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ABSTRACT 
Combinatorial testing could detect the faults triggered by the 
interactions among factors in software. But in many cases, the 
pair-wise, N-way and even the variable strength combinatorial 
testing may lead test suite redundancy and fault detect ability 
decreasing, because these methods do not make sufficient 
consideration on the actual factors interaction. In this paper, a 
new interaction relationship based combinatorial testing model 
was proposed to cover the actual factor interactions in software by 
extending the conventional combinatorial testing model and IO 
relationship testing model. The new method may be more 
effectively than existed combinatorial testing methods without 
decrease of the fault detect ability. Furthermore, two test suite 
generation algorithms for interaction relationship based 
combinatorial testing were also presented. Finally, we compared 
our algorithms with some similar test generation algorithms in IO 
relationship testing model, and the experience result showed the 
advantage of our algorithms. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging –Testing 
tools 

General Terms 
Algorithms, Experimentation. 

Keywords 
Software testing, combinatorial testing, interaction relationship, 
test generation 

1. INTRODUCTION 
As a complex logic system, software may be affected by many 
factors, such as system configurations, internal events, external 
inputs etc. The software faults may be triggered by not only some 
single factors but also the interactions of these factors. So as an 
effective testing approach, combinatorial testing, which can detect 
the faults triggered by these factors and their interactions, was 

widely used in practical. 

Many works have been done in the field of combinatorial test 
generation. For example, some heuristic methods to generate 
combinatorial test suite were proposed by Cohen D M et al [1], 
Lei Y et al [2], Tung Y W et al [3], and Cohen M B et al [4] 
respectively. Some algebraic test generation approaches were 
proposed by Kobayashi N and Tsuchiya T [5], William A W [6]. 
And there are also some search-based methods such as simulated 
annealing algorithm [7], generic algorithm and ant colony 
algorithm [8] being proposed. Schroeder P J et al compared the 
fault detection effectiveness of N-way combinatorial testing and 
random testing [9]. In 2006, Zhang J et al proposed a backtrack-
based algorithm for combinatorial test generation [10] and Yilmaz 
C et al research the advantage of combinatorial testing in size of 
test suite and fault detection effectiveness [11]. 

All works on combinatorial testing, including pair-wise, N-way 
(N≥2) and even variable strength combinatorial testing, are on the 
assumption that there are pair-wise or N-way interaction among 
any two or N factors. But as there are not always interactions 
among any N  factors in software, the test suite used by 
conversional combinatorial testing may still have redundancy and 
its fault detection ability could be also strengthened farther more. 
So if we can make use of more information about actual factors 
interaction relationship in software to design test suite, the size of 
test suite may be reduced while the fault detection effectiveness 
may be increased. Some interaction relationships in software, 
such as input-output (IO) relationships, have been discussed by 
Schroeder P J et al detailedly. And some corresponding test 
generation algorithms to cover the input-output relationships were 
also given [12][13] [14][15]. 

In this paper, we extend the model of conventional combinatorial 
testing and generalize the model of IO relationship based testing, 
to propose a new combinatorial testing model that interaction 
relationship based combinatorial testing, as the supplement of 
pair-wise, N-way and variable strength combinatorial testing. 
Rather than, we also research the method to generate 
combinatorial test suite to cover the interaction relationship, and 
present a serial of new combinatorial test generation algorithms.  

 The remainder of this paper is organized as follows. Section 2 
describes the basic model and definitions. Section 3 reviews 
related works and analyze the existed problems. Two test suite 
generation algorithms are presented separately in section 4 and 
section 5. Section 6 compares our test generation algorithms with 
others. Finally, make a conclusion and point out the future works. 
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2. DEFINITIONS 
Suppose that the software system under test (SUT) may be 
affected by n factors (or parameters) and each factor fi has a[i] 
(1≤i≤n) discrete valid values. Let F={f1, f2,…, fn} denote the set 
of factors, and Vi={1, 2,…, a[i]} (1≤i≤n) denotes the value set of 
fi without loss of generality. In this paper, we also suppose that all 
factors are independent, which means that there are not 
constraints between factors and their values. 

Definition 1 The n-tuple test= (v1, v2,…, vn) (v1∈V1, v2∈V2,…, 
vn∈Vn) is a test case for the SUT. 

Next, we discuss the interactions among factors. As the factor of 
software may interact with each other, a group of factors that have 
interaction with each other can be formed as a subset r of F. That 
means there is a |r|-way interaction among the factors in this 
subset, where |r| is the cardinality of r. So for any subset such as 
this r, the combinatorial test suite is needed to cover all valid 
value combinations of factors in it. Similar as before, if we 
abstract each one of all t interactions in software as a subset of F, 
then there is a collection of these subsets R={r1, r2,…, rt}. And a 
combinatorial test suite for this software should cover all t 
interactions that associate with subsets in R. For example, for a 
given software with n factors, a pair-wise combinatorial test suite 
should cover |R|=n×(n-1)/2 different 2-way (or pair-wise) 
interactions and R={{fi, fj}| fi, fj∈F and i≠j}, and a N-way 
combinatorial test suite cover |R|=CN

n different N-way interactions 
and R={{fi1, fi2, …, fiN}| fi1, fi2, …, fiN∈F}. 

Definition 2 The subset rk∈R (k=1, 2,…, t) is named as an 
interaction coverage requirement, and the collection R is the 
interaction relationship of SUT. 

For simplicity, we support that: (i) each coverage requirement 
rk={fk, 1, fk, 2,…, fk, nk}∈R (k=1, 2,…, t) have nk factors where nk>1; 
(ii) for any two requirements rk1, rk2∈R (k1≠k2), rk1 is not subset 
of rk2 and rk2 is not subset of rk1; (iii) two factors fi, fj∈F (i≠j) 
interact with each other if and only if there exist a coverage 
requirement r∈R that fi, fj∈r.  

For example, consider an object-oriented system with 4 class 
clusters (factors) F={A, B, C, D} and each class cluster has 2 
concrete classes (values), which is shown as class diagram in 
Figure 1. The interaction relationship of this system can be 
described as R={r1, r2, r3} where r1={A, B, C}, r2={A, D} and 
r3={C, D}. That is class A, B and C determine the  Client jointly 
and class D associates with class A and C respectively. 

Definition 3 Given A=(ai,j)m×n is a m×n array, in which the j-th 
column denotes the factor fj of the SUT and all the elements of 
this column come from the finite set Vj (j=1, 2,…, n), that is 
ai,j∈Vj. If there is a m×nk sub-array Ak, which composed of the 
columns of A that corresponding to the factors in interaction 
coverage requirement rk∈R, contains all nk–way values 
combinations of factors in rk, then we say that A covers the 
interaction coverage requirement rk. If A satisfies all coverage 
requirements in R, then we say that A covers the interaction 
relationship R, and A is a covering array that covers R. 

For a given SUT, the combinatorial test suite T that covers 
interaction relationship R could be obtained easily from the 
covering array A that covers R. So we suppose that combinatorial 
test suite and covering array are equivalent in this paper. 

Definition 4 Let T is combinatorial test suite that covers 
interaction relationship R of SUT, if it contains minimum possible 
number of test cases, then T is the optimal combinatorial test suite 
that covers R, or the optimal test suite. 

Differ from the conventional combinatorial testing method, 
interaction relationship based combinatorial testing do not need to 
generate test suite to cover all N-way interactions but only need to 
cover all actual interactions. In this paper, we assume that the 
actual interaction relationship has been obtained, which could be 
obtained from many ways, such as reviewing design documents, 
source code analysis, or interviewing with programmers etc. 

3. RELATED WORKS 
Combinatorial testing, especially pair-wise testing, have been 
widely used in practical successfully. But Bach J and Schroeder P 
J pointed out that all such successful cases were on the ground 
that analyzing the characteristic of software in detail and 
obtaining the factors interaction relationship sufficiently [16]. 

However, in traditional model of combinatorial testing, there is a 
assumption that there are interactions among any N(N≥2) factors 
at least and generate N-way test suite or variable strength 
combinatorial test suite on this hypothesis. But in reality, there are 
few software systems have this property. So if we do not consider 
the character of SUT sufficiently when generating test suite, the 
effectiveness of testing may be reduced: (i) if we choose N as a 
large number, the test suite may be redundant; (ii) there are may 
be some interactions influence more than N factors in a software, 
that means some valid combinations may not be covered by N-
way test suite and some bugs may not be detected. Above all, to 
increase the effectiveness of combinatorial testing, it is necessary 
to mine the actual interaction relationship among factors in 
software before test generation. 

Class A

Concrete A Concrete A

Class B

Concrete B Concrete B

Class C

Concrete C Concrete C

Class D

Concrete D Concrete D

Client

 

Figure 1. Class diagram 

To solve the problem of test generation for software with complex 
input-output relationship, Schroeder P J et al proposed the model 
of input-output relationship based testing method and give three 
different test generation algorithms [12][13][14]. The first one is a 
brute force approach to find a minimum test suite. The second one, 
the Union algorithm, designs a serial of test suite for each output 
variable to cover the interaction among the associative inputs 
variables respectively, and then takes the union of them to get a 
final test suite. This algorithm is very simple that the time 
complexity is only O(∑t

k=1∏fi∈rk a[i]) under the model that defined 
in this section 2, but can not generate small test suite. And the last 
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one, Greedy algorithm, selects an unused test case that covers the 
greatest number of uncovered combinations of input values each 
times until all interactions have been covered by the selected test 
suite. It may generate a much smaller test suite than the second 
one, but with a bad time and space performance for it must check 
all test cases in a huge search space. And its time complex is as 
much as O(|T|×(∏n

i=1a[i])×(∑t
k=1∏fi∈rk a[i])) in our model. So in 

2003, they proposed a problem reduction method, which is based 
on the color graph, to make the Greedy algorithm become more 
efficient [15]. But as the authors mentioned, this reduction 
method is suitable only when relationships are “simple” that the 
number of edges in associated color graph is much smaller than 
that of complete graph with the same number of edges. And the 
algorithm with reduced technique may generate some redundancy 
test cases. 

In recent years, we have made much study on combinatorial 
testing. And the characteristic of factors interaction relationship 
has also been considered in our works. For a special case that the 
interaction exists only among neighbor factors, the neighbor 
factors combinatorial testing method was proposed and a serial of 
optimal neighbor factor combinatorial test suite generation 
algorithms for different cases were presented [17]. It is evident 
that the neighbor factors N-way testing is a special case of 
interaction relationship based combinatorial testing when the 
interaction relationship R={{fi, fi+1,…, fi+N-1}|fi, fi+1,…, fi+N-1∈F}. 
And its effectiveness has been shown in the application of testing 
for railway signaling systems. 

In this paper, we extend the model of input-output relationship 
based testing to the interaction relationship based combinatorial 
testing, which is a little more general than the former. Rather than, 
the more important works of this paper are two new test 
generation algorithms for interaction relationship based 
combinatorial testing with higher performance. 

4. GENERATING TEST SUITE IN 
COVERAGE REQUIREMENT ORDER 
By analyzing the disadvantage of Union algorithm proposed by 
Schroeder P J, a better combinatorial test generation algorithm 
was given in this section. 

4.1 Analyzing Union Algorithm 
The Union algorithm may not create a small test suite because the 
size of generated test suite depends on how the values are 
assigned to “don’t care” factors, which are the factors that do not 
belong to current coverage requirement. For example, considering 
a SUT with F={24}, that is there are 4 factors and each factor has 
2 discrete possible values. For two covergae requirements r1={f1, 
f2} and r2={f3, f4} in R, design two test suite T1={(1, 1, 1, 1), (1, 2, 
1, 1), (2, 1, 1, 1), (2, 2, 1, 1)} and T2={(1, 1, 1, 1), (1, 1, 1, 2), (1, 
1, 2, 1), (1, 1, 2, 2)} to cover r1 and r2 respectively, where all 
“don’t-care” factors are assigned as 1. And then take the union of 
them to get T= T1∪T2={(1, 1, 1, 1), (1, 2, 1, 1), (2, 1, 1, 1), (2, 2, 1, 
1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 2)} with size 7. However, there 
is a test suite T’={(1, 1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1), (2, 2, 2, 2)} 
with size 4 can also cover r1 and r2. We can conclude from above 
example that, if there is not a better strategy to determine the 
values of “don’t-care” factors when generating test cases for a 
given requirement, the final test suite may be redundant. 

Hence, we propose a new test generation algorithm to avoiding 
the disadvantage of Union algorithm. In our algorithm, all the 
positions that corresponding to each “don’t-care” factor will not 
be assigned until a coverage requirement which include this factor 
is dealt. This strategy may avoid the redundancy of combinations 
in “don’t-care” factors and reduce the size of test suite evidently. 

4.2 Test Generation Algorithm 
For a given interaction relationship R={r1, r2,…, rt}, the test 
generation algorithm in coverage requirement order will selects a 
coverage requirement from R and generates an initialize test suite 
for it firstly. Then extend this test suite to satisfy another selected 
requirement. This step will be repeatedly until all requirements in 
R have been selected out and satisfied by the final test suite. The 
detail of this algorithm is shown as follows: 

Algorithm 1. Test Generation Algorithm in Coverage 
Requirement Order (ReqOrder) 

Input: F={f1, f2,…, fn}, R={r1, r2,…,rt} 
Output: Test suite T that cover R 
begin 

r=SelectReq(R);                      //select a requirement r∈R 
Create a test suite T with ∏fi∈r a[i] empty test cases; 
Fill all combinations of factors in r into T; 
R = R-{r}; 
Fdeal={fi|fi∈r1};                       //factors have been assigned 
while R ≠ ∅ 

r=SelectReq(R); 
if rk∩Fdeal=∅ then 

if ∏fi∈r a[i]>|T| then 
Add ∏fi∈r a[i]-|T| empty test cases into T; 

Fill all combinations of factors in r into T; 
else  

//computing the needed appearance time of 
//combinations of factors in r∩Fdeal
need=∏fi∈r – F deal a[i]; 
for each combination com of factors in r∩Fdeal  

Let count is appearance times of com in T; 
if count<need then 

for j = count to need-1 
if there are test cases in which com could be added 
into then                    //scan all test cases 

Select a test case that match com mostly from 
above test cases; 
Add com into selected test case; 

else 
Add need-j empty test cases into T; 
Fill com into these need-p test cases; 
break; 

if r- Fdeal ≠ ∅ then 
Fill need different combinations of factors in r-Fdeal 
into test cases that contain com; 

R = R-{r}; Fdeal= Fdeal ∪r; 
end 

 (i) Selects a coverage requirement from R by a given strategy. 
Without loss of generality, let it be r1. Construct a test suite T 
with size m1=∏fi∈r1 a[i] and fill all m1 combinations of factors in 
r1 into it. As we mentioned before, all positions corresponding to 
“don’t-care” factors will be empty. 
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(ii) Selects another coverage requirement r∈R that have not been 
dealt before. Without loss of generality, we assume that the k-th 
requirement that will be dealt is rk={fk, 1, fk, 2, …, fk, nk} (k=1, 2, …, 
n). And the intersection between rk and Fdeal=r1∪r2∪…∪rk-1, 
which is set of factors that belong to r1, r2, …, rk-1, can be 
described as rk∩Fdeal={fk, 1, fk, 2, …, fk, p}. 

(iii) If rk∩Fdeal=∅, that means all factors in rk have not been 
assigned before and all corresponding positions are still empty. 
Check whether the size of T is smaller than the number of 
combinations of factors in rk. If it is, add ∏fi∈rk a[i]-|T| empty test 
case into T firstly. And then, fill all ∏fi∈rk a[i] combinations into T 
as step one. 

(iv) If rk∩Fdeal≠∅, to cover all nk-way combinations of factors in 
rk, all p-way combinations in set CombSet={(vk, 1,…,vk, p)|vk, 1∈Vk, 

1,…,vk, p∈Vk, p} must be covered and appear at least need=∏fi∈rk–

Fdeal a[i] times in T. So for each combination in CombSet, count its 
appearance times count firstly, and then complete this 
combination to make it appear need times in T if count<need. The 
succeeding process is to fill need different combinations of factors 
in rk -Fdeal into test cases that contain each combination in 
CombSet. All above process will guarantee that T satisfies rk. 

(v) Similar as step two, three and four, one coverage requirement 
will be selected and dealt each time, until all requirements in R 
have been satisfied by T. And some more detailed material is in 
Algorithm 1. 

After the process of ReqOrder algorithm, note that there may be 
some positions that have not been assigned in T. But these 
unassigned positions do not reduce the coverage ability of test 
suite for interactions. Thus we name the values of these positions 
as “don’t care” values and assign any valid value x∈Vi in them. 

Next we analyze the time complexity of algorithm 1. The number 
of combinations of factors in rk (k=1, 2, …, t) is ∏fi∈rk a[i]. And 
when filling each combination into test suite, all test cases in the 
suite should be scanned. So the worst time complexity when deal 
with rk is O(|T|×∏fi∈rk a[i]), and the worst time complexity of 
ReqOrder algorithm is O(|T|×∑t

k=1∏fi∈rk a[i]) without considering 
the process of selecting requirement. 

In description of algorithm 1, the function of SelectReq is to 
select a coverage requirement that have not been satisfied by test 
suite. At beginning, when all requirements in R have not been 
satisfied, it selects a requirement in which there are most 
combinations of factors. And in the other steps, the selected 
coverage requirement should have at least one factor that belongs 
to at least one requirement that have been dealt previously, and 
the number assign_factor_comb_num/total_comb_num is as great 
as possible, where the numerator is the number of combinations 
of these assigned factors in selected requirement and the 
denominator is the number of combinations of all factors in 
requirement. If there are not coverage requirement that satisfies 
this property, select randomly. Above calculation could be done 
in constant time, so this process do not effect the overall time 
complexity of ReqOrder algorithm. 

At last, an example will be given to explain the process of 
RrqOrder algorithm. Consider a SUT with F={3×2×2×2×3} (it 
means that there are 5 factors totally and |V1|=3, |V2|=|V3|=|V4|=2, 
|V5|=3), R={r1, r2, r3, r4} where r1={f1, f2}, r2={f2, f3, f4}, r3={f4, 

f5}, r4={f1, f5}. The Figure 2 shows the process of generating test 
suite by ReqOrder algorithm, and the order of selected 
requirements is r2, r1, r4, r3. In the first two steps, r2, r1 are 
satisfied separately. And the next two steps deal with r4. Because 
all combinations in r3 have been covered after the fourth step, the 
algorithm stops here. In this example, the “don’t care” values are 
not determined for simpleness. 
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Figure 2. Process of ReqOrder 

 

 

 

 

 

 

5. GENERATING TEST SUITE IN 
PARAMETER ORDER 
In this section, we apply the in-parameter-order strategy, which 
has been successfully used in pair-wise test generation [2] and N-
way combinatorial test generation [18], on the generation of 
combinatorial test suite for interaction relationship. 

When generate combinatorial test suite with test generation 
algorithm in parameter order, an initial test suite will be 
constructed for a sub-system with only small number of factors 
firstly. Then extend the test suite by adding a new factor into this 
sub-system to get a test suite for the new sub-system, and this 
process will repeat until all n factors have been added into the 
sub-system to make it become the complete system. The detail is 
shown as follows: 

Algorithm 2. Test Generation Algorithm in Parameter Order 
(ParaOrder) 

Input: F={f1, f2,…, fn}, R={r1, r2,…,rt} 
Output: Test suite T that satisfy R 
begin 

fi=SelectFactor(F); 
Create a test suite T with a[i] empty test cases; 
Assign a[i] values of fi into T; 
F=F -{fi};  Fdeal ={fi}; 
while F ≠ ∅ 

fi=SelectFactor(F); 
Inters={rk∩(Fdeal+{fi})| fi∈rk, k=1, 2,…, t}; 
CombSet={(vi, 1,…,vi, j)|vi, 1∈Vi, 1,…,vi, j∈Vi, j, {fi,1,…, fi, j} 
∈Inters}; 
//extending T horizontally 
for j = 1 to | T |  

Check all factors (except fi) in elements of Inters in j-th 
test case; 
if all above positions are not empty then 

for v = 1 to a[i]               //select value of fi greedily 
Let countv be the number of combinations in CombSet 
that will be covered by T if v is selected as the value 
of fi in j-th test case; 

Select a value v with the largest countv; 
CombSet=CombSet–{combinations that covered by the 

58



j-th test case}; 
if CombSet=∅ then break; 

//add new test cases to extending T vertically 
for each combination com in CombSet 

if there exist test cases in T that com can be added into 
then 

Select a test case that match the com mostly from above 
ones, and fill com into selected test case; 

else  
Add a new empty test case into T; 
Fill com into this test case; 

F=F-{fi };  Fdeal=Fdeal∪{fi }; 
end 

 (i) Select a factor and assume it is f1 without loss of generality. 
Construct a test suite T with a[1] empty test cases, and fill all a[1] 
different values of f1 into the first column of T. 

(ii) Select another factor that has not been assigned in T. Without 
loss of generality, here we assume that the final sequence of 
selected factors is f1, f2,…, fn. So the factor fi will be selected to be 
assigned in i-th iteration. We select all coverage requirements that 
contain fi, and take the intersection between them and the set {f1, 
f2,…, fi} to get a set of these intersections Inters={rk∩{f1, f2,…, 
fi}| k=1, 2,…, t, and fi∈rk}. Consequently, the set of combinations 
of the factors in elements of Inters can also be obtained, that is 
CombSet={(vi, 1,…,vi, j)|vi, 1∈Vi, 1,…,vi, j∈Vi, j and {fi,1,…, fi, 

j}∈Inters}. It is clear that all combinations in CombSet must be 
covered by T when deal with fi,. 

(iii) Extend test suite horizontally firstly. For each test case testk 
(k=1, 2,…, |T|) in T, if all positions corresponding to factors that 
interact with fi and have been dealt in previous iterations are not 
empty, we  choose a value v of fi from Vi to make testk cover most 
combinations in CombSet and then refine it. Above process will 
stop when k=|T| or CombSet=∅. Note that there may be multiple 
values could make testk cover the same maximum number of 
uncovered combinations, therefore we select the one that appear 
least times since the beginning of horizontal extending. If there 
are still multiple candidates, select the first one in the turn testk-

1[i]+1, testk-1[i]+2,…, a[i], 1,…, testk-1[i], where the testk-1[i] 
denote the value of fi in test case testk-1. 

(iv) Check whether all combinations in CombSet have been 
covered by T. If not, the vertical extending is still needed by 
adding some new test cases into T to cover all uncovered 
combinations. Note that there may be test case in which above 
uncovered combinations could be added. So for each uncovered 
combination in CombSet, firstly attempt to find test cases that 
some positions corresponding to this combination are empty while 
all others match this combination, then find out the one that the 
number of empty positions is the least and fill this combination 
into it. If there are not above test cases, add an empty test case 
and copy the combination into it. 

(v) Deal with all factors in turn similarly as step two, three and 
four. And one coverage requirement will be satisfied once all 
factors in it have been dealt, hence all coverage requirements in R 
will be satisfied by T after all factors in F haven been assigned. 
This process is also shown as Algorithm 2. And after above 
process, deal with the positions that have not been assigned 
similarly as mentioned before. 

Next we analyze time complexity. When deal with factor fi 
(i=2,…, n), the construction of set Inters need take the 
intersection of each coverage requirement and the set of all 
determined factors, hence the time complexity of this step is 
O(∑t

k=1(|rk|+i)). The worst time complexity O(∑t
k=1∏fi∈rk a[i]) of 

constructing CombSet is equal to its size. So the worst time 
complexity of horizontal and vertical extending is 
O(a[i]×|T|×∑t

k=1∏fi∈rk a[i]) and O(|T|×∑t
k=1∏fi∈rk a[i]) respectively. 

Hence the overall theoretical worst time complexity of ParaOrder 
is O(|T|×(∑n

i=1a[i])×(∑t
k=1∏fi∈rk a[i])) without considering the 

process SelectFactor. 

In description of algorithm 2, the function of SelectFactor is to 
select a factor that haven not been dealt as given strategy. Here 
we define the rule of factor selection is to choose the one that 
have greatest number of values. And if there multiple factors have 
with the same maximum number, select by their subscript as 
ascending. It means that the order of selected factors can be sorted 
before the running of algorithm, and its time complexity is 
O(n×log(n)) which dose not effect the overall time complexity of 
ParaOrder algorithm. 

For the system that mentioned in section 4, an example of 
horizontal extending and vertical extending is shown in Figure 3. 
As the rule of factor selection, the final order of factors is f2, f3, f4, 
f1, f5. Here we assume that f2, f3 have been dealt, and the current 
factor is f4. Three parts of Figure 2 are initial test suite before 
dealing with f4, horizontal extended test suite and vertical 
extended test suite separately. And the fourth one is the final 
generated test suite. 
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Figure 3. Process of ParaOrder 

 

 

 

 

 

 

6. EXPERIMENT 
To evaluate the effectiveness of our algorithms, a combinatorial 
test generation tool was developed. Rather than two algorithms 
proposed in this paper, two test generation algorithms in IO 
relationship testing model were also included in it. In the 
experiment, we will compare these four algorithms in the field of 
size of generated test suite and execution time. 

The implementation of Union and Greedy algorithm is as the 
description in [13]. In Union algorithm, when construct test suite 
for a given coverage requirement, the value of all “don’t-care” 
factors will be assigned randomly. And in Greedy algorithm, the 
problem reduce technique was not implemented for simplicity. To 
save the execution time when searching the best test case that 
covers greatest number of uncovered combinations, a back-track 
method based on solution space tree [19] was used in the 
implementation of Greedy. 

In experiment, the factor set and the valid value collections of 
these factors will be given firstly. We choose two factor set 
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Table 1. Compare different algorithms for the systems with 
F={310} and different size of interaction relationship 

|R| ReqOrder ParaOrder Union Greedy 

10 153 
1” 

104 
1” 

502 
1” 

104 
241” 

20 148 
1” 

105 
1” 

858 
1” 

110 
393” 

30 151 
1” 

131 
1” 

1599 
1” 

122 
489” 

40 160 
1” 

133 
1” 

2057 
2” 

134 
613” 

50 169 
1” 

146 
2” 

2635 
2” 

138 
741” 

60 176 
1” 

148 
1” 

3257 
2” 

143 
918”  

Table 2. Compare different algorithms for the systems with 
F={23×33×43×5} and different size of interaction relationship 

|R| ReqOrder ParaOrder Union Greedy 

10 154 
1” 

144 
1” 

505 
1” 

137 
342” 

20 187 
1” 

162 
1” 

929 
1” 

158 
467” 

30 207 
1” 

190 
2” 

1861 
2” 

181 
816” 

40 203 
1” 

191 
2” 

2244 
1” 

183 
1163” 

50 251 
1” 

205 
2” 

2820 
2” 

198 
1332” 

60 250 
1” 

213 
3” 

3587 
2” 

207 
1521”  

F1={310} and F2={23×33×43×5} to represent the set with uniform 
factors and mixed factors respectively. 

The next step is to determine the interaction relationship and the 
coverage requirements in it. The collection of all coverage 
requirements that will be used in experiment is described in 
appendix. All 60 requirements that generate randomly in this 
collection satisfy all required properties of interaction relationship 
that mentioned in section 2. Note that there are two reasons that 
the strength of each coverage requirement is selected as 2~4. The 
first one is that Kuhn D R et al discovered that the failure-
triggering fault interaction numbers in many software systems are 
usually not bigger than 4 to 6 [20] and most faults are triggered by 
the interactions with low strength [21]. And the second one is that 
the size of test suite will be not mainly determined by the 
effectiveness of different algorithms, but some few coverage 
requirements that with high strength such as 5 or 6. It is also clear 
that the reason why the number of requirements is 60 is that the 
number of all 2-way, 3-way and 4-way interactions for a system 
with 10 factors is 45,120 and 210 respectively. So the size 60 is 
appropriate for the property that there is not subsumption between 
different coverage requirements. 

There will be 6 iterations in experiment for each factor set. In the 
first iteration, we select first 10 coverage requirements in 
collection of coverage requirements to form the interaction 
relationship. And then, the interaction relationship will be 
modified by adding 10 following coverage requirements each 
time. And in the sixth iteration, there will be 60 coverage 
requirements in interaction relationship.  

Table 1 and Table 2 display the sizes of generated test suite and 
the time consumed for the generation. We compare four 
algorithms by the sizes of generated test suite firstly. The sizes of 
test suites generated by the Union algorithm are much bigger than 
that generated by other three algorithms. ReqOrder is worse than 
ParaOrder and Greedy, but much better than Union. The sizes of 
test suite that generated by ParaOrder are worse that that of 
Greedy in most times, but the gap is very small and sometimes the 
former may be better.  

Next, we compare the theoretical time complexity and actual 
running time of four algorithms. The worst time complexity of 
Union, ReqOrder, ParaOrder and Greedy are O(∑t

k=1∏fi∈rk a[i]), 
O(|T|×∑t

k=1∏fi∈rk a[i]), O(|T|×(∑n
i=1a[i])×(∑t

k=1∏fi∈rk a[i])) and 
O(|T|×(∏n

i=1a[i])×(∑t
k=1∏fi∈rk a[i])) respectively, which are 

ordered as ascending. The experiment data also supports this 
theoretical result. Greedy need several hundreds or even 

thousands seconds though we use a black-track method to 
improve its effectiveness, while the running time of all other three 
algorithms are limited into 1 or 2 second for all different inputs. 

7. CONCLUSION 
This paper proposed a new interaction relationship based 
combinatorial testing method by extending the conventional 
combinatorial testing model and generalizing the IO relationship 
testing model. As a more general case of combinatorial testing, 
interaction relationship based combinatorial testing method may 
reduce the size of test suite without decrease of the fault detect 
ability. The reason is that there are not always interactions among 
any factors and the strength of these interactions are not always 
equal. The neighbor factors combinatorial testing method, which 
can be considered as a special case of interaction relationship 
based combinatorial testing, has been proved to be effective than 
N-way combinatorial testing in the application of testing for 
railway signaling systems [17]. Besides, two test generation 
algorithms were also proposed and compared with similar 
algorithms in IO relationship testing model by experiment. The 
experience data shows the advantage of our algorithms. 

The studies on combinatorial testing have obtained many results, 
but there are also many problems: firstly, existed model of 
combinatorial testing do not consider the constraint between the 
factors and their values sufficiently, but there may be constraint 
between them in many cases; secondly, the study on 
combinatorial testing based fault location and debugging 
techniques is still lacking. Corresponding, these are following 
problems are needed to study in the future works: combinatorial 
testing method in the case that there are constraints among factors; 
combinatorial testing based fault location and debugging; fault 
detection ability of combinatorial testing, etc. Besides, automatic 
tools for combinatorial testing, which may support the automation 
of test generation, test execution, test measurement, and fault 
location etc, are also needed to be designed and developed. 
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APPENDIX 
The collection of coverage requirements in experiment is shown 
as below. There are 10 factors in both F1 and F2, that is F={f1, f2, 
f3, f4, f5, f6, f7, f8, f9, f10}. We could describe these 10 factors by its 
sequence number, and describe the factor set as F={0, 1, 2, 3, 4, 5, 
6, 7, 8, 9} for short. 

COLLECTION={{1, 2, 7, 8}, {0, 1, 2, 9}, {4, 5, 7, 8}, {0, 1, 3, 
9}, {0, 3, 8}, {6, 7, 8}, {4, 9}, {1, 3, 4}, {0, 2, 6, 7}, {4, 6}, {2, 3, 
4, 8}, {2, 3, 5}, {5, 6}, {0, 6, 8}, {8, 9}, {0, 5}, {1, 3, 5, 9}, {1, 6, 
7, 9}, {0, 4}, {0, 2, 3}, {1, 3, 6, 9}, {2, 4, 7, 8}, {0, 2, 6, 9}, {0, 1, 
7, 8}, {0, 3, 7, 9}, {3, 4, 7, 8}, {1, 5, 7, 9}, {1, 3, 6, 8}, {1, 2, 5}, 
{3, 4, 5, 7}, {0, 2, 7, 9}, {1, 2, 3}, {1, 2, 6}, {2, 5, 9}, {3, 6, 7}, 
{1, 2, 4, 7}, {2, 5, 8}, {0, 1, 6, 7}, {3, 5, 8}, {0, 1, 2, 8}, {2, 3, 9}, 
{1, 5, 8}, {1, 3, 5, 7}, {0, 1, 2, 7}, {2, 4, 5, 7}, {1, 4, 5}, {0, 1, 7, 
9}, {0, 1, 3, 6}, {1, 4, 8}, {3, 5, 7, 9}, {0, 6, 7, 9}, {2, 6, 7, 9}, {2, 
6, 8}, {2, 3, 6}, {1, 3, 7, 9}, {2, 3, 7}, {0, 2, 7, 8}, {0, 1, 6, 9}, {1, 
3, 7, 8}, {0, 1, 3, 7}}. 
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