
Requiem for software evolution research: a few steps
toward the creative age

G. Antoniol
Département de Génie Informatique, École Polytechnique de Montréal

C.P. 6079, succ. Centre-ville Montréal (Québec) H3C 3A7 Canada
antoniol@ieee.org

ABSTRACT
Nowadays almost every company depends on software technolo-
gies to function, the challenge is that the technologies and software
applications are constantly changing and adapting to the needs of
users. This process of change is risky, since unplanned and undis-
ciplined changes in any software system of realistic size risk de-
grading the quality of the software and producing unexpected side
effects. The need for disciplined, intelligent, cost-effective soft-
ware change and evolution is an urgent technological challenge in
the software engineering field.

New technologies, new social and cultural trends, a widespread
adoption of open source software, the market globalization and new
development environments are spelling the requiem to the tradi-
tional way in which software evolution research was carried out.
Evolution research must evolve and adapt to the new society needs
and trends thus turning challenges into opportunities. This keynote
attempts to shed some light on key factors such new technology
transfer opportunity, the need of benchmarks and the three items
each and every research program in software evolution should inte-
grate in one way or the other.

Categories and Subject Descriptors
D [Software]: Miscellaneous; D.2.7 [Software Engineering]: Dis-
tribution, Maintenance, and Enhancement

General Terms
Software Evolution, Technology Transfer, Innovation

Keywords
Software evolution, Open source, IT trends

An intrinsic property of software is its malleability, the fact that
it may change and evolve. Changes and evolution characterize the
entire life span of any software system, from inception to retire-
ment. The need for disciplined, intelligent, cost-effective software
change and evolution is an urgent technological challenge in the
software engineering field. Successful software systems operate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’07, September 3-4, 2007, Dubrovnik, Croatia. Copyright 2007
ACM ISBN 978-1-59593-722-3/07/09
Copyright 2007 ACM 978-1-59593-722-3/07/09 ...$5.00.

for decades, and often outlive the hardware and operational envi-
ronments for which they were originally conceived, designed and
developed. In real-world environments, software must constantly
evolve, or it is doomed to become obsolete. New technologies,
new players, new cultural and society values and a constant strive
to reduce software total cost of ownership are changing the soft-
ware landscape and challenging the software evolution community.
Key factors such as:

• Service Oriented Architectures (SOA);

• Autonomic, self configuring, self healing systems;

• Market globalization, new social and cultural trends toward
a creative society;

• Widespread adoption of open source software; and

• New powerful development environments.

Are influencing the way in which software is developed, evolved
and eventually retired. Indeed, the choice is no longer limited to
make or buy; SOA and the cultural shift to view software as pro-
viding a service [6, 3] already makes it possible to rent a software
or the service implemented on top of it.

Despite the profound changes we observe, the current state-of-
the-art offers only short- term solutions focused on the mere techni-
cal issues of software maintenance and defect repair. Software de-
velopment and evolution are social phenomena involving technical
as well as non technical matters but only recently social networks,
cultural issues and financial aspects have drawn the attention of re-
searchers, see for example [8]. Even worse, we are lacking of
theories, methodologies and approaches providing systematic sup-
port for disciplined, long-term change planning. Software system
change and evolution is costly, since real world software systems
tend to be highly complex and large in size. It is highly human-
intensive and risky, since unplanned and undisciplined changes in
any software system of realistic size risk degrading software qual-
ity, and may produce unwanted or unexpected side effects. In ad-
dition to these technical difficulties, it is also impossible to predict
how a software system should function in the future, which means
that available software design techniques cannot help to fully antic-
ipate the long-term evolution of a software system. Technical chal-
lenges are not the sole problem. Outsourcing in emerging countries
reduces costs but it also imply that applications are often evolved
by non native English speakers. However, software manuals, de-
sign documents, requirements are likely, if they exist, to be written
in English. Calling service centers of software and hardware ven-
dors may turn into an amazing social experience where non native
English speakers attempt to communicate in a language they be-
lieve is English.

1

According to recent reports produced by Forrester Research1 [2],
despite concerns on copyright and patent infringement, open source
adoption for mission-critical applications is no longer a taboo. About
80 percent of respondents report using open source in the applica-
tion infrastructure providing the underpinning for both routine and
mission-critical applications. Such a widespread infrastructural uti-
lization indicates a strong potential and relevance of research re-
sults obtained by studying open source infrastructural components
such as databases, Web servers and application servers. The rel-
evance of open source case studies has been anticipated by the
maintenance and evolution community. The workshop on mining
software repository and an increasing number of papers reporting
empirical evidence related to open source projects are encouraging
facts. We must recognize that Apache [4] and Firefox [9] account
for about 50 % and 15 % of market share respectively; Eclipse ex-
ceeds 65 [5] percent of Java IDE market share. In other word,
the mantra “you have not industrial data” have to be reformulated
in “you have not realistic data”; research and studies relying on
large open source software are no longer second rank contribution.
Eclipse, is giving to the software evolution community a tremen-
dous opportunity setting the stage for profound revolution. Tech-
nology transfer from research to market depends on several factors
such as the domain e.g., automotive versus information technolo-
gies, the regulations e.g., food and drug administration, the mar-
ket opportunity e.g., lacking of competitive technologies. Eclipse
integrates software evolution research ideas dating back to early
nineties e.g., automatic refactoring; its architecture of open frame-
work make it easy to implement and deploy new plugins. By de-
veloping our plugins and making them available over the network
the technology transfer can be substantially shortened and likely
measured in years instead of decades.

According to IDC and The Economist the market of software
and software services will still increase far more then the hardware
market. Services are ubiquitous and will reach almost 100 % of
company adoption in the next couple years to come. A global mar-
ket makes it easy to find early adopters for disruptive technologies
and our community has to take the challenge and turn it into a com-
petitive advantage. No matter the platform traditional applications
were developed for, applications need to migrate to Web services,
Web services need to be evolved, business intelligence and auto-
nomic computing needs to be integrated into systems. The auto-
nomic computing initiative launched by IBM cannot be overlooked.
Researchers in software evolution need to recognize that evolving
a single, isolated, small non distributed application running on a
single host is easy. The challenge is when we have to evolve a dis-
tributed application running on a distributed server farm where tens
of thousands of machine provide critical services to our society.

A shift in labor market and a worldwide economy promotes a
rise in creative jobs [1] such as computer, mathematical and en-
gineering occupations. Researchers and practitioners are moving
across the borders following criteria no longer limited to the salary.
The 2001 information week survey reports salary as only the forth
motivation to chose a job; 67 % of respondents rank "challenges"
as the top motivation [1]. The software evolution community has
to recognize the rise in creative contributions from regions once
only marginally considered. China, India and Western Europe are
rapidly becoming major research players substantially contribut-
ing to technology and innovation. These countries have in place
high quality education programs; the China government launched
major initiatives in high technology training. The pressure to in-
crease productivity and decrease software total cost of ownership

1http://www.mywebservices.ca/news-im/07-312-may-16.html

already forced Indian companies to outsource activity to China.
The same pressure will bring into play researchers and facilities
of those countries. The share mass of intellectual power coming
into play challenge any traditional academic research approach; re-
search groups and communities not focusing on key and challeng-
ing research problems not measuring, quantifying and assessing re-
sults on sizable test beds are domed to find difficulty to attract new
blood and likely to disappear.

The software evolution community should address the difficul-
ties faced when striving to make software change and evolution
more cost-effective. Software changes should be carefully man-
aged. More specifically, software evolution researchers should de-
velop sophisticated tools for the effective planning, managing and
implementation of software changes for sizable applications and
systems. These tools should be able very easy to use, they should
pass an equivalent for computer science of the "mom test" [7]; if my
mom, nowadays 75 years old is not adopting a technology you are
loosing an important market share and your technology is likely not
to be a mature technology. Much in a similar way, if programmers
and managers are not adopting what we are developing in our labo-
ratories then we have a problem. Indeed, one of the key indicators
of a mature technology is the ease of use for both non-experts and
professionals. Any research agenda in software evolution should
consider integrating in one way or the other, in total or in part,
some aspects of the following key objectives:

• Managing software evolution projects: to identify models for
planning and managing software change and evolution in a
cost-effective way;

• Understanding software evolution: to identify architectural
and design solutions promoting software evolution; and

• Retrospective analysis of evolving software: to investigate
and analyze information from previous software releases and
versions in order to improve future versions.

A further challenge for our community is the lacking of bench-
marks, of a common yardstick. Despite an encouraging trend to-
ward the use of applications such as Mozilla, Eclipse or Jboss as
test beds there exists a very limited body of empirical results. Em-
pirical investigation into the cost and effectiveness of change and
evolution strategies should be a major component of any research
program, however, few case studies and simulations have been per-
formed to understand what makes a software system able to evolve,
to identify optimal or sub-optimal change schedules and change
strategies, and, more generally, to validate approaches that will re-
duce evolution costs. Empirical studies are needed to demonstrate
the effectiveness of our research and facilitate collaborative and
evolutionary work among researchers and practitioners. However,
there is a lack of common experimental design, methodologies, and
benchmarks. Hence, work and resources are needed to define stan-
dard processes and related procedures and to build benchmarks for
performing empirical studies during evolution research.

1. REFERENCES
[1] R. Florida. The rise of the creative class. Basic Books, New

York, 2002.
[2] G. Giera. Unisys pioneers the right model for open source

services. http://www.forrester.com/Research/
Document/Excerpt/0,7211,39739,00.html, July 2006.

[3] W. Heuvel. Aligning modern business processes and legacy
systems. MIT Press, 2007.

2

[4] Netcraft. June 2007 web server survey.
http://news.netcraft.com/archives/web_server_survey.html.

[5] I. Skerrett. Eclipse gains market share in 2005.
http://ianskerrett.blogspot.com/2006/03/eclipse-gains-market-
share-in-2005.html.

[6] M. Turner, D. Budgen, and P. Brereton. Turning software into
a service. IEEE Computer, 36(10):38–44, 2003.

[7] Various. Make it simple, a survey on information technology.
The Economist, Special Report on Science and Technology,
pages 1–14, October 2004.

[8] C. Verhoef. Quantifying the value of it-investments. Sci.
Comput. Program., 56(3):315–342, 2005.

[9] Wikipedia. Usage share of web browsers.
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers,
2007.

3

