
value combinations of factors in it. Similar as before, if we
abstract each one of all t interactions in software as a subset of F,
then there is a collection of these subsets R={r1, r2,…, rt}. And a
combinatorial test suite for this software should cover all t
interactions that associate with subsets in R. For example, for a
given software with n factors, a pair-wise combinatorial test suite
should cover |R|=n×(n-1)/2 different 2-way (or pair-wise)
interactions and R={{fi, fj}| fi, fj∈F and i≠j}, and a N-way
combinatorial test suite cover |R|=CN

n different N-way interactions
and R={{fi1, fi2, …, fiN}| fi1, fi2, …, fiN∈F}.

Definition 2 The subset rk∈R (k=1, 2,…, t) is named as an
interaction coverage requirement, and the collection R is the
interaction relationship of SUT.

For simplicity, we support that: (i) each coverage requirement
rk={fk, 1, fk, 2,…, fk, nk}∈R (k=1, 2,…, t) have nk factors where nk>1;
(ii) for any two requirements rk1, rk2∈R (k1≠k2), rk1 is not subset
of rk2 and rk2 is not subset of rk1; (iii) two factors fi, fj∈F (i≠j)
interact with each other if and only if there exist a coverage
requirement r∈R that fi, fj∈r.

For example, consider an object-oriented system with 4 class
clusters (factors) F={A, B, C, D} and each class cluster has 2
concrete classes (values), which is shown as class diagram in
Figure 1. The interaction relationship of this system can be
described as R={r1, r2, r3} where r1={A, B, C}, r2={A, D} and
r3={C, D}. That is class A, B and C determine the Client jointly
and class D associates with class A and C respectively.

Definition 3 Given A=(ai,j)m×n is a m×n array, in which the j-th
column denotes the factor fj of the SUT and all the elements of
this column come from the finite set Vj (j=1, 2,…, n), that is
ai,j∈Vj. If there is a m×nk sub-array Ak, which composed of the
columns of A that corresponding to the factors in interaction
coverage requirement rk∈R, contains all nk–way values
combinations of factors in rk, then we say that A covers the
interaction coverage requirement rk. If A satisfies all coverage
requirements in R, then we say that A covers the interaction
relationship R, and A is a covering array that covers R.

For a given SUT, the combinatorial test suite T that covers
interaction relationship R could be obtained easily from the
covering array A that covers R. So we suppose that combinatorial
test suite and covering array are equivalent in this paper.

Definition 4 Let T is combinatorial test suite that covers
interaction relationship R of SUT, if it contains minimum possible
number of test cases, then T is the optimal combinatorial test suite
that covers R, or the optimal test suite.

Differ from the conventional combinatorial testing method,
interaction relationship based combinatorial testing do not need to
generate test suite to cover all N-way interactions but only need to
cover all actual interactions. In this paper, we assume that the
actual interaction relationship has been obtained, which could be
obtained from many ways, such as reviewing design documents,
source code analysis, or interviewing with programmers etc.

3. RELATED WORKS
Combinatorial testing, especially pair-wise testing, have been
widely used in practical successfully. But Bach J and Schroeder P
J pointed out that all such successful cases were on the ground
that analyzing the characteristic of software in detail and
obtaining the factors interaction relationship sufficiently [16].

However, in traditional model of combinatorial testing, there is a
assumption that there are interactions among any N(N≥2) factors
at least and generate N-way test suite or variable strength
combinatorial test suite on this hypothesis. But in reality, there are
few software systems have this property. So if we do not consider
the character of SUT sufficiently when generating test suite, the
effectiveness of testing may be reduced: (i) if we choose N as a
large number, the test suite may be redundant; (ii) there are may
be some interactions influence more than N factors in a software,
that means some valid combinations may not be covered by N-
way test suite and some bugs may not be detected. Above all, to
increase the effectiveness of combinatorial testing, it is necessary
to mine the actual interaction relationship among factors in
software before test generation.

Class A

Concrete A Concrete A

Class B

Concrete B Concrete B

Class C

Concrete C Concrete C

Class D

Concrete D Concrete D

Client

Figure 1. Class diagram

To solve the problem of test generation for software with complex
input-output relationship, Schroeder P J et al proposed the model
of input-output relationship based testing method and give three
different test generation algorithms [12][13][14]. The first one is a
brute force approach to find a minimum test suite. The second one,
the Union algorithm, designs a serial of test suite for each output
variable to cover the interaction among the associative inputs
variables respectively, and then takes the union of them to get a
final test suite. This algorithm is very simple that the time
complexity is only O(∑t

k=1∏fi∈rk a[i]) under the model that defined
in this section 2, but can not generate small test suite. And the last

56

one, Greedy algorithm, selects an unused test case that covers the
greatest number of uncovered combinations of input values each
times until all interactions have been covered by the selected test
suite. It may generate a much smaller test suite than the second
one, but with a bad time and space performance for it must check
all test cases in a huge search space. And its time complex is as
much as O(|T|×(∏n

i=1a[i])×(∑t
k=1∏fi∈rk a[i])) in our model. So in

2003, they proposed a problem reduction method, which is based
on the color graph, to make the Greedy algorithm become more
efficient [15]. But as the authors mentioned, this reduction
method is suitable only when relationships are “simple” that the
number of edges in associated color graph is much smaller than
that of complete graph with the same number of edges. And the
algorithm with reduced technique may generate some redundancy
test cases.

In recent years, we have made much study on combinatorial
testing. And the characteristic of factors interaction relationship
has also been considered in our works. For a special case that the
interaction exists only among neighbor factors, the neighbor
factors combinatorial testing method was proposed and a serial of
optimal neighbor factor combinatorial test suite generation
algorithms for different cases were presented [17]. It is evident
that the neighbor factors N-way testing is a special case of
interaction relationship based combinatorial testing when the
interaction relationship R={{fi, fi+1,…, fi+N-1}|fi, fi+1,…, fi+N-1∈F}.
And its effectiveness has been shown in the application of testing
for railway signaling systems.

In this paper, we extend the model of input-output relationship
based testing to the interaction relationship based combinatorial
testing, which is a little more general than the former. Rather than,
the more important works of this paper are two new test
generation algorithms for interaction relationship based
combinatorial testing with higher performance.

4. GENERATING TEST SUITE IN
COVERAGE REQUIREMENT ORDER
By analyzing the disadvantage of Union algorithm proposed by
Schroeder P J, a better combinatorial test generation algorithm
was given in this section.

4.1 Analyzing Union Algorithm
The Union algorithm may not create a small test suite because the
size of generated test suite depends on how the values are
assigned to “don’t care” factors, which are the factors that do not
belong to current coverage requirement. For example, considering
a SUT with F={24}, that is there are 4 factors and each factor has
2 discrete possible values. For two covergae requirements r1={f1,
f2} and r2={f3, f4} in R, design two test suite T1={(1, 1, 1, 1), (1, 2,
1, 1), (2, 1, 1, 1), (2, 2, 1, 1)} and T2={(1, 1, 1, 1), (1, 1, 1, 2), (1,
1, 2, 1), (1, 1, 2, 2)} to cover r1 and r2 respectively, where all
“don’t-care” factors are assigned as 1. And then take the union of
them to get T= T1∪T2={(1, 1, 1, 1), (1, 2, 1, 1), (2, 1, 1, 1), (2, 2, 1,
1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 2)} with size 7. However, there
is a test suite T’={(1, 1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1), (2, 2, 2, 2)}
with size 4 can also cover r1 and r2. We can conclude from above
example that, if there is not a better strategy to determine the
values of “don’t-care” factors when generating test cases for a
given requirement, the final test suite may be redundant.

Hence, we propose a new test generation algorithm to avoiding
the disadvantage of Union algorithm. In our algorithm, all the
positions that corresponding to each “don’t-care” factor will not
be assigned until a coverage requirement which include this factor
is dealt. This strategy may avoid the redundancy of combinations
in “don’t-care” factors and reduce the size of test suite evidently.

4.2 Test Generation Algorithm
For a given interaction relationship R={r1, r2,…, rt}, the test
generation algorithm in coverage requirement order will selects a
coverage requirement from R and generates an initialize test suite
for it firstly. Then extend this test suite to satisfy another selected
requirement. This step will be repeatedly until all requirements in
R have been selected out and satisfied by the final test suite. The
detail of this algorithm is shown as follows:

Algorithm 1. Test Generation Algorithm in Coverage
Requirement Order (ReqOrder)

Input: F={f1, f2,…, fn}, R={r1, r2,…,rt}
Output: Test suite T that cover R
begin

r=SelectReq(R); //select a requirement r∈R
Create a test suite T with ∏fi∈r a[i] empty test cases;
Fill all combinations of factors in r into T;
R = R-{r};
Fdeal={fi|fi∈r1}; //factors have been assigned
while R ≠ ∅

r=SelectReq(R);
if rk∩Fdeal=∅ then

if ∏fi∈r a[i]>|T| then
Add ∏fi∈r a[i]-|T| empty test cases into T;

Fill all combinations of factors in r into T;
else

//computing the needed appearance time of
//combinations of factors in r∩Fdeal
need=∏fi∈r – F deal a[i];
for each combination com of factors in r∩Fdeal

Let count is appearance times of com in T;
if count<need then

for j = count to need-1
if there are test cases in which com could be added
into then //scan all test cases

Select a test case that match com mostly from
above test cases;
Add com into selected test case;

else
Add need-j empty test cases into T;
Fill com into these need-p test cases;
break;

if r- Fdeal ≠ ∅ then
Fill need different combinations of factors in r-Fdeal
into test cases that contain com;

R = R-{r}; Fdeal= Fdeal ∪r;
end

 (i) Selects a coverage requirement from R by a given strategy.
Without loss of generality, let it be r1. Construct a test suite T
with size m1=∏fi∈r1 a[i] and fill all m1 combinations of factors in
r1 into it. As we mentioned before, all positions corresponding to
“don’t-care” factors will be empty.

57

(ii) Selects another coverage requirement r∈R that have not been
dealt before. Without loss of generality, we assume that the k-th
requirement that will be dealt is rk={fk, 1, fk, 2, …, fk, nk} (k=1, 2, …,
n). And the intersection between rk and Fdeal=r1∪r2∪…∪rk-1,
which is set of factors that belong to r1, r2, …, rk-1, can be
described as rk∩Fdeal={fk, 1, fk, 2, …, fk, p}.

(iii) If rk∩Fdeal=∅, that means all factors in rk have not been
assigned before and all corresponding positions are still empty.
Check whether the size of T is smaller than the number of
combinations of factors in rk. If it is, add ∏fi∈rk a[i]-|T| empty test
case into T firstly. And then, fill all ∏fi∈rk a[i] combinations into T
as step one.

(iv) If rk∩Fdeal≠∅, to cover all nk-way combinations of factors in
rk, all p-way combinations in set CombSet={(vk, 1,…,vk, p)|vk, 1∈Vk,

1,…,vk, p∈Vk, p} must be covered and appear at least need=∏fi∈rk–

Fdeal a[i] times in T. So for each combination in CombSet, count its
appearance times count firstly, and then complete this
combination to make it appear need times in T if count<need. The
succeeding process is to fill need different combinations of factors
in rk -Fdeal into test cases that contain each combination in
CombSet. All above process will guarantee that T satisfies rk.

(v) Similar as step two, three and four, one coverage requirement
will be selected and dealt each time, until all requirements in R
have been satisfied by T. And some more detailed material is in
Algorithm 1.

After the process of ReqOrder algorithm, note that there may be
some positions that have not been assigned in T. But these
unassigned positions do not reduce the coverage ability of test
suite for interactions. Thus we name the values of these positions
as “don’t care” values and assign any valid value x∈Vi in them.

Next we analyze the time complexity of algorithm 1. The number
of combinations of factors in rk (k=1, 2, …, t) is ∏fi∈rk a[i]. And
when filling each combination into test suite, all test cases in the
suite should be scanned. So the worst time complexity when deal
with rk is O(|T|×∏fi∈rk a[i]), and the worst time complexity of
ReqOrder algorithm is O(|T|×∑t

k=1∏fi∈rk a[i]) without considering
the process of selecting requirement.

In description of algorithm 1, the function of SelectReq is to
select a coverage requirement that have not been satisfied by test
suite. At beginning, when all requirements in R have not been
satisfied, it selects a requirement in which there are most
combinations of factors. And in the other steps, the selected
coverage requirement should have at least one factor that belongs
to at least one requirement that have been dealt previously, and
the number assign_factor_comb_num/total_comb_num is as great
as possible, where the numerator is the number of combinations
of these assigned factors in selected requirement and the
denominator is the number of combinations of all factors in
requirement. If there are not coverage requirement that satisfies
this property, select randomly. Above calculation could be done
in constant time, so this process do not effect the overall time
complexity of ReqOrder algorithm.

At last, an example will be given to explain the process of
RrqOrder algorithm. Consider a SUT with F={3×2×2×2×3} (it
means that there are 5 factors totally and |V1|=3, |V2|=|V3|=|V4|=2,
|V5|=3), R={r1, r2, r3, r4} where r1={f1, f2}, r2={f2, f3, f4}, r3={f4,

f5}, r4={f1, f5}. The Figure 2 shows the process of generating test
suite by ReqOrder algorithm, and the order of selected
requirements is r2, r1, r4, r3. In the first two steps, r2, r1 are
satisfied separately. And the next two steps deal with r4. Because
all combinations in r3 have been covered after the fourth step, the
algorithm stops here. In this example, the “don’t care” values are
not determined for simpleness.

−−
−−
−−
−−
−−
−−
−−
−−

222
122
212
112
221
121
211
111

−−
−
−
−
−−
−
−
−

222
1223
2122
1121
221
1213
2112
1111

−−−−
−
−
−
−
−
−
−
−

3
2222
1223
2122
1121
2211
1213
2112
1111

33
32222
21223
22122
31121
22211
11213
12112
11111

−−−

Figure 2. Process of ReqOrder

5. GENERATING TEST SUITE IN
PARAMETER ORDER
In this section, we apply the in-parameter-order strategy, which
has been successfully used in pair-wise test generation [2] and N-
way combinatorial test generation [18], on the generation of
combinatorial test suite for interaction relationship.

When generate combinatorial test suite with test generation
algorithm in parameter order, an initial test suite will be
constructed for a sub-system with only small number of factors
firstly. Then extend the test suite by adding a new factor into this
sub-system to get a test suite for the new sub-system, and this
process will repeat until all n factors have been added into the
sub-system to make it become the complete system. The detail is
shown as follows:

Algorithm 2. Test Generation Algorithm in Parameter Order
(ParaOrder)

Input: F={f1, f2,…, fn}, R={r1, r2,…,rt}
Output: Test suite T that satisfy R
begin

fi=SelectFactor(F);
Create a test suite T with a[i] empty test cases;
Assign a[i] values of fi into T;
F=F -{fi}; Fdeal ={fi};
while F ≠ ∅

fi=SelectFactor(F);
Inters={rk∩(Fdeal+{fi})| fi∈rk, k=1, 2,…, t};
CombSet={(vi, 1,…,vi, j)|vi, 1∈Vi, 1,…,vi, j∈Vi, j, {fi,1,…, fi, j}
∈Inters};
//extending T horizontally
for j = 1 to | T |

Check all factors (except fi) in elements of Inters in j-th
test case;
if all above positions are not empty then

for v = 1 to a[i] //select value of fi greedily
Let countv be the number of combinations in CombSet
that will be covered by T if v is selected as the value
of fi in j-th test case;

Select a value v with the largest countv;
CombSet=CombSet–{combinations that covered by the

58

j-th test case};
if CombSet=∅ then break;

//add new test cases to extending T vertically
for each combination com in CombSet

if there exist test cases in T that com can be added into
then

Select a test case that match the com mostly from above
ones, and fill com into selected test case;

else
Add a new empty test case into T;
Fill com into this test case;

F=F-{fi }; Fdeal=Fdeal∪{fi };
end

 (i) Select a factor and assume it is f1 without loss of generality.
Construct a test suite T with a[1] empty test cases, and fill all a[1]
different values of f1 into the first column of T.

(ii) Select another factor that has not been assigned in T. Without
loss of generality, here we assume that the final sequence of
selected factors is f1, f2,…, fn. So the factor fi will be selected to be
assigned in i-th iteration. We select all coverage requirements that
contain fi, and take the intersection between them and the set {f1,
f2,…, fi} to get a set of these intersections Inters={rk∩{f1, f2,…,
fi}| k=1, 2,…, t, and fi∈rk}. Consequently, the set of combinations
of the factors in elements of Inters can also be obtained, that is
CombSet={(vi, 1,…,vi, j)|vi, 1∈Vi, 1,…,vi, j∈Vi, j and {fi,1,…, fi,

j}∈Inters}. It is clear that all combinations in CombSet must be
covered by T when deal with fi,.

(iii) Extend test suite horizontally firstly. For each test case testk
(k=1, 2,…, |T|) in T, if all positions corresponding to factors that
interact with fi and have been dealt in previous iterations are not
empty, we choose a value v of fi from Vi to make testk cover most
combinations in CombSet and then refine it. Above process will
stop when k=|T| or CombSet=∅. Note that there may be multiple
values could make testk cover the same maximum number of
uncovered combinations, therefore we select the one that appear
least times since the beginning of horizontal extending. If there
are still multiple candidates, select the first one in the turn testk-

1[i]+1, testk-1[i]+2,…, a[i], 1,…, testk-1[i], where the testk-1[i]
denote the value of fi in test case testk-1.

(iv) Check whether all combinations in CombSet have been
covered by T. If not, the vertical extending is still needed by
adding some new test cases into T to cover all uncovered
combinations. Note that there may be test case in which above
uncovered combinations could be added. So for each uncovered
combination in CombSet, firstly attempt to find test cases that
some positions corresponding to this combination are empty while
all others match this combination, then find out the one that the
number of empty positions is the least and fill this combination
into it. If there are not above test cases, add an empty test case
and copy the combination into it.

(v) Deal with all factors in turn similarly as step two, three and
four. And one coverage requirement will be satisfied once all
factors in it have been dealt, hence all coverage requirements in R
will be satisfied by T after all factors in F haven been assigned.
This process is also shown as Algorithm 2. And after above
process, deal with the positions that have not been assigned
similarly as mentioned before.

Next we analyze time complexity. When deal with factor fi
(i=2,…, n), the construction of set Inters need take the
intersection of each coverage requirement and the set of all
determined factors, hence the time complexity of this step is
O(∑t

k=1(|rk|+i)). The worst time complexity O(∑t
k=1∏fi∈rk a[i]) of

constructing CombSet is equal to its size. So the worst time
complexity of horizontal and vertical extending is
O(a[i]×|T|×∑t

k=1∏fi∈rk a[i]) and O(|T|×∑t
k=1∏fi∈rk a[i]) respectively.

Hence the overall theoretical worst time complexity of ParaOrder
is O(|T|×(∑n

i=1a[i])×(∑t
k=1∏fi∈rk a[i])) without considering the

process SelectFactor.

In description of algorithm 2, the function of SelectFactor is to
select a factor that haven not been dealt as given strategy. Here
we define the rule of factor selection is to choose the one that
have greatest number of values. And if there multiple factors have
with the same maximum number, select by their subscript as
ascending. It means that the order of selected factors can be sorted
before the running of algorithm, and its time complexity is
O(n×log(n)) which dose not effect the overall time complexity of
ParaOrder algorithm.

For the system that mentioned in section 4, an example of
horizontal extending and vertical extending is shown in Figure 3.
As the rule of factor selection, the final order of factors is f2, f3, f4,
f1, f5. Here we assume that f2, f3 have been dealt, and the current
factor is f4. Three parts of Figure 2 are initial test suite before
dealing with f4, horizontal extended test suite and vertical
extended test suite separately. And the fourth one is the final
generated test suite.

−−−
−−−
−−−
−−−

22
12
21
11

−−
−−
−−
−−

222
112
221
111

−−
−−
−−
−−
−−
−−
−−
−−

122
212
121
211
222
112
221
111

12
21223
32122
21211
12113
32221
31123
22212
11111

−−−

Figure 3. Process of ParaOrder

6. EXPERIMENT
To evaluate the effectiveness of our algorithms, a combinatorial
test generation tool was developed. Rather than two algorithms
proposed in this paper, two test generation algorithms in IO
relationship testing model were also included in it. In the
experiment, we will compare these four algorithms in the field of
size of generated test suite and execution time.

The implementation of Union and Greedy algorithm is as the
description in [13]. In Union algorithm, when construct test suite
for a given coverage requirement, the value of all “don’t-care”
factors will be assigned randomly. And in Greedy algorithm, the
problem reduce technique was not implemented for simplicity. To
save the execution time when searching the best test case that
covers greatest number of uncovered combinations, a back-track
method based on solution space tree [19] was used in the
implementation of Greedy.

In experiment, the factor set and the valid value collections of
these factors will be given firstly. We choose two factor set

59

Table 1. Compare different algorithms for the systems with
F={310} and different size of interaction relationship

|R| ReqOrder ParaOrder Union Greedy

10 153
1”

104
1”

502
1”

104
241”

20 148
1”

105
1”

858
1”

110
393”

30 151
1”

131
1”

1599
1”

122
489”

40 160
1”

133
1”

2057
2”

134
613”

50 169
1”

146
2”

2635
2”

138
741”

60 176
1”

148
1”

3257
2”

143
918”

Table 2. Compare different algorithms for the systems with
F={23×33×43×5} and different size of interaction relationship

|R| ReqOrder ParaOrder Union Greedy

10 154
1”

144
1”

505
1”

137
342”

20 187
1”

162
1”

929
1”

158
467”

30 207
1”

190
2”

1861
2”

181
816”

40 203
1”

191
2”

2244
1”

183
1163”

50 251
1”

205
2”

2820
2”

198
1332”

60 250
1”

213
3”

3587
2”

207
1521”

F1={310} and F2={23×33×43×5} to represent the set with uniform
factors and mixed factors respectively.

The next step is to determine the interaction relationship and the
coverage requirements in it. The collection of all coverage
requirements that will be used in experiment is described in
appendix. All 60 requirements that generate randomly in this
collection satisfy all required properties of interaction relationship
that mentioned in section 2. Note that there are two reasons that
the strength of each coverage requirement is selected as 2~4. The
first one is that Kuhn D R et al discovered that the failure-
triggering fault interaction numbers in many software systems are
usually not bigger than 4 to 6 [20] and most faults are triggered by
the interactions with low strength [21]. And the second one is that
the size of test suite will be not mainly determined by the
effectiveness of different algorithms, but some few coverage
requirements that with high strength such as 5 or 6. It is also clear
that the reason why the number of requirements is 60 is that the
number of all 2-way, 3-way and 4-way interactions for a system
with 10 factors is 45,120 and 210 respectively. So the size 60 is
appropriate for the property that there is not subsumption between
different coverage requirements.

There will be 6 iterations in experiment for each factor set. In the
first iteration, we select first 10 coverage requirements in
collection of coverage requirements to form the interaction
relationship. And then, the interaction relationship will be
modified by adding 10 following coverage requirements each
time. And in the sixth iteration, there will be 60 coverage
requirements in interaction relationship.

Table 1 and Table 2 display the sizes of generated test suite and
the time consumed for the generation. We compare four
algorithms by the sizes of generated test suite firstly. The sizes of
test suites generated by the Union algorithm are much bigger than
that generated by other three algorithms. ReqOrder is worse than
ParaOrder and Greedy, but much better than Union. The sizes of
test suite that generated by ParaOrder are worse that that of
Greedy in most times, but the gap is very small and sometimes the
former may be better.

Next, we compare the theoretical time complexity and actual
running time of four algorithms. The worst time complexity of
Union, ReqOrder, ParaOrder and Greedy are O(∑t

k=1∏fi∈rk a[i]),
O(|T|×∑t

k=1∏fi∈rk a[i]), O(|T|×(∑n
i=1a[i])×(∑t

k=1∏fi∈rk a[i])) and
O(|T|×(∏n

i=1a[i])×(∑t
k=1∏fi∈rk a[i])) respectively, which are

ordered as ascending. The experiment data also supports this
theoretical result. Greedy need several hundreds or even

thousands seconds though we use a black-track method to
improve its effectiveness, while the running time of all other three
algorithms are limited into 1 or 2 second for all different inputs.

7. CONCLUSION
This paper proposed a new interaction relationship based
combinatorial testing method by extending the conventional
combinatorial testing model and generalizing the IO relationship
testing model. As a more general case of combinatorial testing,
interaction relationship based combinatorial testing method may
reduce the size of test suite without decrease of the fault detect
ability. The reason is that there are not always interactions among
any factors and the strength of these interactions are not always
equal. The neighbor factors combinatorial testing method, which
can be considered as a special case of interaction relationship
based combinatorial testing, has been proved to be effective than
N-way combinatorial testing in the application of testing for
railway signaling systems [17]. Besides, two test generation
algorithms were also proposed and compared with similar
algorithms in IO relationship testing model by experiment. The
experience data shows the advantage of our algorithms.

The studies on combinatorial testing have obtained many results,
but there are also many problems: firstly, existed model of
combinatorial testing do not consider the constraint between the
factors and their values sufficiently, but there may be constraint
between them in many cases; secondly, the study on
combinatorial testing based fault location and debugging
techniques is still lacking. Corresponding, these are following
problems are needed to study in the future works: combinatorial
testing method in the case that there are constraints among factors;
combinatorial testing based fault location and debugging; fault
detection ability of combinatorial testing, etc. Besides, automatic
tools for combinatorial testing, which may support the automation
of test generation, test execution, test measurement, and fault
location etc, are also needed to be designed and developed.

8. ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (60425206, 60633010, 60403016, and
60503033), Natural Science Foundation of Jiangsu Province
(BK2005060), High Technology Research Project of Jiangsu
Province (BG2005032), Excellent Talent Foundation on Teaching
and Research of Southeast University, and Open Foundation of
State Key Laboratory of Software Engineering in Wuhan
University.

60

9. REFERENCES
[1] Cohen D M, Dalal S R, Fredman M L, et al. The AETG

system: An approach to testing based on combinatorial
design. IEEE Trans. on Software Engineering, 1997, 23, 7:
437-444.

[2] Tai K C, Lei Y. A test generation strategy for pairwise
testing. IEEE Trans. on Software Engineering, 2002, 28, 1:
109-111.

[3] Tung Y W, Aldiwan W S. Automating Test Case Generation
for the New Generation Mission Software System. In
Proceedings of IEEE Arospace Conf., 2000, pp. 431-437.

[4] Colbourn C J, Cohen M B, and Turban R C. A deterministic
density algorithm for pairwise interaction coverage. In:
Proceedings of IASTED International Conference on
Software Engineering (SE2004), Innsbruck, Austria, 2004,
345-352.

[5] Noritaka Kobayashi, Tatssuhio Tsuchiya, Tohru Kikuno. A
new method for constructing pair-wise covering designs for
software testing. Information Processing Letters, 2002, 81, 2:
85-91.

[6] Williams A W. Software component interaction testing:
Coverage measurement and generation of configurations.
Ph.D Thesis, Ottawa-Carleton Institute for Computer Science,
School of Information Technology and Engineering,
University of Ottawa, Canada, 2002.

[7] Cohen M B, Colbouns C J, Ling A C H. Augmenting
simulated annealing to build interaction test suites. In:
Proceedings of 14th International Symposium on Software
Reliability Engineering (ISSRE 2003), Denver Colorado,
November 2003: 394-405.

[8] Toshiaki Shiba, Tatsuhiro Tsuchiya, Tohru Kikuno. Using
artificial life techniques to generate test cases for
combinatorial testing. In: Proceedings of 28th International
Computer Software and Applications Conference
(COMPSAC2004), HongKong, China, 2004, 72-78.

[9] Schroeder P J, Bolaki P, Gopu V. Comparing the fault
detection effectiveness of n-way and random test suite. In:
Proceedings of 2004 International Symposium on Empirical
Software Engineering (ISESE2004), Redondo Beach,
California, 2004, 49-59.

[10] Yan Jun, Zhang Jian. Backtracking algorithms and search
heuristics to generate test suites for combinatorial testing. In:
Proceedings of 30th Annual International Conference on
Computer Software and Applications (COMPSAC06),
Volume 1, Sept. 2006:385 – 394.

[11] Yalmaz C, Cohen M B, Porter A A. Covering arrays for
efficient fault characterization in complex configuration
spaces. IEEE Trans. on Software Engineering, 2006, 32, 1:
20-34.

[12] Schroeder P J and Korel B. Black-box Test Reduction Using
Input-output Analysis. In: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA’00),
Portland, Oregon, Aug, 2000:21-22.

[13] Schoeder P J, Black-box test reduction using input-output
analysis. Ph.D. Thesis, Department of Computer Science,
Illinois Institute of Technology, Chicago, IL,USA, 2001.

[14] Schroeder P J, Faherty P, Korel B. Generating expected
results for automated black-box testing. In: Proceedings of
17th IEEE International Conference on Automated Software
Engineering (ASE’02).

[15] Cheng C, Dumitrescu A, Schroeder P J. Generating small
combinatorial test suites to cover input-output relationships.
In: Proceedings of Third International Conference on
Quality Software, Nov 2003: 76-82.

[16] Bach J, Schroeder P J. Pairwise testing: a best practice that
isn’t. In: Proceedings of 22nd Pacific Northwest Software
Quality Conference, 2004, 180-196.

[17] Nie Changhai, Xu Baowen, Wang Ziyuan, Shi Liang.
Generating optimal test set for neighbor factors
combinatorial testing. In: Proceedings of Sixth International
Conference on Quality Software, Oct 2006: 259-265.

[18] Changhai Nie, Baowen Xu, Liang Shi, Guowei Dong.
Automatic test generation for n-way combinatorial testing. In:
Proceedings of Second International Workshop on Software
Quality (SOQUA2005), Fair and Convention Center, Erfurt,
Germany, 2005. Lecture Notes in Computer Science 3712,
2005: 203-211.

[19] Nie Changhai, Xu Baowen, Shi Liang, Wang Ziyuan. A new
heuristic for test suite generation for pairwise testing. In:
Proceedings of 18th International Conference on Software
Engineering and Knowledge Engineering (SEKE2006).

[20] Kuhn D R, Reilly M J. An investigation of the applicability
of design of experiments to software testing. In: Proceedings
of 27th NASA/IEEE Software Engineering Workshop, NASA
Goddard Space Flight Center, 2002, 91-95.

[21] Kuhn D R, Wallace D R. Software fault interaction and
implication for software testing. IEEE Trans. on Software
Engineering, 2004, 30, 6: 1-4.

APPENDIX
The collection of coverage requirements in experiment is shown
as below. There are 10 factors in both F1 and F2, that is F={f1, f2,
f3, f4, f5, f6, f7, f8, f9, f10}. We could describe these 10 factors by its
sequence number, and describe the factor set as F={0, 1, 2, 3, 4, 5,
6, 7, 8, 9} for short.

COLLECTION={{1, 2, 7, 8}, {0, 1, 2, 9}, {4, 5, 7, 8}, {0, 1, 3,
9}, {0, 3, 8}, {6, 7, 8}, {4, 9}, {1, 3, 4}, {0, 2, 6, 7}, {4, 6}, {2, 3,
4, 8}, {2, 3, 5}, {5, 6}, {0, 6, 8}, {8, 9}, {0, 5}, {1, 3, 5, 9}, {1, 6,
7, 9}, {0, 4}, {0, 2, 3}, {1, 3, 6, 9}, {2, 4, 7, 8}, {0, 2, 6, 9}, {0, 1,
7, 8}, {0, 3, 7, 9}, {3, 4, 7, 8}, {1, 5, 7, 9}, {1, 3, 6, 8}, {1, 2, 5},
{3, 4, 5, 7}, {0, 2, 7, 9}, {1, 2, 3}, {1, 2, 6}, {2, 5, 9}, {3, 6, 7},
{1, 2, 4, 7}, {2, 5, 8}, {0, 1, 6, 7}, {3, 5, 8}, {0, 1, 2, 8}, {2, 3, 9},
{1, 5, 8}, {1, 3, 5, 7}, {0, 1, 2, 7}, {2, 4, 5, 7}, {1, 4, 5}, {0, 1, 7,
9}, {0, 1, 3, 6}, {1, 4, 8}, {3, 5, 7, 9}, {0, 6, 7, 9}, {2, 6, 7, 9}, {2,
6, 8}, {2, 3, 6}, {1, 3, 7, 9}, {2, 3, 7}, {0, 2, 7, 8}, {0, 1, 6, 9}, {1,
3, 7, 8}, {0, 1, 3, 7}}.

61

	1. INTRODUCTION
	2. DEFINITIONS
	3. RELATED WORKS
	4. GENERATING TEST SUITE IN COVERAGE REQUIREMENT ORDER
	4.1 Analyzing Union Algorithm
	4.2 Test Generation Algorithm
	5. GENERATING TEST SUITE IN PARAMETER ORDER
	6. EXPERIMENT
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES
	APPENDIX

