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ABSTRACT
We present essential concepts of a model-based testing frame-
work for probabilistic systems with continuous time. Markov
automata are used as an underlying model. Key result of the
work is the solid core of a probabilistic test theory, that in-
corporates real-time stochastic behaviour. We connect ioco
theory and hypothesis testing to infer about trace probabili-
ties. We show that our conformance relation conservatively
extends ioco and discuss the meaning of quiescence in the
presence of exponentially distributed time delays.

CCS Concepts
•General and reference→ Validation; •Software and
its engineering → Formal methods; Empirical software
validation; •Theory of computation → Program specifi-
cations;
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1. INTRODUCTION
Probability plays an increasingly important role in many

applications. A large body of randomized algorithms, proto-
cols and computation methods use randomization to achieve
their goals. Security protocols use random bits in their en-
cryption methods [8]; routing in sensor networks facilitates
random walks [1] and control policies in robotics assign band-
width in a random fashion. Moreover, the explosive growth of
embedded software causes an increasing need of sophisticated
modelling methods. Reactive systems demand techniques to
assess quantitative aspects used to model speed or delay.

A key question is then how to effectively test the correct-
ness of such systems. One possible answer are verification
techniques. Verification of probabilistic processes matured
to a major research field, presenting models like probabilistic
automata [34], Markov decision processes [31] and general-
ized stochastic Petri nets [27] with techniques like stochastic

model checking [32] and tools like Prism [22] or Plasma [20].
In practice, testing is the most common validation tech-

nique. The system under test (SUT) is subjected to a large
body of well-designed test cases and the outcome of the
process is compared to a requirements specification. Model-
based testing (MBT) emerged as a means to automate this
process. It gained popularity in industry by providing effi-
cient methods to generate, execute and evaluate test cases
from a specification pinning down the desired behaviour.

A wide variety of MBT frameworks exist, capable of han-
dling different properties of a system, such as functional
properties [37], real-time properties [6, 23] and quantitative
aspects [4]. Notably, a vast majority of the frameworks are
based on Tretmans’ input output conformance relation chris-
tened ioco [38], or the closely related may/must relation
[30]. However, frameworks for probabilistic systems with
continuous time are underdeveloped.

Our approach. Our requirements specifications are given
as Markov automata (MA). MAs incorporate both stochas-
tic time and discrete probability. They form the semantic
foundation of dynamic fault and defence tree analysis [33],
generalised stochastic Petri nets [28] and the standardised
modeling language AADL [5].

Mathematically MAs arise as the conservative extension
of both probabilistic automata (PAs) [34] and interactive
Markov chains (IMCs) [17]. MAs are equipped with both
probabilistic and nondeterministic choices. The first repre-
sent the choices made by the system (e.g. coin tosses) or the
environment (e.g. degradation rates, failure probabilities).
The latter model choices, that are not under its control. As
argued in [34] these are important for implementation free-
dom, scheduler choices and interleaving. Complementary,
they are of particular interest because of their memoryless
exponential distributions inherited from IMCs. These give
a highly appropriate stochastic approximation, if only the
mean duration of an activity is known.

The challenge of our work consists of combining discrete
probability choices made the SUT, exponentially distributed
time delays and nondeterministic choices. We use schedulers
(a.k.a. adversaries) to resolve nondeterminism to receive a
purely probabilistic execution tree. We describe how tests
can be generated from a specification and applied to a black-
box implementation. In addition to test functional behaviour,
we assess probabilistic correctness with hypothesis testing.

An important contribution is the treatment of quiescence
in a real-time environment with delays. Quiescence models
the absence of outputs. If the SUT does not provide any
output, a test must assess whether this behaviour is correct.
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We summarize our main contributions:

1. the solid core of a probabilistic test theory, that incor-
porates stochastic time based on the ioco framework;

2. an operational interpretation of quiescence in the con-
text of real time and exponential time-delays;

3. test case execution and evaluation as a sampling process
for statistical inference on real-time behaviour.

Related Work. There is a large body of work on testing of
real-time systems [2, 6, 23]. Early approaches are given by
[21, 23]. Brandán-Briones et al. [6] extend the framework to
incorporate the notion of quiescence. Tool support is given
by Uppaal Tron [24].

Probabilistic testing preorders and equivalences are well-
studied [9, 12, 34]. Prominent work by [25] introduces the
concept of probabilistic bisimulation via hypothesis testing.
Major influence for our work is given by [7], presenting
how to observe trace probabilities during a sample process.
Executable probabilistic test frameworks are defined for prob-
abilistic finite state machines in [18, 19] and Petri nets [3].

Similar to our work is the study of Markovian bisimulation
relations. Here, [13] present the foundation of an observa-
tional equivalence in form of weak bisimulation. This was
refined by [11] and [35] by introducing late-weak bisimulation.

This paper is an extension of earlier work [14] investigating
the test process for probabilistic automata. Novel contribu-
tion of the current work is the inclusion of stochastic time
and exponential delays.

Overview over the paper. Section 2 sets the mathemati-
cal framework and introduces input-output Markov automata.
In Section 3 we define the conformance relation for black-box
testing with Markov automata. We study test generation
and verdicts in Section 4. The paper ends with concluding
remarks and plans for future work in Section 5.

2. PRELIMINARIES
We recall properties of Markov automata and show how

nondeterminism is resolved. We assume that the reader is
acquainted with the basics of probability theory, but recall
integral definitions. See [10] for an excellent overview.

A discrete probability distribution over a set X is a function
µ : X → [0, 1], such that

∑
x∈X µ (x) = 1. We call µ a sub-

distribution, if
∑
x∈X µ (x) ≤ 1. The set of all distributions

over X is denoted Distr (X) (SubDistr (X) respectively).
Let Ω be a set, FΩ a σ-field of Ω and (Ω,FΩ) the resulting

measurable space. A σ-additive function µ : FΩ → [0, 1] is
called a probability measure, if µ (Ω) = 1.

A probability space is a triple (Ω,F ,Pr), where Ω is a set, F
is a σ-field of Ω and Pr : F → [0, 1] is a probability measure,
such that Pr (Ω) = 1 and Pr

(⋃∞
i=1 Ai

)
=
∑∞
i=1 Pr (Ai) for

Ai ∈ F , i = 1, 2 . . . pairwise disjoint.

2.1 I/O Markov Automata
Our framework is based on Markov automata [11]. Addi-

tionally, we distinguish input and output actions and follow
[16] by incorporating input-reactive and output-generative
transitions.

Upon receiving an input, the system decides probabilis-
tically, which next state to move to. In contrast, a system
is free to make a probabilistic choice over various output
actions. Thus, each transition in an input-output Markov

automaton (IOMA) either involves one input action and a
probabilistic choice over the target states or possibly various
output actions with their respective choice and target states.

Furthermore, a verdict must also be given to the SUT in
case it produces no output at all [36]. Hence, a requirements
model needs to explicitly indicate when quiescence is allowed.
This is expressed by the special label δ.

Definition 1. A Markov automaton M = (S, s0, L,→, )
is a five-tuple, consisting of

• S a set of states, with s0 the unique starting state,
• L a set of actions,
• →⊆ S × L×Distr (S), the probabilistic transition rela-

tion and
•  ⊆ S × R≥0 × S, the Markovian transition relation.

An IOMA is an MA, where L = Li t Lo t Lτ is the disjoint
union of input, output and internal actions, containing a
special quiescence label δ ∈ Lo. It becomes input-reactive and
output-generative, if we replace → by →′⊆ S ×Distr (L× S)
with the requirement that for all (s, µ) ∈→′ if µ (s, a) > 0 for
an input a, then µ (s, b) = 0 for all b 6= a.

An action a is enabled in state s, if there is a distribution
µ, such that (s, a, µ) ∈→. A state is called probabilistic, if at
least one non-Markovian action is enabled, and Markovian,
if at least one Markovian action is enabled. The rate to
go from s to s′ is the sum of all Markovian actions λ with
(s, λ, s′) ∈ and is denoted as R (s, s′). The exit rate of s
is the sum over all of its outgoing rates. We overload R by
denoting R (s) as the exit rate of s.

The delay associated with a Markovian state is exponen-
tially distributed with its exit rate. To illustrate, the proba-
bility to leave s1 in Figure 1 within the next z ∈ R≥0 time
units is 1− e−R(s1)z = 1− e−λz.

Note that multiple enabled Markovian actions lead to a race
condition. The probability to move from s to its successor
s′ equals the probability that (one of) the Markovian timed
transitions leading from s to s′ wins the race. This induces
the discrete branching probability given by

P
(
s, s′

)
:=

R (s, s′)

R (s)
.

A state is called stable, if no output or internal action is
enabled. We assume maximal progress, meaning that time
is not allowed to progress in unstable states. This renders
Markovian transitions in unstable states obsolete [26].

s0 s1 s2 s3

s4

play? λ banana!

retry?

quit?

quit?

δ δ

δ
catch?

p

1 − p

Figure 1: Toy example of an IOMA modelling a sim-
ple video game.

Example 2. Figure 1 shows an example of an IOMA. The
model describes a toy model of a video game. Input is
suffixed with “?” and output with “!”. Discrete probability
distributions are denoted with a dotted arc, together with
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the action label and corresponding probabilities. Markovian
actions are presented as staggered arrows.

The machine receives the input play to start the game.
After a delay modelled by the Markovian action λ a banana
is thrown at the user. There is a non-deterministic choice of
trying to catch it or quit the game. The banana is caught
according to a discrete distribution with probability (1− p).
If successful the process repeats, if not the user may retry or
quit.

2.2 Paths and Traces
We define the language theoretic concepts for Markov

automata. Let M = (S, s0, L,→, ) be an IOMA. A path π
of M is a (possibly) infinite sequence of the form

π = s1 t1 µ1 α1 s2 t2 µ2 α2 . . . ,

where si ∈ S, ti ∈ R≥0, µi ∈→ ∪Psi and αi ∈ L ∪ R≥0 for
i = 1, 2, . . .. We require that each finite path ends in a state.
The sequence si ti µi ai si+1 means that M resided ti time
units in state si before moving to si+1 via αi using µi. We
denote the set of all finite paths of M with Paths∗ (M) (all
paths Paths (M) respectively).

An abstract path is a path, where each occurrence of single
time values ti ∈ R≥0 is replaced by intervals Ii ⊆ R≥0. Note
that for any path, we can get its abstract path by replacing
ti with [0, ti]. We denote all finite abstract paths of M with
absPaths∗ (M) (all paths absPaths (M) respectively).

The trace of a path Tr (π) only records its visible be-
haviour, i.e. time and input/output actions. It is given by
the (possibly) infinite sequence of the form

σ = t1 a1 t2 a2 . . . ,

where ti ∈ R≥0 and ai ∈ L\Lτ for i = 1, 2, . . .. Note that
a path fragment t1λt2a collapses to t1 + t2a. We denote
the set of all finite traces of M with traces∗ (M) (all traces
absTraces (M) respectively).

An abstract trace is given, if all ti ∈ R≥0 are replaced by
intervals Ii ⊆ R≥0. The set of all finite abstract traces ofM is
given by absTraces∗ (M) (all abstract traces absTraces (M)
respectively).

The operator act (π) returns the action path of π by re-
moving all time values ti and distributions µi. For traces
act (σ) returns visible actions only. The length of a path
(trace resp.) is the number of its visible actions.

2.3 Trace Distribution Semantics
Similar to the visible behaviour of labelled transition sys-

tems (LTS) being given by their traces, the visible behaviour
of an IOMA is given by its trace distribution. A trace distri-
bution is a probability space, that assigns probabilities to all
abstract traces. A trace of an LTS is obtained by removing
all states and internal actions from a given path. We do the
same in the IOMA case: First we resolve all nondetermin-
istic choices via an adversary and then remove all invisible
information. The resolution of non-deterministic behaviour
leads to a purely probabilistic structure.

The mathematical framework for infinite abstract paths
is technically more involved, but completely standard [34,
39]. A classical result in measure theory shows, that it is
impossible to assign a probability to all sets of traces in
non-trivial scenarios. Generally, the probability assigned to
a single trace is 0. To illustrate: the probability of always
rolling a 6 with a die is 0, but the probability of rolling a 6

within the first 100 tries is positive. Hence, we use a cone
construction of sets.

Adversaries. We follow the standard theory for probabilis-
tic automata [34] and adapt the framework of adversaries for
Markov automata. Adversaries resolve nondeterminism in an
IOMA by assigning a discrete probability (sub)distribution
over the set of possible outgoing distributions in every state.

We focus our considerations on adversaries that are: 1. his-
tory dependend, i.e. the adversary considers the recorded
history upon scheduling the next action, 2. randomized, i.e.
the adversary may make a random choice over all outgoing
transitions and 3. partial, i.e. the adversary may decide to
terminate the execution with a certain probability at any
given point in time. Modelling termination requires us to
introduce the special halting action ⊥.

Definition 3. A (history dependend, randomized, partial)
adversary A of an IOMA M = (S, s0, L,→, ) is a function

A : Paths∗ (M) −→ SubDistr (Distr (L× S)∪ ⊥) ,

such that for each finite path π only available distributions
are scheduled and output and internal actions cannot be post-
poned, i.e.

• if A (π) (µ) > 0, then (last (π) , µ) ∈→.
• if last (π) enables output or internal actions, then A (π)

is a full distribution.

The value A (π) (⊥) is the probability of halting the execu-
tion after π. An adversary halts after path π, if it schedules
probability 1 to halting. We say an adversary halts after
k ∈ N steps, if it halts for every path with length greater
than k and denote this set by Adv (M, k). The set of all
adversaries of an IOMA is defined as Adv (M).

Intuitively, an adversary flips a multi-faced, biased coin
at every step in execution to decide how to resolve nonde-
terminism. This results in a purely probabilistic execution.
Thus, we can assign a probability to any given abstract path,
via the path probability measure. The measure for a given
adversary is the function PrA : absPaths∗ (M) −→ [0, 1],
inductively defined by

PrA (s0) = 1, and PrA (Π · Iαs) =

PrA (Π) ·


A (π) (µ) · µ (αs) if α ∈ L ∧ I = 0∫
I
R (last (Π) , s) · eR(s)tdt if α ∈ R≥0

0 otherwise,

where π is the corresponding path to the abstract path Π.
The starting state gets assigned probability 1 and each

consecutive action either gets multiplied by the probabil-
ity the scheduler assigned to it or the probability that the
Markovian transition takes place in the given time interval.

We quickly recall the standard cone construction for prob-
ability spaces of adversaries. For any given finite path π of
length n, its cone is defined as

Cπ =
{
π′ ∈ Paths (M) | π v π′

}
,

i.e. the set of all paths that have π as prefix. The set of finite
paths together with the smallest σ-field generated by its set
of cones and the path probability measure form a probability
space on an IOMA.

Trace Distributions. A trace distribution is obtained from
(the probability space) an adversary, in the way a trace is
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obtained from a path; we remove all invisible behaviour.
Intuitively, the probability assigned to a set of abstract traces
X, is defined as the probability assigned to all abstract paths
whose trace is an element of the set X.

Definition 4. The trace distribution D of an adversary A
is the probability space (ΩD,FD,PrD) given by

• ΩD = traces∗ (M)
• FD is the smallest σ-field generated by the set of cones
{Cσ ⊆ Traces (M) | σ ∈ absTraces∗ (M)}
• PrD is the unique probability measure on FD, such that

PrD (X) = PrA
(
Tr−1 (X)

)
for X ∈ FD

A trace distribution is of length k ∈ N, if it based on an
adversary of length k. We denote the set of all such trace
distributions by trd (M, k). The set of all trace distributions
is denoted by trd (M). This induces a natural equivalence
relation =TD . Two IOMAs are deemed equivalent, if they
have the same set of trace distributions.

3. THE MAR-IOCO RELATION
The classical ioco reation [38] states that an implemen-

tation conforms to a specification, if it never provides any
unspecified output or quiescence. For two input-output tran-
sition systems I and S, with I input enabled (i.e. every
input is enabled in every state), we write I v S, if

∀σ ∈ Traces (S) : outI (σ) ⊆ outS (σ) .

Given a requirements specification S, the implementation I
should not emit unforeseen behaviour. For classic transition
systems, that restricts the theory to functional behaviour.

In previous work [14], we presented the probabilistic ex-
tension of ioco and the test process for a given probabilistic
requirements specification. To generalize ioco to IOMA, we
need two auxiliary concepts:

Trace Distribution Prefix. Given a trace distribution D
of length k + 1 and a trace distribution D of length
k, we say D′ is a prefix of D, written D′ vk D, if all
abstract traces of length k have the same probability.

Output Continuation. Given a trace distribution D of
length k, its output continuation is the set of trace dis-
tributions assigning probability zero to abstract traces
of length k + 1 ending in inputs. This set is denoted
by outcontM (D), where M is the underlying IOMA.

This lets us to define the core idea of Mar-ioco. Intu-
itively, an implementation should only conform, if the prob-
ability of every trace can be matched by the specification.
This includes three components: 1. functional behaviour,
2. probabilistic behaviour and 3. stochastic timing.

Definition 5. Let I and S be IOMA with I input-enabled.

We write I { S, if for all k ∈ N

∀D ∈ trd (S, k) : outcontI (D) ⊆ outcontS (D) .

Example 6. Figure 2 displays non-conforming models ac-
cording to Mar-ioco. An implementation is deemed non-
conforming, if it emits undesired outputs, realizes wrongly
implemented probabilities (e.g. an unfair coin flip, if a fair
one was required) or carries out visible actions after unjusti-
fied time delays.

Note that no two of the presented examples are conforming
with respect to Mar-ioco assuming that λ 6= ν.

a!

λ

a!

ν

b!

λ

1
2

1
2

a! b!

λ

2
3

1
3

a! b!

λ

Figure 2: Examples illustrating non-conformance ac-
cording to Mar-ioco.

The Mar-ioco relation conservatively extends the ioco
relation to Markov automata. That is, both relations coincide
for input output transition systems (IOTSs).

Theorem 7. For two IOTSs I,S with I input enabled, we
have

I v S ⇐⇒ I { S.

In ioco theory, the implementation is always assumed
to be input enabled. If the specification is input-enabled
too, ioco coincides with trace inclusion [38]. Assuming an
input-enabled specification, our results show, that Mar-ioco
coincides with trace distribution inclusion. Moreover, the
relation is transitive, just like ioco [38].

Theorem 8. Let A,B and C be MAs and let A and B be
input enabled, then

• A { B if and only if A vTD B.

• A { B and A { B imply A { C.

4. TESTING FOR MA
We formalize the notion of offline tests and explain the

statistical sampling process. Further, we investigate the
treatment of quiescence in the presence of real-time behaviour.
Lastly, we show how correct test verdicts can be assigned.

4.1 Test cases for IOMA
We consider test cases as sets of traces based on an action

signature consisting of inputs and outputs (Li, Lo). The
traces describe possible behaviour of a tester. In each state of
a test, the tester either provides stimuli, waits for a response
of the SUT or stops the process altogether.

We consider tests to be IOMA without Markovian transi-
tions, i.e. input-generative and output-reactive probabilistic
automata. This enables us to model the choice between
stimulating, observing and stopping probabilistically.

Definition 9. A test over an action signature (Li, Lo) is an
IOMA t = (S, s0, Lo\ {δ} , Li ∪ {δ} , {τstop , τstim , τobs} ,→, ∅),
such that

• t is internally deterministic and does not contain an
infinite path;
• t is acyclic and connected;
• For every state s ∈ S, either

– enabled (s) = ∅
– enabled (s) = {τstop , τstim , τobs}
– enabled (s) = Li ∪ {δ}
– enabled (s) = Lout , such that Lout ⊆ Lo\ {δ}

where enabled (s) is the set of enabled actions in s.

The input and output sets of the test IOMA are switched to
allow handshaking on shared actions. The output-generative
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fail

pass pass fail pass

play!

banana? δ

catch! quit!

banana? δ
banana? δ

(a) Standard Test

pass

pass pass fail fail

play!

banana?

τstop

banana? δ

τstim τobs

quit! catch!

1
3

1
3

1
3

1
2

1
2

(b) Probabilistic Test

Figure 3: Two annotated tests derived from the
specification given in Figure 1.

property of IOMAs can thus be exploited to introduce prob-
abilistic test cases. We refer to Figure 3 for an example.
To make a statement about the correctness of the observed
functional behaviour, each trace of a test needs an annotation
with pass for correct and fail for erroneous behaviour. The
classical ioco test case annotation [37] suffices here.

Loosely speaking, all traces of the test, that are also present
in a specification, get annotated as correct.

Example 10. Figure 3 shows two derived test cases for the
requirements specification of Figure 1. Note that the action
signature is mirrored to allow handshaking on shared actions.

The left side presents a standard test case for ioco accord-
ing to [38]. After play! is provided to the SUT, the test
waits for a response. The absence of the outputs yields the
fail verdict, while banana? lets the test proceed.

The right side presents a probabilistic test case for Mar-
ioco. After play! is provided and the response is banana?
there is a uniformly distributed choice on how to proceed. If
the test stimulates, there is a uniform choice over the inputs.

4.2 Test Execution and Evaluation
Since Markov automata emit probabilistic behaviour, there

is a twofold evaluation process of functional and statistical
correctness. While the first can be assessed via the test
annotation, we illustrate the latter in the following.

Sampling. The sampling process is done by facilitating
a push-button experiment in the sense of [29]. Given is a
black-box timed trace machine with inputs, time and an
action windows and a reset button as illustrated in Figure 4.

We choose a sample length k ∈ N and width m ∈ N,
i.e. how long shall we observe a single run and how many
runs should be observed. Additionally, we choose a level of
significance α ∈ (0, 1), e.g. α = 0.05 or α = 0.01 are common
in practice. We assume that the timer resets to 0 after every
visible action and that two consecutive occurrences of the
same action are distinguishable. An external observer records
each individual execution before the reset button is pressed
and the machine starts again. Thus, we collect m traces of
length k, which are summarized as a sample O.

During each run the black-box is governed by a trace
distribution D ∈ trd (I). For simplicity, we assume that D
is the same in every execution. The SUT makes two choices:
1. choosing a trace distribution D and 2. D chooses a trace.

Frequencies and expectations. We measure the deviation of
the sample distribution to the expected distribution, given

Reset

Input

a0? . . . az?

Time

3.0

Action

b!

Figure 4: A timed trace machine with reset button,
inputs a0?, . . . , az? and time and action windows.

by the specification. The latter is given for any underlying
trace distribution D. Hence, the expected probability to
observe an abstract trace σ is given by PrD (σ).

Depending on the accuracy of time measurement, it is
unlikely to record the same timed trace more than once, c.f.
Figure 5. Therefore, we group traces in classes based on the
same visible action behaviour. For a given abstract trace σ,
its class Σσ is the set of all abstract traces % ∈ O, such that
act (σ) = act (%). A sample of length k and width m then
induces a frequency measure, given by

freqO (σ) =
|Σσ|
m

Πk
i=1

|{% ∈ Σσ | I%i ⊆ I
σ
i }|

|Σσ|

Probabilistic choices of the SUT make inference on time-
delays challenging. To illustrate, assume a sample is given by
the two traces σ1 = 0 a 1 b, and σ2 = 1 a 0 b. The underlying
parameters of the SUT are unknown and the only available
information is the sample. To infer about the probability to
observe % = 0.5 a 0.5, b, we resort to non-parametric statistical
inference and apply order statistics on the observed times
[15]. This results in the above frequency measure.

Treatment of quiescence. A test case needs to assess
if an SUT is allowed to be unresponsive when output was
expected [36]. Since quiescence represents the absence of out-
put for indefinite time, it should be regarded with attention
in practical test scenarios. Earlier work assumes a global
fixed time-out value set by a user [6].

Since progress of Markov automata may be exponentially
delayed, a global time-out value has two disadvantages: 1. a
time-out might occur, before a specified Markovian action
takes place and 2. a global time-out value might unneces-
sarily prolong the test process. Therefore, our interest is to
minimize the probability of erroneously declaring quiescence,
while keeping the overall testing time as low as possible.

Assume a level of significance α ∈ (0, 1) is given. Let λ be
the exit rate of a state s. Then the exit rate of s is a random
variable T that is exponentially distributed with parameter λ.
The probability, that a Markovian action is executed before
a state-specific maximum waiting time tsmax expires should
be greater than (1− α), i.e.

P (T < tsmax ) > 1− α

Hence, choosing tsmax > − logα
λ

minimizes the probability of
assigning quiescence, when the SUT actually makes progress.

This approach does not cover consecutive Markovian tran-
sitions or divergent behaviour. This is left for future work.

Example 11. Figure 5 shows a possible sample obtained
from the video game modelled in Figure 1. It contains
10 traces of length 4. Neglecting time information yields
three different trace classes Σσ1 , Σσ5 and Σσ9 based on
act (σ1 ) = . . . = act (σ4 ), act (σ5 ) . . . act (σ8 ) and act (σ9 ).
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id Recorded Trace σ nσ
σ1 0 play 2.2 banana 0 catch 0 banana 1
σ2 0 play 2.4 banana 0 catch 0 banana 1
σ3 0 play 2.5 banana 0 catch 0 banana 1
σ4 0 play 2.6 banana 0 catch 0 banana 1

σ5 0 play 2.3 banana 0 quit 5 δ 1
σ6 0 play 2.5 banana 0 quit 5 δ 1
σ7 0 play 2.6 banana 0 quit 5 δ 1
σ8 0 play 4.0 banana 0 quit 5 δ 1

σ9 5 δ 5 δ 5 δ 5 δ 2

Figure 5: Possible sample of the model in Figure 1
containing 10 traces of length 4 and the number of
their occurrences.

The frequency, with which to expect a delay of 2.5 time
units before seeing banana followed by catch and banana
based on the sample is given as 3

10
.

Moreover, note that the time-out value in s0 is set to 5 time
units, resulting in the observation of two identical quiescent
traces in σ9.

Acceptable Outcomes. A sample O is accepted, if freqO lies
within some distance r of the expected distribution PrD.
Recall the definition of a closed ball centred at x ∈ X with
radius r is given by Br (r) = {y ∈ X | dist (x, y) ≤ r}. All
measures that deviate at most r from the expected measure
PrD are contained in the ball Br (r), where

dist (µ, ν) = sup
σ∈absTraces∗(M)

|µ (σ)− ν (σ)|

is the total variation distance of two measures. In order to
minimize the error of falsely accepting a sample, we choose
the smallest radius r̄, such that the error of falsely rejecting a
sample is not greater than the level of significance α ∈ (0, 1).
Every sample, that lies within distance r̄ to the expected
measure is hence deemed as an acceptable outcome under
D. We denote this set by Obs (D,α, k,m). The entire set of
observations of M is given by

Obs (M, α, k,m) =
⋃

D∈trd(M,k)

Obs (D,α, k,m) .

Our goal is to find D ∈ trd (S) that maximises the like-
lihood of a given sample O of the SUT. If the frequencies
obtained from O have a probability of more than (1− α)
under the measure induced by the maximum-likelihood dis-
tribution D, we have no statistical evidence to reject the
SUT. We denote this probability as PS (O).

Verdicts. The following process decides if an implementa-
tion fails for functional and/or statistical behaviour.

Given are a requirements specification S, an annotated
test t̂ for S, parameters α ∈ (0, 1) and k,m ∈ N, where k is
given by the test length. We define the functional verdict as

vt̂ (I) =

{
pass if all tested traces have pass annotation

fail otherwise,

and the statistical verdict as

vαt (I) =

{
pass if PS (Obs (I || t, α, k,m)) ≥ 1− α
fail otherwise,

where I || t denotes the parallel composition of test and SUT.
An implementation passes the functional verdict, if the an-

notation of every observed trace is labelled pass. It passes the
statistical verdict, if there is an adversary of the specification,
that makes the sampled behaviour likely. Lastly, it passes the
test suite, if it passes both functional and statistical verdict
for each test case in the test suite.

4.3 Soundness and Completeness
The correctness of the framework is formalized as sound-

ness and completeness (a.k.a. exhaustiveness). Soundness
ensures that test cases assign the correct verdict. Complete-
ness postulates that the framework is powerful enough to
discover each deviation from the specification.

Since the underlying model is probabilistic, there remains a
degree of uncertainty known as the errors of first and second
kind. For MBT of probabilistic systems this translates to the
likelihood to reject a correct implementation and to accept
an erroneous one. Hence, a test suite can only be considered
sound and complete with a guaranteed (high) probability.

At the time of writing this paper, soundness and com-
pleteness of the framework are left as conjectures. There is
evidence suggesting that these properties do hold [14].

Soundness expresses for a given α ∈ (0, 1), that there is
a (1− α) probability, that a correct system passes the test
suite for sufficiently large sample width m.

Conjecture 12. Each annotated test for an IOMA S is
sound for every level of significance α ∈ (0, 1) with respect to
Mar-ioco.

Completeness of a test suite is inherently a theoretic result.
Possible loops and infinite behaviour in an SUT, require a
test suite of infinite size. Additionally, there is the chance
of falsely accepting an erroneous implementation due to the
statistical character of our framework. However, the latter
is bound from above and decreases with bigger sample size.

Conjecture 13. The set of all annotated tests for an IOMA
S is complete for every level of significance α ∈ (0, 1) with
respect to Mar-ioco.

5. CONCLUSIONS
We described our ongoing efforts in developing a model-

based test framework that incorporates continuous time and
probabilistic behaviour, based on an ioco-style structure.
We defined the conformance relation Mar-ioco stating what
it means for an SUT to pass a test suite. We described
the advantage of state-specific waiting times to reduce the
time needed for the overall test process. Additionally, we
described the statistical sampling process and how correct
verdicts can be assigned with a high probability assuming a
sufficient sample size.

There is ample future work: A first step is proving the
correctness of the framework. Quiescence and divergence in
the presence of consecutive exponentially distributed delays
should be further investigated. Moreover, we plan to find
more sophisticated inference methods to assign a statistical
verdict. Lastly, we aim at applying the theory in a real life
case study.
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