
From Representations to Computations: The Evolution of
Web Architectures

Justin R. Erenkrantz
jerenkra@ics.uci.edu

Michael M. Gorlick
mgorlick@acm.org

Girish Suryanarayana
sgirish@ics.uci.edu

Richard N. Taylor
taylor@ics.uci.edu

Institute for Software Research
University of California, Irvine

ABSTRACT
REpresentational State Transfer (REST) guided the cre-
ation and expansion of the modern web. What began as
an internet-scale distributed hypermedia system is now a
vast sea of shared and interdependent services. However,
despite the expressive power of REST, not all of its bene-
fits are consistently realized by working systems. To resolve
the dissonance between the promise of REST and the real-
ity of fielded systems, we critically examine numerous web
architectures. Our investigation yields a set of extensions to
REST, an architectural style called Computational REST
(CREST), that not only offers additional design guidance,
but pinpoints, in many cases, the root cause of the appar-
ent dissonance between style and implementation. Further-
more, CREST explains emerging web architectures (such as
mashups) and points to novel computational structures.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design

Keywords
Representational State Transfer, mobile code, network con-
tinuations, web services

1. INTRODUCTION
REpresentational State Transfer (REST) is an architec-

tural style that characterizes and constrains the macro in-
teractions of the active elements of the web—its servers,
caches, proxies, and clients. However, REST is silent on the
architecture of the individual participant; that is, the com-
ponents, relationships, and constraints within a single active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

participant. We explore the thesis that to maintain the fi-
delity of REST’s principles at the level of the web requires
previously unspecified constraints on both the architecture
of those individual participants and the system-level archi-
tecture of the web itself.

We pursue three related lines of investigation. We first
draw upon our experience as developers struggling to build
web applications that conform to the REST style. Here we
discover both the consequences of failing to hew to the con-
straints of REST and how participant architectures (on the
scale of a single element) must be rearranged to align with
REST’s goals. We then turn to emerging web services to
evaluate their fit with REST principles. Finally, we exam-
ine recent innovations in web practices to better understand
the role of REST in supporting novel forms of web interac-
tion and service composition.

These three lines of inquiry lead to a deeper understand-
ing and broadening of the fundamental REST principles, re-
sulting in a new architectural style: Computational REST
(CREST). However, that elaboration is but an example of a
more general form—network continuations—the exchange of
the representations of the execution state of distributed com-
putations. It is the presence and exchange of continuations
among web participants, in their various forms, that induces
new constraints among and within participants. With this
in mind, both prior complications in the structure of indi-
vidual clients and elaborations of the web such as AJAX or
mashups are accounted for by a single fundamental mech-
anism: network continuations as web resources—an insight
codified in the principles of CREST.

The remainder of the paper is structured as follows. Sec-
tion 2 recaps the REST style. Section 3 relates our experi-
ences in creating REST-based web applications. Section 4
explores in detail the uneasy fit between REST and web ser-
vices, while Section 5 reviews web applications that stretch
the boundaries of the REST style. Section 6 reflects on the
lessons one might draw from these varied applications and
experiments, while Section 7 examines related work. Sec-
tion 8 introduces the CREST architectural style and details
its influence on web architecture “in-the-large” and partici-
pant architecture “in-the-small”; Section 9 revisits the anal-
yses of Sections 3-6, but this time from the perspective of
CREST. Finally, Section 10 reviews our contributions and
sketches our plans for future work.

255

2. WHAT IS REST?
The REpresentational State Transfer (REST) architec-

tural style [9, 10] governs the proper behavior of participants
on the World Wide Web. In a typical REST interaction on
the modern Web, a user agent (say, a web browser, such
as Mozilla Firefox) requests a representation of a resource
(web page, such as HTML content) from an origin server
(web server, such as Apache HTTP Server), which may pass
through multiple caching proxies (such as Squid) before ul-
timately being delivered.

REST elaborates those portions of the web architecture
devoted to interaction with Internet-scale hypermedia [9].
In that context, REST’s goal is to reduce network latency
while facilitating component implementations that are inde-
pendent and scalable. Instead of focusing on the semantics
of components, REST places constraints on the communica-
tion between components. There are six core REST design
principles:

RP1 The key abstraction of information is a resource, named
by an URL. Any information that can be named can be
a resource: a document or image, a temporal service
(e.g., “today’s weather in Dubrovnik”), a collection of
other resources, a moniker for a nonvirtual object (e.g.,
a person), and so on.

RP2 The representation of a resource is a sequence of bytes,
plus representation metadata to describe those bytes.
Hence, REST introduces a layer of indirection between
an abstract resource and its concrete representation.
Of particular note, the particular form of the represen-
tation can be negotiated between REST components.

RP3 All interactions are context-free. This is not to imply
that REST applications are without state, but that
each interaction contains all of the information nec-
essary to understand the request, independent of any
requests that may have preceded it.

RP4 Only a few primitive operations are available. REST
components can perform a small set of well-defined
methods on a resource producing a representation to
capture the current or intended state of that resource
and transfer that representation between components.
These methods are global to the specific architectural
instantiation of REST—for instance, all resources ex-
posed via HTTP are expected to support each opera-
tion identically.

RP5 Idempotent operations and representation metadata are
encouraged in support of caching. Caches are impor-
tant to the goal of reducing latency. The metadata
included in requests and responses permits REST com-
ponents (such as user agents, caching proxies) to make
sound judgements of the freshness and lifespan of rep-
resentations. Additionally, the repeatability (idempo-
tence) of specific request operations (methods) permits
representation reuse.

RP6 The presence of intermediaries is promoted. Filtering
or redirection intermediaries may also use both the me-
tadata and the representations within requests or re-
sponses to augment, restrict, or modify requests and
responses in a manner that is transparent to both the
client and the origin server.

3. DISSONANCE: APPLICATIONS
Despite their apparent simplicity, the REST principles

have proven difficult to understand and apply consistently,
leaving many web systems without the benefits promised by
REST, including sites that do not support caches or require
stateful interactions. To better understand why, we first re-
count our personal experiences building and repairing two
web systems: mod_mbox, a service for mail archiving, and
Subversion, a configuration management system. In Sec-
tion 4, we turn our eye toward other web systems, in which
we had no personal involvement, and discover similar con-
fusion there in the practical application of REST. Section 5
examines REST from an entirely different perspective: web
applications that stretch the boundaries of REST while re-
maining true to its core principles.

3.1 mod_mbox
As core contributors to the open-source Apache HTTP

Server, we required a scalable, web-based mail archive to
permanently record the design rationales and decisions made
on the project mailing lists. At the time, no archivers fully
met our requirements. Some systems, such as MHonArc
[18], converted each incoming message into HTML and re-
computed the list index as the messages arrived. Constant
index regeneration is problematic for high-traffic archives;
ours serves almost 500 lists, some of which receive over 1,000
messages a month and have been active for over a decade.
For any server hosting such a large volume of message traffic,
constantly regenerating the message index is wasteful and
expensive. Given the scale of the Apache archive, caching
and dynamic computation of the list index are of critical
importance (RP5, RP2).

Other web-based archivers, such as Eyebrowse [5], gen-
erated message links whose ordering reflected the sequence
in which messages were loaded into the archive. If we re-
generated the archive (following hardware failure or other
corruption), any previous links would either be stale or re-
fer to a different message. Conseqently, persistent hypertext
links—such as those from our own code or other emails—
might be broken after the archive was regenerated. The key
abstraction of information in REST, a resource named by
an URL, would not be consistent after an outage or upgrade
of the archive (RP1).

Informed by our experience with the Apache HTTP Server,
we were confident that we could create a new web-based
archiver, mod mbox [2], based on the REST principles, that
would not suffer from these shortcomings. However, as we
discovered, REST alone was neither sufficiently expressive
nor definitive. mod_mbox required two additional constraints
beyond those dictated by REST: dynamic representations
of the original messages and the definition of a consistent
namespace.

Instead of creating HTML representations as messages ar-
rive, mod mbox delays that transformation until a request
for a specific message is received. On arrival, only a meta-
data entry is created for a message M . Only later, when
message M is fetched from the archive, does an Apache
module create an HTML representation of M (with the
help of M ′s metadata entry). This sharp distinction be-
tween the resource and its representation (RP1, RP2) min-
imizes the up-front computational costs of the archive—
allowing mod mbox to handle more traffic. To achieve a
consistent namespace, mod mbox relies upon M ’s metadata

256

(the Message-ID header). Consequently, if the metadata
index is recreated, the URLs of the resources (messages) re-
main constant—guaranteeing the long-term persistence of
links. After adopting these constraints, mod mbox scaled
to archive all of the mailing lists for The Apache Software
Foundation (in excess of 2.5 million messages to date) with
consistent and persistent links.

3.2 Subversion
Subversion [4], a source code manager designed to be a

compelling replacement for the popular CVS, made a deci-
sion early on to use WebDAV, a set of extensions to HTTP,
for repository updates and modifications. Hence, by con-
forming to the REST constraints, we expected that Subver-
sion’s implementation would support caching and the easy
construction of intermediaries (RP5, RP4, RP6). Follow-
ing these constraints, a REST-based versioning client (in
essence, a user agent) must fetch resources from an ori-
gin server. For practicality, in order to limit the number
of connections and minimize network overhead, a Subver-
sion client reuses a small number of connections. Since the
client must make multiple requests for distinct resources on
the same connection, network latency can dominate perfor-
mance. This problem was anticipated in the early days of
standardizing the HTTP protocol, but was not clearly ar-
ticulated within REST; instead “pipelining”—where clients
issue multiple requests without waiting for responses—was
simply recommended. However, lacking detailed design guid-
ance, Subversion developers, failing to appreciate the per-
formance penalty, did not implement pipelining and fetched
resources serially. Unsurprisingly, the checkout performance
turned out to be unacceptable at first.

To improve serial performance and reduce network roundtrip
latency, Subversion implemented a custom WebDAV method.
Rather than request each resource individually, the new
client issued a bulk request for all needed resources. As ex-
pected, this change improved overall network utilization and
reduced latency. However, this custom WebDAV method re-
quired that all of the data (including the content stored in
Subversion—which, of course, could be binary and of arbi-
trary size) be XML-encoded. The encoding increased trans-
fer volumes by approximately 33% [24], further clogging the
network. Rather than adhering to the small set of operations
prescribed by HTTP (RP4) and implementing pipelining, a
custom operation was added. Consequently, simple interme-
diaries could no longer be deployed to ease the load on an
upstream Subversion server as they would not understand
this custom WebDAV method (RP6).

Subversion developers (including one of the authors) un-
dertook to write an alternate client framework, serf, that
adhered to REST principles and constraints and implemented
pipelining along with asynchronous requests and responses.
Internally, serf adopted two mechanisms: chained data trans-
forms (buckets) and nonblocking network connections [8].
“Buckets” are independent data streams to which successive
transforms are applied on-the-fly, allowing the client to delay
transforms until needed. Nonblocking connections improved
network efficiency and reduced latency, as the buckets never
had to wait to write or read data. By decoupling commu-
nication and transformation, Subversion clients could now
efficiently exploit pipelining. Reducing latency obviated the
need for a custom WebDAV method (RP4). This, in turn,
eliminated the overhead of XML encoding and permitted the

POST /Reservations HTTP/1.1

Host: travelcompany.example.org

Content-Type: application/soap+xml

Content-Length: ...

<?xml version="1.0" ?>

<env:Envelope...>

<env:Body>

<m:retrieveItinerary...>

<m:reference>FT35ZBQ</m:reference>

</m:retrieveItinerary>

</env:Body>

</env:Envelope>

(a) SOAP example (modified from Example 12a in [23])

GET /Reservations/itinerary?id=FT35ZBQ HTTP/1.1

Host: travelcompany.example.org

(b) REST example (modified from Example 12b in [23])

Figure 1: A SOAP example and its REST-compliant
equivalent.

reintroduction of simple caching intermediaries (RP6). In
the serf framework, the new Subversion client scales grace-
fully yet adheres to the REST constraints.

4. DISSONANCE: WEB SERVICES
“Web services” have emerged to expose finer-grained com-

putational resources than the coarser-grained content re-
sources of the traditional web. There are two popular ap-
proaches to web services: one that claims to conform to
REST principles, and another that relies upon SOAP [22].
Figures 1a and 1b compare these two approaches. One clear
distinction between the two is their use of resources. The
REST-compliant request of Figure 1b leverages resources
by requesting virtual resources within the server namespace
(RP1), while the SOAP request of Figure 1a adds a level
of indirection to the naming of a resource through an XML
entity.

4.1 Web Services: SOAP
Tracing its origins from the prior XML-RPC specification

[31], Simple Object Access Protocol (SOAP) was introduced
as a lightweight “protocol” for exchanging structured infor-
mation on the web [16]. However, SOAP is not a protocol
but a descriptive language transferred via a transport proto-
col such as HTTP. In practice, SOAP corrupts the integrity
of the REST architecture, and most of the problems can be
traced to architectural mismatches with REST and HTTP;
two such problems are highlighted here. A deeper analysis
of SOAP may be found in our prior work [7].

As discussed earlier, idempotent operations (RP5) are a
fundamental REST concept. Some HTTP methods (such
as GET) must be idempotent: if a GET is performed multiple
times on a static resource, the results must be identical.
Other methods (such as POST) are non-idempotent: if a POST

is performed multiple times on the same resource, the side
effects are undefined by the specification.

In practice, most SOAP interactions employ the POST method
of HTTP. Consequently, no intermediary (RP6) can know
whether a service call will be idempotent without specific
semantic knowledge of the actions taken by the SOAP re-

257

Intent HTTP Protocol (adapted from [19])
User identifies self
via a form

POST /acme/login HTTP/1.1

form data
Server sends a cookie
to reflect identity

HTTP/1.1 200 OK

Set-Cookie: CUST-ID="WILE_E_COYOTE"; path=/; expires=Sun, 17-Jan-2038 12:00:00 GMT;

User returns cookie
in a later request

POST /acme/pickitem HTTP/1.1

Cookie: CUST-ID="WILE_E_COYOTE"

form data

Figure 2: HTTP Cookie Example

ceiver. Within REST the protocol alone defines whether the
operation is idempotent, without any relationship to the re-
source. The (apparent) lack of idempotency in SOAP inter-
actions is a significant obstacle to intermediaries that wish
to intelligently cache SOAP messages sent over HTTP.

Tunneling a separate SOAP envelope within HTTP also
violates REST’s separation of data and metadata (RP2).
SOAP encapsulates the entire message—including all SOAP
metadata—in the body of the HTTP request as an XML
entity. In order to properly parse (and understand) the re-
quest, a SOAP intermediary must examine the entire body
of the HTTP request. In contrast, an HTTP proxy need
only examine the metadata found in the request headers
and can pass the request body through without any inspec-
tion, as it is irrelevant for routing or caching. By hiding
the routing and metadata for SOAP inside the body of the
HTTP request, a SOAP intermediary must peek inside the
body to ensure proper routing—a clear violation of RP2,
the strict separation of metadata (the HTTP headers) and
representation (the SOAP message payload).

4.2 Web Services: Mixed APIs
Many content providers expose REST-compliant APIs for

their products. As there is no commonly accepted litmus
test for REST compliance, we term those services that ex-
plicitly acknowlege REST in their description as “REST-
ful.” eBay provides an API to query current auctions [6],
the Flickr API implements uploads and photo tagging [32],
and Amazon.com facilitates access to their centralized stor-
age repository [1]. While these RESTful services have not
yet completely displaced their SOAP counterparts, they do
have well-known advantages. In a 2003 talk, an Amazon
spokesperson mentioned that 85% of their service requests
employed their RESTful API, not SOAP [25], and that query-
ing Amazon using REST was roughly six times faster than
with the SOAP equivalents [28].

Despite their prevelance and popularity, these implemen-
tations of REST services are uneven at best—especially in
comparison to other alternatives from the same provider.
eBay’s REST API is extremely limited, permiting just read-
only operations (such as queries). More advanced functions,
such as posting new items, are available only through their
SOAP API. Others have REST interfaces that are roughly
equivalent to their SOAP counterparts; with Flickr, pho-
tos can be uploaded, tagged, and deleted in both interfaces
with only minimal differences. Finally, there are examples,
such as Amazon’s S3, for which their RESTful APIs are a
superset of the SOAP counterpart.

Overall, we observe that the closer the service semantics
are to those of content, the more likely the service is to have a

rich REST API. For Amazon’s storage service, a mapping to
the content-centric nature of REST is straightforward and
free of complications. REST principles RP4 and RP5are
well-preserved in Amazon’s interface. On the other hand,
eBay’s service model is strongly tilted toward SOAP. How to
explain the differences? In part, the division between REST
and SOAP may reflect a lack of design guidance; how can
services that are not content-centric, such as auction bidding
(which are prominently displayed in eBay’s SOAP interface
but absent from the REST interface) be cleanly constructed
in a REST-consistent manner? We opine that web services
whose focus is nontraditional resources are clearly under-
served with REST alone and that their developers lack ade-
quate design guidance. Consequently, it is unsurprising that
service providers offer alternatives to fill this gap.

4.3 Cookies
Besides RESTful APIs and SOAP, cookies [19] are an-

other common mechanism employed by developers to sup-
port services that span more than one request. Compara-
tively lightweight, cookies are a means for a site to assign
a “session” identifier to a “user.” To start the process (il-
lustrated in Figure 2), an origin server provides a cookie in
response to a request via the “Set-Cookie” HTTP header.
Inside of this cookie are several attributes, the most impor-
tant of which is an opaque identity token, a path represent-
ing where the cookie should subsequently be presented, and
an expiration date.

Cookies have poor interactions with the history mecha-
nisms of a browser [9]. Once a cookie is received by a user
agent, the cookie should be presented in all future requests
to that server until the cookie expires. Therefore, cookies do
not have any direct relationship to the sequence of requests
that caused the cookie to be set in the first place. Hence,
if the browser’s back button is used to navigate in the page
history prior to the initial setting of the cookie, the cookie
will still be sent to the server. This can lead to a “cookie
that misrepresents the current application context, leading
to confusion on both sides” [9].

4.4 Web Services: Challenges
The formulation and development of web services has been

a complex undertaking with vigorous discussion within the
community as to whether such services are even feasible
[30]. Service-oriented architectures have emerged, in part,
as a response to the problems of service compostion; how-
ever, the composition and encapsulation of web services still
awaits resolution [30]. We next take a look at ways in which
composition and encapsulation have been addressed through
REST—albeit not under the traditional banner of web ser-
vices.

258

5. AJAX AND MASHUPS
Emerging classes of Web applications extend the notion

of a REST interface in interesting ways. One such example
is Google Maps [14], which employs an application model
known as AJAX [13], consisting of XHTML and CSS, a
browser-side Document Object Model interface, asynchro-
nous acquisition of data resources, and client-side Javascript.

AJAX expands on an area for which REST is deliber-
ately silent—the interpretation environment for delivered
content—as content interpretation and presentation is highly
content- and application-specific. Browsers have long acco-
modated helper applications that are executed when “un-
known” content arrives. However, instead of running the
helper in a different execution environment, AJAX blurs
the distinction between browser and helper by leveraging
client-side scripting to download the helper application dy-
namically and run it within the browser’s execution environ-
ment.

Dynamically downloading the code to the browser moves
the computational locus away from the server. Instead of
performing computations solely on the server, some com-
putations (for example, presentation logic) can now be ex-
ecuted locally. By reducing the computational latency of
presentation events, AJAX makes possible a new class of in-
teractive applications with a degree of responsiveness that
may be impossible in purely server-side implementations.

The innovation of AJAX is the transfer, from server to
client, of a computational context whose execution is “re-
sumed” client-side. Thus, we begin to move the compu-
tational locus away from the server and onto other nodes.
REST’s goal was to reduce server-side state load; in turn,
AJAX reduces server-side computational load. AJAX also
improves responsivity since user interactions are interpreted
(via client-side Javascript) at the client. Thus AJAX, re-
specting all of the constraints of REST, expands our notion
of resource.

Mashups, another computation-centric REST-based ser-
vice, are characterized by the participation of at least three
distinct entities:

• A web site, the mashup host M

• One or more web sites, c1, c2, . . . , cn, ci �= M , the con-
tent providers

• An execution environment E, usually a client web
browser

The mashup host M generates an “active” page P for the
execution environment E. P contains references (URLs)
to resources maintained by content providers c1, c2, . . . , cn

and a set of client-side scripts in Javascript. The client-side
scripts, executing in E, interpret user actions and manage
access to, and presentation of, the combined representations
served by c1, c2, . . . , cn.

Mashups where Google Maps is one of the content provid-
ers ci are especially popular; examples include plotting the
location of stories from the Associated Press RSS feed [33],
and Goggles, a flight simulator [3].

Mashups offer a fresh perspective on REST intermedi-
aries. Conventionally, an intermediary intercepts and in-
terprets all request and response traffic between client and
server. In contrast, the mashup host M (the origin server),
constructs a virtual “redirection” comprising a set of client-
side scripts that reference resources hosted elsewhere at web

sites (content providers) ci, ci �= M . Thereafter, the client
interacts only with the content providers ci. Thus, mashup
host M “synthesizes” a virtual compound resource for the
client. Though a mashup could be implemented entirely
server-side by M , it would increase server load and (for
highly interactive mashups) latency. Mashups illustrate both
the power of combining multiple resources under computa-
tional control to synthesize a new resource and the benefits
of moving the locus of computation away from the origin
server.

6. LESSONS FROM REST EXPERIENCES
What lessons can we draw from the spectrum of REST ex-

periences? mod_mbox demonstrates the critical importance of
the structure of the namespace (URL) in REST transactions
and the value of decoupling resources from representations.
The saga of Subversion speaks to us on a different level;
i.e., the internal architecture of web participants. It was not
possible to fully align Subversion with REST principles un-
til Subversion clients embraced asynchronous (nonblocking)
network transfers and “just-in-time” data transforms that
together minimized latency. This suggests that the bene-
fits of REST may be difficult to realize unless the individual
web participants align their internal architectures to acco-
modate both asynchronous communications and concurrent
computations.

Web services, in the guise of SOAP-mediated exchanges,
not only violate numerous REST principles (RP1, RP4, RP5,
RP6), but suffer from poor performance, exacerbate latency,
fail to scale, and exhibit a high degree of complexity. Since
SOAP cannot compose services, cumbersome higher-order
services (such as WS-Workflow) must be layered above it to
remedy the deficiency. Even so, these services do not di-
rectly support a form of discovery that is amenable to web
crawling, the strategy employed under HTTP to discover
and catalog web pages.

In sharp contrast, modern REST extensions, such as AJAX
and mashups, suggest a pivotal, and perhaps unappreciated,
role for mobile code in greatly expanding the scope and sub-
tlety of REST interactions. AJAX employs server-generated
code that is transferred client-side to inject a degree of ap-
plication “responsivity” that is difficult to achieve server-
side. Mashups also illustrate the utility of code transfer
from server to client to implement resource fusion—a com-
plex task that is easier done computationally than declara-
tively.

REST guided the early development of the web and is a
unified architectural model that explains much of the behav-
ior of the modern web. However, there are many issues on
which REST is either silent or fails to adequately address.
The examples of Section 3, mod_mbox and Subversion, dem-
onstrate that even experienced developers falter when build-
ing applications that conform to REST constraints. Sec-
tion 4 illustrated the broad range of interpretations major
services apply in promulgating “REST-compliant” applica-
tion programming interfaces. Finally, Section 5 offered ex-
amples of surprising and novel REST extensions that were
not anticipated when REST was first articulated.

With these examples in mind, we reexamine REST, re-
formulating and expanding the core REST principles and
constraints to accommodate the recent evolution of the web.
REST addresses Internet-scale hypermedia, but we can now
see the web in a different light, where computational ex-

259

change, rather than content exchange, dominates web activ-
ity.

7. COMPUTATATIONAL EXCHANGE
Both AJAX and mashups employ a primitive form of mo-

bile code (Javascript embedded in resource representations)
to expand the range of REST exchanges. However, far more
powerful forms of computational exchange, based on a combi-
nation of mobile code and continuations, have been demon-
strated. A continuation is a snapshot (representation) of the
execution state of a computation such that the computation
may be later resumed at the execution point immediately fol-
lowing the generation of the continuation. Continuations are
a well-known control mechanism in programming language
semantics: many languages, including Scheme, Smalltalk,
and Standard ML, implement continuations.

We borrow liberally from a rich body of prior work on mo-
bile code and continuations to articulate our view of web-
centric computational exchange. An excellent survey and
taxonomy of mobile code systems may be found in [12] and,
in particular, there are several examples of mobile code im-
plementations based on Scheme. Halls’ Tubes [17] explores
the role of“higher-order state saving”(that is, continuations)
in distributed systems. Using Scheme as the base language
for mobile code, Tubes provides a small set of primitive op-
erations for transmitting and receiving mobile code among
Tubes sites. Tubes automatically rewrites Scheme programs
in continuation-passing style to produce an implementation-
independent representation of continuations acceptable to
any Scheme interpreter or compiler. Halls demonstrates the
utility of continuations in implementing mobile distributed
objects, stateless servers, active web content, event-driven
location awareness, and location-aware multimedia.
MAST [29] is also a Scheme variant for distributed and peer-

to-peer programming that introduces first-class distributed
binding environments and distributed continuations (in the
spirit of Tubes) accompanied by a sound security model.
Like Tubes, MAST also provides primitives for mobility.
MAST offers a developer fine-grain network control while
supplying potent control and execution primitives.

Both Tubes and MAST achieve “computation mobility,”
the movement of “live code” from one network host to an-
other. Other language bases are also feasible. Tarau and
Dahl [27] achieve the same for a logic programming lan-
guage BinProlog, again employing serialized continuations
that are transferred from one host to another and then re-
consituted.

Mobile objects are a weaker form of computation mobil-
ity. Scheme appears in this context as Dreme [11], in pur-
suit of distributed applications with little concern for pro-
cess or network boundaries. There, extensions to Scheme
include object mobility, network-addressable objects, ob-
ject mutability, network-wide garbage collection, and con-
currency. Dreme also includes a distributed graphical user
interface that relied upon continuations, rather than even-
driven programming, to manage the interface and respond
to user interactions and network events.

Continuations have an important role to play in many
forms of web interactions and services. For example, Quein-
nec [26] demonstrates that server-side continuations are an
elegant mechanism to capture and transparently restart the
state of ongoing evolving web interactions; in other words,
server/client interactions are a form of “web computation,”

(represented by a program evaluated by the server) for which
continuations are required to suspend and resume state-
ful page tours or service-oriented sessions that are client-
parameterized but generated server-side.

Matthews et al. [20] extend this work, offering a set of
automated transformations based on continuation-passing
style, lambda lifting, and defunctionalization that serialize
the server-side continuation and embed it in the web page
returned to the client. When the client responds to the web
page the (serialized) continuation is returned to the server
where it is “reconstituted,” with the server resuming execu-
tion of the continuation. This is an example of computa-
tional exchange (from server to client and back again) that
preserves context-free interaction and allows the server to
scale by remaining largely stateless.

Finally, motivated by the richness of web interactions,
browsing through data- and decision-trees, bookmarking,
and backtracking, Graunke and Krishnamurthi [15] explore
bringing the same interaction techniques to non-web graph-
ical user interfaces. They describe transformations, based
on the continuation-passing style, that confer the power and
flexibility of web interactions on graphical user interfaces.

8. CREST
We see the web realigning, from applications that are

content-centric to applications that are computation-centric:
where delivered content is a “side-effect” of computational
exchange. In the computation-centric web the goal is the
distribution of service and the composition of alternative,
novel, or higher-order services from established services.

Drawing from the prior work enumerated in Section 7 we
explore a computation-centric web in which Scheme is the
language of computational exchange and Scheme programs,
closures, continuations, and binding environments are the
responses to web requests. Further, AJAX and mashups, as
detailed in Section 5, illustrate the power of computation,
in the guise of mobile code, as a mechanism for framing
responses as interactive computations (AJAX) or for “syn-
thetic redirection”and service composition (mashups). Rais-
ing mobile code to the level of a primitive among web peers
and embracing continuations as a principal mechanism of
state exchange permits a fresh and novel restatement of all
forms of web services, including serving traditional web con-
tent, and suggests the construction of new services for which
no web equivalent now exists.

In the world of computational exchange, an URL denotes a
computational resource. There, clients issue requests in the
form of programs (expressions) e, origin servers evalute those
programs (expressions) e, and the value v of that program
(expression) e is the response returned to the client. That
value (response) v may be a primitive value (1, 3.14, or
"silly" for example), a list of values (1 3.14 "silly"), a
program (expression), a closure, a continuation, or a binding
environment (a set of name/value pairs and whose values
may include (recursively) any of those just enumerated).

Under computational exchange the putative role of SOAP
is an oxymoron, service discovery can be a side-effect of exe-
cution, and service composition reduces to program (expres-
sion) composition. For example, the program (expression)
issued by a client C to an URL u of origin server S

(if (defined? ’word-count)

(word-count (GET "http://www.yahoo.com")))

260

(rendered in the concrete syntax of Scheme) tests the execu-
tion environment of S for a function word-count (service dis-
covery) and if the function (service) is available, fetches the
HTML representation of the home page of www.yahoo.com,
counts the number of words in that representation (service
composition), and returns that value to C.

To provide developers concrete guidance in the implemen-
tation and deployment of computational exchange we offer
Computational REST (CREST) as an architectural style
to guide the construction of computational web elements.
There are five core CREST principles:

CP1 The key abstraction of computation is a resource, named
by an URL. Any computation that can be named can
be a resource: word processing or image manipulation,
a temporal service (e.g., “the predicted weather in Lon-
don over the next four days”), a generated collection
of other resources, a simulation of an object (e.g., a
spacecraft), and so on.

CP2 The representation of a resource is a program, a clo-
sure, a continuation, or a binding environment plus
metadata to describe the program, closure, continua-
tion, or binding environment. Hence, CREST intro-
duces a layer of indirection between an abstract re-
source and its concrete representation.

CP3 All computations are context-free. This is not to imply
that applications are without state, but that each in-
teraction contains all of the information necessary to
understand the request, independent of any requests
that may have preceded it. Prior representations can
be used to transfer state between computations; for ex-
ample, a continuation (representation) provided earlier
by a resource can be used to resume a computation at
a later time merely by presenting that continuation.

CP4 Only a few primitive operations are always available,
but additional per-resource operations are also encour-
aged. Participant A sends a representation p to URL
u hosted by participant B for interpretation. These
p are interpreted in the context of operations defined
by u’s specific binding environment. The outcome of
the interpretation will be a new representation—be it
a program, a continuation, or a binding environment
(which itself may contain programs, continuations, or
other binding environments). Of note, a common set
of primitives are expected to be exposed for all CREST
resources, but each u’s binding environment may de-
fine additional resource-specific operations.

CP5 The presence of intermediaries is promoted. Filter-
ing or redirection intermediaries may also use both the
metadata and the computations within requests or re-
sponses to augment, restrict, or modify requests and
responses in a manner that is transparent to both the
client and the origin server.

8.1 CREST Guidelines
As the REST experience demonstrates, it is insufficient to

merely enumerate a set of architectural principles; concrete
design guidance is also required. To this end, we explore
some of the consequences of the CREST principles, cau-
tioning that the discussion here is neither exhaustive nor

definitive. Nonetheless, it draws heavily upon both our ex-
periences as implementors of web services and web clients
and the lessons of the analyses of Sections 2-7.

8.1.1 Computational namespaces
Under CREST, URLs name computations (CP1)—in the

near-literal sense that the program, closure, continuation,
or binding environment transmitted from client to origin
server is physically embedded in the URL. For example, if
a is the ASCII text of a program p sent by client c to URL
P : //S/u0/ . . . /um−1/ of origin server S under scheme P
then the URL used by c is P : //S/u0/ . . . /um−1/a/. Clo-
sures, continuations and binding environments may contain
arbitrary recursive structures. There a serialized represen-
tation is required, a detail that we ignore for the sake of
brevity.

CREST URLs are not intended for human consumption,
as they are the base mechanisms of computational exchange
among CREST peers; human-readable namings may be pro-
vided as needed by higher layers. Among computational
peers, the length of the URL or its encoding is irrelevant
and ample computational and network resources are readily
available among modern peers to assemble, transmit, and
consume URLs that are tens of megabytes long. In effect,
the URL u = P : //S/u0/ . . . /um−1/ is the root of an in-
finite virtual namespace of all possible finite programs (or
closures, continuations, and binding environments) that may
be interpreted by the interpreter denoted by u.

From the perspective of a client, binding a specific mo-
bile program p to a specific URL u reduces code mobil-
ity to a triviality since code motion and URL construc-
tion are now one and the same. It simultaneously elevates
the transparency of the exchange since such an URL u′ =
P : //S/u0/ . . . /um−1/a/ may be inspected or modified by
intermediaries (CP5). Finally u′, a moderately compact
and host-independent representation of a computational ex-
change, may be recorded and archived for reuse at a later
point in time (CP3).

8.1.2 Transparency of computation
When URLs name computational resources, the burden

of managing the namespace shifts from a generic container
(such as a file system in the case of REST) to the binding
environment of the interpreter named by the URL. REST,
being content-centric, is completely silent on the interpreta-
tion (meaning) placed upon the URL by the origin server.
CREST, in contrast, is computation-centric and the “mean-
ing” of an URL is a full interpreter whose binding environ-
ment is far richer, more finely-grained, and nuanced than
that of any single web REST URL, even one that accepts a
large number of parameters (CP4). Consequently, the range
of metadata and query or advisory functions that a CREST-
based interpreter may offer can far outstrip that available to
an HTTP client from an HTTP origin server (CP2). For ex-
ample, content negotiation becomes an active computational
process under the explicit control of the client since the ne-
gotiation is simply a program (CP2, CP3), composed and
dispatched by the client to the server, that may inspect the
binding environment for various representations and evalu-
ate them according to client-specific critera or invoke URL-
specific functions (CP4) to generate representations that are
custom-tailored to client needs.

Similarly, since a request (program) may return a bind-

261

ing environment e as a representation to the client (CP2),
e may contain detailed and specific metadata, multiple rep-
resentations, and/or access functions for obtaining alternate
representations from other origin servers (CP3, CP4).

The utility of computation transparency strongly suggests
that CREST interpreters contain a rich selection of reflec-
tive functions that allow mobile codes to inspect or adjust
ongoing computations. Possible applications include remote
monitoring, debugging, control and post-mortem, dynamic
reconfiguration, or mobile workflow.

8.1.3 Mitigate latency
With the transfer of computation (CP1, CP2, CP3) there

is no guarantee that the origin server S to which client c
issued a request (computation) will be the eventual respon-
der, since S may easily ship the partial computation to a
third-party, unknown to c, for completion. The locus of
computation is therefore fluid; there is no fixed relationship
between request and response since one request may gen-
erate zero, one, or many responses and, in the latter case,
from many distinct peers. Nor is there any guarantee as to
the order in which multiple responses to multiple requests
may arrive at the client c.

Given the dominance of computation and computational
transfer within CREST, peers should adopt a strategy of
minimizing the impact of network and computational la-
tency on themselves and others. If these interactions are
synchronous, then any latencies in-the-large will be reflected
in latencies in-the-small; for example, a client becomes un-
responsive while it fetches a resource, or an intermediary
stalls while composing multiple representations from up-
stream sources.

Therefore, both clients and origin servers must have mech-
anisms for reducing or hiding the impact of latency. For ex-
ample, clients must be hospitable to concurrent computation
and event-driven reactions (such as the nondeterministic ar-
rival of responses). Since those responses may be continua-
tions, origin servers, in an analogous manner, must be open
to receiving previously generated continuations long after
they were first created (on timespans of seconds to months)
and restarting them seamlessly.

Time is also fundamental to CREST peers as both ori-
gin servers and clients require timers to bound waiting for a
response or the completion of a computation. In addition,
CREST peers may employ timestamps and cryptographic
signatures embedded within a continuation to reliably de-
termine its age and may refuse to resume continuations that
are past their “expiration dates.”

8.1.4 Migrate computations
CREST directly fosters computational migration since it

is openly hospitable to mobile code in many forms (as pro-
grams, closures, or continuations) and allows the direct ex-
change of binding environments (CP1, CP2). This allows a
service to scale up as needed by sharing network resources;
a single origin server may now be dynamically reconstituted
as a cooperative of origin servers and intermediaries (CP3,
CP4). Clients must be willing to dynamically stitch par-
tial computations from origin servers into a comprehensive
whole to obtain desired results, as no one origin server may
be capable of supplying all of the functional capability that
the client requires.

Computational namespaces and migration also suggest

that every time content is transformed, it must be com-
pleted without an implied reference to another transforma-
tion. This is not to say that transformations can’t be ex-
plicitly chained together; however, if an implicit dependency
chain emerged, it would jeopardize the integrity of the com-
putation as implicit dependencies may not be preserved dur-
ing migration.

8.1.5 Provide multiple interfaces
One of the persistent criticisms of REST has been the lack

of supporting frameworks that enforce its style and basic
design principles. To support computational exchange and
shorten the learning curve, there should be a well-supported
framework for quickly creating custom CREST applications.
For example, basic tasks (such as fetching a resource) should
be easily supported in a minimum of code. But, as an archi-
tect becomes familiar with the framework, there should be
a corresponding gradual increase in the span of control and
expressiveness.

8.2 CREST Architectural Style
Broadly speaking, we can gather these guidelines and con-

straints together to codify a new architectural style that ex-
pands REST’s concept of state transfer to encompass com-
putational transfer. Just as REST requires transparent state
exchange, our new style, Computational REST (CREST),
further requires the transparent exchange of computation.
Thus, in the CREST architectural style, the client is no
longer merely a presentation agent for content—it is now an
execution environment explicitly supporting computation.

9. CREST EXPLANATIONS

9.1 Explaining mod_mbox and Subversion
As highlighted in Section 3.1, mod mbox took specific ad-

vantage of exposing a computational namespace and the use
of dynamic representations. With CREST as our guide,
we now understand that computational choices had a no-
ticeable impact on the overall architecture. Instead of ex-
posing storage details in the namespace, mod mbox only
exposed content-specific metadata: the Message-ID header.
This level of indirection shielded the web-level namespaces
from irrelevant implementation decisions made at a lower
level (CP2, CP3). Similarly, by delaying the creation of
message representation, mod mbox was able to later evolve
gracefully. Subsequent mod mbox development added an
AJAX interface. Instead of creating new representations at
indexing time, mod mbox could simply dynamically expose
a new XML-based namespace and representation suitable
for AJAX when an AJAX-capable client requested it (CP2,
CP3). Adding AJAX supported the further shifting of the
computational locus away from the original server.

As discussed in Section 3.2, Subversion initially suffered
from network latency issues. With the explanatory powers
of CREST, we view the first attempt to solve this latency is-
sue (performing, on the server, the aggregation of resources
to check out) as moving the computational locus back from
the client to the server. Unfortunately, while addressing
the initial latency issue, this only served to increase the
overall computational load on the server and made it such
that simple intermediaries could not be deployed to reduce
load. But, with considered changes to the client’s frame-
work, consistent with latency reduction, we could repair the

262

deficiencies. A new client was deployed that addressed the
issues of latency through independent transformational ele-
ments (buckets) and asynchronous network calls. Hence, the
computational locus (the aggregation of resources to check
out) could rightfully return to the client. The server’s load
is thereby lessened and intermediaries can be redeployed.
With the CREST constraints, we can express the problem,
its deficiencies, and its ultimate solution.

9.2 Explaining Web Services
As CREST is intrinsically focused on the exchange of com-

putations (rather than just content), it seamlessly supports
service exposition (CP1, CP2, CP3). As discussed in Sec-
tion 4, supporting web services that are not directly query-
like with a RESTful API is difficult, and SOAP clearly con-
flicts with REST. However, by using a well-defined bind-
ing environment (CP4) and continuations (CP3), CREST
provides more substantial design guidance on how to cre-
ate arbitrary dynamic services that are flexible and content-
independent.

For instance, for a service that may return a large number
of results (such as a list of all live auctions), the exchange
of continuations (as generators) is more natural, responsive,
and elegant than building pagination and chunking explicitly
into the interface. On each round i the service S may return
a ordered pair (ai, Ci) where:

• ai = (ai,0, . . . , ai,mi) is a list of the representations of
the next mi out of n total live auctions and

• Ci is the continuation that, when returned to S at
sometime in the future, will generate the next set of
(ai+1,0, . . . , ai+1,mi+1) live auction representations.

Note that continuation Ci need not be returned to the ori-
gin server immediately; many seconds or minutes may pass
before the client returns the continuation for the next round
of exchange. This allows the client to pace its consumption
of the results, a freedom that pagination and chunking do
not provide. Further, the client may pass a continuation Ci

onto one or more fellow clients for other purposes; for ex-
ample, parallel searching for auctions with particular items
for sale. In CREST, these elaborations are transparent and
straightforward, whereas with web services, byzantine sup-
porting protocols and mechanisms are required.

9.3 Explaining Cookies
Under CREST, cookies are now reinterpreted as a weak

form of continuation (CP2). When a client wants to re-
sume the transaction represented by the cookie (continua-
tion), it simply returns the last cookie (continuation) to the
server. The key distinction under CREST is that cookies
(continuations) are bound to a specific, time-ordered, re-
quest sequence. A full continuation is, by definition, bound
to a particular sequence of resource access; there is no am-
biguity server-side. Thus the continuation restarts resource
access at a particular known point in the sequence of all re-
source accesses (CP2, CP3). This stands in sharp contrast
to the current use of cookies—generic tokens to all subse-
quent server requests.

Cookies are also currently presented with an explicit expi-
ration date (in practice, many sites set their cookies to the
latest expiration time supported by 32-bit platforms: Jan-
uary 19, 2038 [21]). However, in CREST, no such expiration

date must be supplied (though it may, at the discretion of
the origin server) as the continuation itself contains all of the
necessary state to resume the dialog of exchange. Finally,
continuations, like cookies, can be hardened against tamper-
ing using digital signatures or even encryption to prevent
security or service attacks (CP2).

9.4 Explaining AJAX and Mashups
From the CREST perspective, mashups are nothing more

than a closure (CP2) that makes reference to resources on
multiple web sites w1, w2, . . . , wn. Note that for CREST,
there is no requirement that a web browser be the execution
environment for the mashup.

By using CREST, we can predict two future elaborations
of mashups. A derived mashup is one in which one or more
content provider web sites wi are themselves mashups—with
the lower-level mashups of the wi executing on an interme-
diary (CP5) rather than a browser. CREST also speaks to a
future web populated by higher-order mashups. Similar to
a higher-order function in lambda calculus, a higher-order
mashup is a mashup that accepts one or more mashups as
input and/or outputs a mashup (CP2). This suggests a
formal system of web calculus, by which web-like servers,
clients, and peers may be cast as the application of identifi-
able, well-understand, combinators to the primitive values,
functions, and terms of a given semantic domain. Thus,
CREST hints at the existence of future formalisms suitable
for the proof of REST and CREST properties.

10. EVALUATION AND CONCLUSIONS
How are we to evaluate the validity of CREST as an ex-

planatory model of modern and emerging web behavior?
First, note that REST is silent on many issues of architec-
tural mismatch, repeatedly neglects to offer explicit design
guidance, lacks a bright line separating REST-feasible web
services from those that are not, fails to predict novel ser-
vices that are consistent with REST principles and is fre-
quently silent on many issues of web behavior. In each of
these cases, CREST fills the gap and provides detailed guid-
ance and explanantions where none existed previously.

This is particularly acute in the case of SOAP and web
services. Why are developers so focused on ignoring REST
constraints for the sake of web services? Developers are
struggling toward service interactions far finer-grained than
fetching hypermedia content. But, absent a comprehensive
computational model, the only mechanism even remotely
suggested by REST is parameterized request/response that
relies on the ill-suited semantics of the GET and POST
methods of HTTP. CREST tackles the problem directly,
since content exchange is nothing but a side-effect of its
primary focus: computational exchange. Further, it demon-
strates why SOAP and the tower of web service standards
and protocols stacked above it utterly fail; computational ex-
change requires the full semantics of powerful programming
languages: conditionals, loops, recursion, binding environ-
ments, functions, closures, and continuations, to name only
a few. Without these tools, web service developers are con-
demned to recapitulate the evolution of programming lan-
guages.

CREST identifies the precise reasons why the evolution
to web services is so difficult, pinpoints the mechanisms
that must be applied to achieve progress, and offers de-
tailed architectural and design guidance for the construction

263

of service-friendly servers and clients. Thus, CREST offers
guidance where REST and all others have failed so far. In
future work, we intend to apply CREST to the entire spec-
trum of web services—recasting all major elements of the
web services protocol stack in the light of computational
exchange—as well as address other outstanding problems
in web behavior, including content negotiation and effective
caching in service-oriented architectures.

11. ACKNOWLEDGMENTS
This work was supported by the National Science Founda-

tion under Grant Numbers CNS-0438996 and CCF-0524033.

12. REFERENCES
[1] Amazon Web Services. Amazon S3.

http://docs.amazonwebservices.com/AmazonS3/
2006-03-01/, March 1, 2006.

[2] Apache. http://httpd.apache.org/mod mbox/, 2006.
The Apache Software Foundation.

[3] Caswell-Daniels, M. Goggles :: The Google Maps
flight sim. http://www.isoma.net/games/goggles.html,
2007.

[4] CollabNet. http://subversion.tigris.org/, 2003.

[5] CollabNet. http://eyebrowse.tigris.org/, 2006.

[6] eBay Inc. REST - eBay developers program.
http://developer.ebay.com/developercenter/rest, 2007.

[7] Erenkrantz, J. R. Web Services: SOAP, UDDI, and
Semantic Web. Tech. Rep. UCI-ISR-04-3, Institute for
Software Research, University of California, Irvine,
May 2004.

[8] Erenkrantz, J. R. Architectural Styles of Extensible
REST-based Applications. Tech. Rep. UCI-ISR-06-12,
Institute for Software Research, University of
California, Irvine, August 2006.

[9] Fielding, R. T., and Taylor, R. N. Principled
design of the modern web architecture. In Proceedings
of the 22nd International Conference on Software
Engineering (Limerick, Ireland, May 2000), IEEE,
pp. 407–416.

[10] Fielding, R. T., and Taylor, R. N. Principled
design of the modern web architecture. ACM
Transactions on Internet Technology 2, 2 (May 2002),
115–150.

[11] Fuchs, M. Dreme: for Life in the Net. PhD thesis,
New York University, September 1995.

[12] Fuggetta, A., Picco, G. P., and Vigna, G.

Understanding Code Mobility. IEEE Transactions on
Software Engineering 24, 5 (1998), 342–361.

[13] Garrett, J. J. AJAX: A new approach to web
applications. http://www.adaptivepath.com/
publications/essays/archives/000385.php, February
18, 2005.

[14] Google. Google maps API.
http://maps.google.com/apis/maps/, 2007.

[15] Graunke, P. T., and Krishnamurthi, S. Advanced
control flows for flexible graphical user interfaces: or,
growing guis on trees or, bookmarking guis. In
Proceedings of the 24th International Conference on
Software Engineering (New York, NY, USA, 2002),
ACM Press, pp. 277–287.

[16] Gudgin, M., Hadley, M., Mendelsohn, N.,

Moreau, J.-J., and Nielsen, H. F. Simple Object
Access Protocol (SOAP) 1.2: Adjuncts.
http://www.w3.org/TR/soap12-part2/, June 24 2003.

[17] Halls, D. A. Applying Mobile Code to Distributed
Systems. PhD thesis, University of Cambridge, June
1997.

[18] Hood, E. http://www.mhonarc.org/, 2004. Version
2.6.10.

[19] Kristol, D., and Montulli, L. HTTP state
management mechanism.
http://www.ietf.org/rfc/rfc2109.txt, February 1997.

[20] Matthews, J., Findler, R. B., Graunke, P.,

Krishnamurthi, S., and Felleisen, M.

Automatically restructuring programs for the web.
Automated Software Engineering. 11, 4 (2004),
337–364.

[21] Microsoft Corporation. ASP 200 error setting
cookie expiration past January 19, 2038.
http://support.microsoft.com/kb/247348, November
21, 2006.

[22] Mitchell, K. A matter of style: Web services
architectural patterns. In XML 2002 (Baltimore, MD,
December 8-13 2002).

[23] Mitra, N. SOAP Version 1.2 Part 0: Primer.
http://www.w3.org/TR/soap12-part0/, June 24 2003.

[24] Nottingham, M. Understanding web services
attachments. http://dev2dev.bea.com/pub/a/
2004/05/websvcs nottingham.html, May 24, 2004.

[25] O’Reilly, T. REST vs. SOAP at Amazon.
http://www.oreillynet.com/pub/wlg/3005, April 3,
2003.

[26] Queinnec, C. The influence of browser on evaluators
or, continuations to program web servers. In
Proceedings of the International Conference on
Functional Programming (Montreal, Canada, 2000),
ACM.

[27] Tarau, P., and Dahl, V. High-level networking with
mobile code and first-order AND-continuations.
Theory and Practice of Logic Programming 1, 3 (May
2001), 359–380.

[28] Trachtenberg, A. PHP web services without
SOAP. http://www.onlamp.com/pub/a/php/2003/
10/30/amazon rest.html, October 30, 2003.

[29] Vyzovitis, D., and Lippman, A. MAST: A dynamic
language for programmable networks. Tech. rep., MIT
Media Laboratory, May 2002.

[30] W3C. Web of services for enterprise computing.
http://www.w3.org/2007/01/wos-ec-program.html,
February 27-28 2007.

[31] Winer, D. XML-RPC Specification.
http://www.xml-rpc.com/spec, June 15 1999.

[32] Yahoo! Inc. Flickr services.
http://www.flickr.com/services/api/, 2007.

[33] Young, M. AP News + Google Maps.
http://81nassau.com/apnews/, 2007.

264

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

