
Assessing the Influence on Processes when Evolving the
Software Architecture

Stig Larsson
ABB Corporate Research

 Västerås
 Sweden

stig.bm.larsson@se.abb.com

Anders Wall
ABB Corporate Research

 Västerås
 Sweden

anders.wall@se.abb.com

Peter Wallin
Mälardalen University

Västerås
Sweden

peter.wallin@mdh.se

ABSTRACT

Software intensive products and systems evolve over the life-
cycle. Changing business objectives may drive architectural or
process changes. Altering either architecture or process might
influence the other. Also the organization may influence and be
influenced. This paper describes these relationships and proposes
a method for assessing the influence on process that a proposed
architectural change can have. The method includes the use of
scenarios and process reference models. A case study where the
method has been used is described, identifying the need for
changes in the processes to be able to utilize the advantages made
possible due to the architectural evolution. The case study
supports our proposal that a structured method to assess the
impacts on process when changing the architecture of a system
helps to reduce risks and to facilitate the envisioned business
benefits. This also identifies the need to devise methods for other
types of changes, e.g. how a process change may influence
architecture or organization.

Categories and Subject Descriptors

D.2 SOFTWARE ENGINEERING: D.2.7 Distribution,
Maintenance, and Enhancement, D.2.9 Management, and D.2.11
Software Architectures.

General Terms

Management, Design, Economic.

Keywords

Architecture, Process, Organization, Business Objectives.

1. INTRODUCTION
As the architecture of a system or product changes, the processes
used for the development may change, and vice versa. One
example on this is when a system is modularized and new ways of
ensuring the integrity of interfaces are needed. Another example is

when new business requirements based on possibilities for
distributed development require the organization to structure the
software into a platform and applications but also to define new
processes of how these parts of systems are to be integrated before
sent to an end customer.

Moreover, we have observed that changes in business drivers,
organization, and technology are common during the life-cycle of
a long-lived industrial system. Examples of changes are
commercial components that get obsolete and need to be replaced,
distribution of development is initiated, companies merge,
organizations targets new markets, or gets changed customer
focus. It is consequently necessary to have a continuous evolution
in all three dimensions: architecture, processes, and organization.

Still, there is a lack of a thorough analysis of interdependences of
these factors. While there are many methods for analysis of
software evolution based on software architecture, or methods for
process improvements, it is practically unknown how they are
dependent of each other. We see that there is a clear need for
building knowledge of interdependencies between evolution of
architectures, development processes, and changes in the
development organizations. Our experience is that this is in
particular important for long-life products. Examples of such
systems are industrial products and systems.

Development of industrial control products and systems is often
performed as an evolution rather than frequently developing new
products from scratch. The reason is that these products are
complex, requirements from customer forces focus on time-to-
market, and that a substantial investment is needed before the
functionality of a new product matches or exceeds earlier
generations of the product [4]. The focus on evolving systems
combined with the complexity in today’s industrial systems
requires that the integrity of the architecture of the system is kept
intact. If system architecture integrity degrades, or enters the
servicing stage as described by Bennet and Rajlich in [1], it is no
longer possible to add substantial functionality to the system. To
protect the investments in the development of the product, this
should be avoided as long as possible.

In this paper different relationships between changes in
architecture and the effects on product development processes as
well as changes in process and the effects on architecture are
discussed. A method for assessing one type of change is proposed,
and is illustrated on an industrial case.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IWPSE'07, September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-722-3/07/09...$5.00.

59

The remainder of this paper is organized as follows. Section 2
describes the relationships between changes in architecture,
organization, and process as well as the proposed investigation
method. The case where the use of the proposed method has been
illustrated is described in section 3. Section 4 describes related
work while conclusions and further work are found in Section 5.

2. METHOD DESCRIPTION
This section describes the relationships between architecture,
organization, or development processes when changes occur due
to changed business objectives. In addition, a method is proposed
for assessing the requirements on changes in processes when an
architectural change is initiated.

2.1 Types of Relationships
The reasons for changing the development processes or the
architecture should always be motivated from a business
perspective. Our experience is that a change in the architecture
should never be driven by technology without a specific business
motivation. Examples of such motivations are changes in
customer focus or introducing distributed development. Also
seemingly architecturally driven changes should only be done
based on business needs, e.g. a complex architecture that needs
refactoring should be changed only if a business benefit can be
identified. For example, reduced cost for maintenance or easier
evolution of the system may be the original business reason. The
business-drivers for our case-study are described in Section 3.1.

Since processes, organization, and architecture all must be
synchronized in order to support a cost-effective product
development, a change along one of these dimensions will require
a review of the others in the light of the proposed change. Figure
1 depicts the relationship between changes in business objectives
(∆B), process changes (∆P), organization changes (∆O), and
changes in the architecture (∆A).

Figure 1. Relationship between different types of changes

The change based on business objectives can be initiated from any
of the three dimensions, e.g. a development group proposes a
change in the processes to reach the business objectives which
may have influences on the software architecture or the other way
around. Changes in the organization, e.g. a decision to distribute
development to get presence in a specific geographic market, may
influence both architecture and development processes.

The method proposed in this paper should not only provide
guidance concerning specific changes in existing architecture,
organization, and processes but should also give an indication on
the cost and risks of the proposed changes. Typically, the

motivation for the kinds of changes discussed in this paper is
related to reducing product development- and maintenance costs.

2.2 Business-Architecture-Process Method
To investigate and analyze the influences that a change in
architecture will have on the development processes we propose
the Business-Architecture-Process method. It covers the influence
from business objectives and architectural change on processes
which is highlighted in Figure 2. It consists of five steps: Initiate

and Motivate the Organization, Find Requirements on Affected

Processes, Analyze Different Solutions, Define Alternative

Strategies, and Decide on Strategy. An important part of the
method is that the underlying business objectives are made visible
and should be clearly understood by the organization. Central in
the method is also the use of scenarios, i.e. synopsis describing an
event or situation. Through the scenarios, an understanding of the
business objectives is obtained as the implications of the
objectives are made concrete. Finally, the use of reference models
is important as this reduces the risk to omit significant process
steps.

Figure 2. Architectural changes affecting processes

2.2.1 Step 1: Initiate and motivate the organization
Before the investigation can begin, a common motivation must
exist for the organization. This is similar to the initiation phase as
described in the IDEAL model [9] from Software Engineering
Institute used for process improvement. Based on business drivers
and a vision for what should be accomplished with the
architectural change, the sponsors and other roles for the process
investigation should be identified. The sponsors need to
communicate the vision, and identify the possible receivers of any
process changes. The final activity is to train these receivers in the
architectural influence on processes. The outcome of this first step
is an organization that is informed and prepared for the process
investigation.

2.2.2 Step 2: Find requirements on affected

processes
Based on the business drivers as well as the targets and vision for
the architectural change, an understanding of what processes are
affected should be created. This is done based on scenarios that
describe the goals of the architectural change in a concrete way,
the currently used practices, and one or more reference models.
The results of this step are new requirements on the product
development processes used.

The first activity in this step is to create a set of scenarios that
describe the vision and purpose of the architectural change in
more detail. The reason to work with scenarios is that this makes

∆B → ∆O
↕

↕→
→

∆P

∆A

∆B → ∆O
↕

↕→
→

∆P

∆A

∆B → ∆O
↕

↕→
→

∆P

∆A

∆B → ∆O
↕

↕→
→

∆P

∆A

60

the vision concrete for the stakeholders, and promotes a
discussion about the activities in the organization. The scenarios
limit the scope of the process investigations, making it possible to
focus on what is important for this specific change. The scenarios
should describe the different activities performed to achieve a
goal in an organization. One way to describe a scenario is found
in Figure 4.

After the identification of the involved processes, an
understanding of current practices should be obtained. The
practices need to be captured through an appraisal as it is the used
practice that is important, not the documented. Also the problems
in the currently used process will be available after the appraisal,
and should be part of the material used for further activities. The
use of reference models help the investigators to ensure that no
process is missed; if some practices are missing in the way the
organization is operating, that practice may be ignored if there is
no reference to check with.

When data about used processes and the scenarios are available,
the next step is to reason about whether a process is affected or
not. This can be done in a workshop with affected stakeholders,
and will result in conclusions regarding new requirements on the
used processes. One essential part of the activity is to capture the
rationale for the analysis; the reasoning behind why a process
should be modified or added needs to be documented.

The result from this step is a set of the requirements on processes
and tools used. It is advisable to have a checkpoint after this step;
if there are many new requirements, the organization should
consider alternatives to the architectural change.

2.2.3 Step 3: Analyze different solutions
The understanding of the practices used in the organization is
together with the scenarios used to describe different possible
ways to change the affected processes. For each proposed change,
the consequences are listed. These typically include changes in
roles, authorities, responsibilities, competence, documentation,
and communication. It is important at this stage to have a set of
different alternatives described for each process independently of
other processes, as the selected solution may differ depending on
combined considerations for several processes.

2.2.4 Step 4: Define alternative strategies
The solutions from step 3 are in this step grouped together to form
strategies. Here combinations of process changes are investigated.
Each strategy should be a combination of proposed process
changes that enables a particular scenario or a group of scenarios
to be implemented. The reason for combining the process changes
into strategies is that they may influence each other. For example,
a change in the handling of product integration can affect
configuration management, i.e. the way that baselines are
managed. The description of a strategy should include associated
risks as well as steps and related effort needed to implement the
process changes.

2.2.5 Step 5: Decide on strategy
When the different process changes have been described and
combined into strategies, the organization is ready for the decision
on what strategy to select. The business objectives will be the
basis for the decision, as will the risks for each of the strategies.
To make a successful implementation likely it is important that the

decision on a specific strategy is properly communicated and
discussed. In these discussions, the underlying material such as
the process investigations based on scenarios can be used.
Documenting the decision and the rational for the selected
solution is important as the environment may change and new
situations appear. Having the background available reduces the
effort to adapt to the new situation.

3. CASE STUDY
We have used the proposed method to investigate a product
development organization, how the refactoring of an industrial
control system is planned and implemented, and how this
influences the processes. The investigation has been performed as
a participant-observer study, i.e. the research was performed
through participation in the refactoring project.

3.1 Case Description
The case that has been studied is the refactoring of an industrial
control system at an ABB development unit. The system has
evolved through several generations over a ten year period, and
new functions are continuously added. Currently, the control
system consists of more than three million lines of C/C++ code
and several different applications are built on the same basic
monolithic system. The refactoring is initiated in order to increase
the possibilities to independently develop basic functions and
applications, to ensure high quality software, and to increased
efficiency in the software development. The most important
business drivers in this case are: shortened time-to-market for new
applications and new releases of existing applications, and
decreased cost for maintenance.

The basic idea of the restructuring is to divide the monolithic
software architecture into three parts; a kernel, a set of common
extensions, and application specific extensions (Figure 3). The
kernel and the common extensions are to be managed by one
development group, while the applications is intended to be
developed at several different locations. The kernel includes
components that provide basic services, e.g. operating system
abstractions, which must be a part of the all products, while the
common extensions should be selected when defining an
application specific product, e.g. support for a specific field bus.
The Base Software is the combination of the kernel and the
common extensions.

 Common
extensions

Application
specific

extensions
Application

specific
extension A

Base
Components Base

Components

Common
extensions

Kernel

Base

Figure 3. Block diagram of the refactored software

61

Software components in this context are modules built out of
several classes and can have both internal and public interfaces.
The idea is that a Base Software SDK (Software Development
Kit) should be developed with the public interfaces provided by
the Base Software (the API, application programming interface).
The SDK should include a well-documented API (a programmers
guide), a user guide describing how to develop applications based
on the SDK, wizards for developing extensions, and tools for
building products based on the SDK and application specific
components. These tools should also include e.g. verification
tools. The final result from the application development is the
load file for the control system, which is added at production time.
Additional adaptation for a specific plant can be made, but is not
considered a part of the application product.

3.2 Applying the Proposed Method
This section describes how we applied the Business-Architecture-
Process method to the industrial case.

3.2.1 Initiate and Motivate the Organization
The first step is to Initiate and Motivate the Organization both for
the architectural change, and the need to investigate the influence
on process. The organization had two clear business objectives: to
reduce cost for verification, and to increase capability to perform
distributed development. Through the research and development
project, the vision and goals for refactoring were communicated to
the stakeholders. One problem in this case was that the sponsor
assigned the project manager to communicate the vision, both
internally in the project and externally to the rest of the
organization, giving perceived less importance to the message.
However, through this approach, also the architectural influence
on the product development processes where covered, and the
receivers of the process changes were involved. The
communication was also continued throughout the project to
ensure that new information and status was given to the receivers.

3.2.2 Find requirements on affected processes
To investigate the influence on the product development
processes, the second step, Find requirements on affected

processes, was performed. The first activity was to develop a set
of scenarios to be used together with two reference models,
CMMI [14] and ISO/IEC 15288:2002 [7] . The scenarios describe
different roles and activities and serves as a source of
requirements for the processes. Through the use of process
models, the processes can be structured and investigated with a
specific process area in focus. The second activity has been to
look at the current process to understand how the system is
developed today. Throughout the appraisal, it has been important
to understand the different needs from different stakeholders such
as product managers, application developers, and base system
developers. Each process area has been discussed and analyzed
using the specific practices as described in CMMI and the
different requirements described in “Systems engineering -
Systems life cycle processes” (ISO/IEC 15288:2002). Based on
the information from the two first activities, the requirements for
the process have been defined and described.

In our investigation, four different scenarios have been defined,
with different levels of independence for the application
development units. In this context, application development is the
process of combining application specific extensions, and the

Base Software. This process may be performed by an organization
separated from the one developing the kernel and common
extensions.

Each scenario involves different roles that may be involved in the
product development process when developing an application.
These include an application development team, a Base Software
integration team, a verification team, and a production team.

The example scenario in Figure 4 describes one alternative for
how the integration of a new or modified application is done. In
this example, the Base Software Integration Team is responsible
for the integration of the application specific extensions. The
application tests are performed by the application development
team and further tests of the total system is performed by the
verification team. Note that this example is a simplification of the
real case which includes additional processes such as product
management, release handling, and production.

Figure 4. Example scenario. (Boxes denotes activities, and

lines are showing flow of information and data)

The specific process areas that were identified as subject to most
requirements for change were product management including
release planning, requirement development, requirement
management, configuration management, product integration, and
verification. In this paper we describe the requirements and
proposed solutions for product integration, configuration
management, and verification. The practices that are described
build on good practices identified in industry and have been
examined using the different scenarios for use of the Base
Software and the development of the applications.

3.2.3 Analyze different solutions
The third step, Analyze different solutions, was performed in
discussions with experts in the different processes, and the
findings where validated through a review. Here, each of the
affected areas in the example process areas is described, with the
different solutions discussed.

Configuration management: The parts of configuration
management that are affected by the refactoring and changes in
how applications are developed include handling of the code-
base, documentation of builds (i.e. the process of compiling and
linking software or the result of this process) and the increased
need for availability of stable versions for development, tests and
integration purposes.

A decision on how to handle the code-base is needed as this will
create different requirements on the infrastructure. One common

62

code-base can be used for the whole development organization,
including the application development centers. If one code-base is
maintained, processes need to be defined for how the applications
are included, and what baselining strategy should be used. The
handling procedures should also include naming rules, version
handling, and library structures that are common for the whole
system. A description of the rules and procedures should be
included in the Base Software SDK to ensure that they are
available to the application engineers.

If several repositories are used, localization for structures, names,
and documentation can be introduced. This can, however, result
in issues regarding availability for support, service, maintenance,
and production functions that must be resolved. Hence, if local
repositories are introduced, rules for accessibility, backup, release
notifications and for error corrections must be defined and
implemented in each part of the organization.

Rules for how builds should be documented are needed and
should be standardized. The information should contain
information about included components/modules, tools and
hardware used. It is also important to document the versions of
software and hardware used for the build activity. This is a change
from current handling where this is done in one location. Today,
the handling can differ between the different application
developers as the builds they initiate always are made for
development purpose only and are not documented as well as a
production build. The product builds are today made centrally, but
may be made by the application developers once the new product
architecture is launched.

Stable versions of the different components/modules are needed
for developers, integrators, and test engineers. Base Software
development builds should be made available for development
purposes to Base Software developers, but not to application
developers or the verification function as changes are introduced
between different builds as a part of the development process.
Instead, baselines with well defined content should be made
available at agreed milestones. As with the build documentation,
this is due to the fact that the versions provided to the application
developers may be the version that is included in the product
shipped to an end customer.

Product Integration Strategy: The product integration is the
inclusion of functionality into the common code base, and should
not be confused with builds. The ability to build systems must be
given to all developers, but with different degrees of freedom.
Base Software developers should be able to build new kernel and
Base Software systems, but the integration into the common code
base should be performed by a kernel integration function.
Application developers should be able to build systems that
include a pre-built Base Software module and new functions, but
the integration into the application code base should be performed
by the application integration function.

Three different types of integrations are needed with the chosen
architecture:

• Kernel integration,
• Base Software integration
• Application integration.

Kernel integration includes only the parts that are needed for all
systems. This integration is performed by the Base Software

integration function. As there may be applications built without
any of the common extensions selected, there is a requirement to
test the kernel as a basic version of the software.

Base Software integration is starting from the kernel, adding the
common extensions, resulting in Base Software. This integration
is also performed by the Base Software integration function. It
should ensure that the extensions can be selected as described and
that the expected interfaces are available after the integration.

The sequence for when functionality is integrated is determined
for the Base Software, including both the kernel and the common
extensions.

Application integration is based on the product definitions and is
after verification and validation delivered for production. An
application integration function is responsible for the inclusion of
new functionality into the integration. This function should also
be responsible for the inclusion of new versions of the Base
Software for use with the specific application. Verification is
needed to ensure that the new Base Software version is
compatible with the application.

The whole strategy of the integration will be changed through the
use of a new layered architecture. This gives also the organization
the possibility to change boundaries and responsibilities.

Development of new applications and functions need to be built
on stable releases of the Base Software. This implies that
intermediate versions of the Base Software should not be broadly
available, and that the versions made available should have been
tested.

Requirements on application development units: Each
development unit that will develop products based on the Base
Software SDK will have to fulfill a number of criteria. This
section describes the areas where criteria are needed.

As the target system is an embedded controller, the final
deployment is done as one executable even if the development of
applications is made separately. The first requirement is that the
development unit has the competence required for the specific
development that is performed on the Base Software SDK. This
calls for training of all engineers in how to use the Base Software
SDK as well as general purpose software tools that are used. In
addition to this, domain knowledge for both the type of embedded
system that is used and for the specific application is needed.

The second requirement is that a specification of the equipment
needed for the application development and integration units must
be developed. It should include specification for the development
environment, with external and internal SDK, hardware
requirements for development computers, tools for verification
including automated tests and build machines. Development units
that are performing the integration function also need equipment
for integration tests.

Finally, a third requirement, certification, can be introduced. This
should be done to ensure that quality development is performed
through guaranteeing that the competence and skills needed are in
place The certification should check that training has been
provided to all development engineers as defined in the training
requirements, that verification procedures are defined and
validated and that the development equipment and development
environments are available.

63

The certification should be performed by the unit responsible for
the Base Software development and be performed for individual
engineers as well as for the organizations developing applications.

Product integration delivery and criteria: To accept a solution
or function for integration, the readiness of the delivered modules
must be checked. This should be done using criteria for when a
module can be delivered. If development of applications is
distributed to many parts of the organization, a set of criteria that
can be used for all levels of integration is needed. This will ensure
that the documentation and quality is maintained on a common
level, and the transfer of functions between different parts of the
system is simplified. An example is when an application specific
extension is generalized and made available as a common
extension.

Examples of criteria for allowing a function to be integrated are
that code reviews and module/class tests have been performed
with satisfactory results, the level of expected remaining errors is
documented, and design documentation is available.

Tool support is recommended to simplify the checking of criteria
for delivery to integration. One example of this is tools used for
static and dynamic analysis as a complement to manual code
review. Tools are available that can assist with workflow
functions and process templates.

Interface handling: Insufficient control of interfaces is a source
of mistakes and problems in development of products. The
requirements on and designs of interfaces need to be captured and
documented to assist in the development of components/modules.
To ensure proper use of interfaces, a standardized way of
documenting is needed to reduce ambiguity and
misunderstandings. This documentation should include the
following:

• Functionality
• Expected environment
• Limitations for use
• Usage
• Returned results
• Ownership

Note that this documentation complements the description of the
interfaces in the SDK and is primarily used for Base Software
design and implementations. This is also one area where the
architecture may be influenced by the changes in the process: the
attributes that can be retrieved from the system at runtime should
also include information about possibilities for tests of the
different modules. This ensures that proper verification can be
done also in late stages of the integration process, i.e. when
integrating the application.

It is important to ensure that the interface documentation also
includes implicit dependencies that are related to generation of
target code. This includes internal changes in modules that may
not affect its interface but requires recompilation or linking.

Once an interface has been included in a Base Software release,
the changes must be controlled and communicated. A decision
process is needed to ensure that proper handling of changes in
interfaces. Also, the product road map should be considered as
any change of an interface may affect applications that need to
ensure that the change affects the application as expected.

Changes of interfaces in Base Software need to be documented to
ensure that they can be communicated to users and also to ensure
that changes can be tracked. The documentation of a change
should include the rational, a listing of affected parts of Base
Software, as well as a description of how the change can influence
the applications. Changes to interfaces in the applications should
be handled in a similar way as application specific extensions may
be transformed into common extensions.

Verification strategies: As the system is integrated iteratively in
steps, there is a need to also have verification performed in steps.
The verification of the kernel needs to ensure that the specified
functionality is available and that the described interfaces are
working correctly. As the kernel cannot be tested without an
application that uses the interfaces, a test application is needed.
This test application should include enough functionality to
ensure appropriate coverage of the functions in the kernel. A
second set of verifications is needed to ensure that the common
extensions are working as specified. This calls for a different test
application. Finally, the applications need to be tested. As the
applications affect the functionality and the performance of the
final system, parts of the tools and methods used for verification
of the kernel and the common extensions need to be made
available to the application engineers as part of the SDK.

As the Base Software is used for the development of many
applications, deficiencies that remain after the verification will
increase the risk that this error will affect one of the applications
and causing problems in the field. This calls for higher standards
in the verification of the Base Software than for the applications.
The verification also needs to ensure that different combinations
of the kernel and the chosen extensions are working. We note that
the need to have well working verification of the Base Software
also create a need for specific interfaces that enable the
verification team to test the system sufficiently.

However, as the customer of the product will not distinguish the
Base Software from the application, an error in the application
may create a market problem that is as sever as a problem in the
Base Software. Thus, the support for testing the applications is
important, and should be a part of the Base Software SDK. It
should also be part of the training and, if used, in the certification
of the development unit.

3.2.4 Define alternative strategies
Define alternative strategies is the fourth step. In our case the
strategies are divided from a business perspective and are based
on how the application products are packaged, distributed, and
verified. Two of the areas requiring process changes, product
integration delivery criteria and interface handling, which are
needed independent of the chosen strategy, and is based on the
analysis of the changes in combination with the scenarios. The
strategies are summarized in Table 1. Also the pros and cons as
well as the risks have been captured, documented, and reviewed
for each one of the strategies. These are related to the business
objectives and are as such specific for the business situation the
organization is performing under.

3.2.5 Decide on a strategy
The final step, Decide on a strategy, was in the case study delayed
as the business implications for changing the product
development to be more distributed needed further investigation

64

by product management. The final decision was to stay with the
current model, strategy 1, and gradually move towards strategy 4.
The decision was also to allow different locations to work in
different ways, i.e. use different strategies, and develop their
capabilities over time. As a consequence, the organization
developing the Base Software SDK will deal with a diverse set of
internal customers, requiring different levels of support. How this
will be handled from a business and organizational perspective
needs to be further investigated, e.g. how costs for the support
should be divided between the different users of the Base
Software SDK.

Table 1. Strategies and corresponding changes in processes

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Centralized distribution Distribution by application

Process area or
activity

Central
verification

Verification
by

application

Central
verification

Verification
by

application

Configuration
management

One
common

repository

One
common

repository

Distributed
repositories

Distributed
repositories

Product
Integration

Strategy

Central
application
integration

Central
application
integration

Distributed
application
integration

Distributed
application
integration

Requirements on
application

development
units

Ability to
develop
based on

SDK

Ability to
develop,

and verify
based on

SDK

Ability to
develop,

and
integrate
based on

SDK

Ability to
develop,
integrate,
and verify
based on

SDK

Product
integration

delivery criteria

Common
criteria for
all levels of
integration

Common
criteria for
all levels of
integration

Common
criteria for
all levels of
integration

Common
criteria for
all levels of
integration

Interface
handling

Secure
interface

handling for
Base

Software

Secure
interface

handling for
Base

Software

Secure
interface

handling for
Base

Software

Secure
interface

handling for
Base

Software

Verification
strategies

Stepwise
verification

Stepwise
verification,

with
application
developer
doing final
verification

Stepwise
verification

Stepwise
verification,

with
application
developer
doing final
verification

3.3 Case Discussion and Lessons Learned
Compared to an ad-hoc method, the Business-Architecture-
Process method facilitated the definition of the proposed changes
in the development processes and the compilation of strategies.
This was concluded by the organization after the investigations
were performed, and compared to earlier architectural changes
when no method was used for assessing process change. The
difference in results is that necessary changes are implemented
faster and that the organization is better informed and prepared for
the new technology and new processes.

Four observations where made that will affect future use of the
method. The first was that as we are using reference models as a
basis for the appraisal of used processes, there is a risk that the

proposed changes are generic process improvement proposal, and
not connected to the change of the architecture. The second
observation is that some of the changes in processes might only be
depending on the changed business objectives, and not be a result
of the architectural change. However, the process changes were
not identified when the business objectives were initially
analyzed. We conclude that the proposed method also helps the
organization to identify these needed changes. The third
observation was that it is important to continuously have a dialog
with the sponsor. In the case study, the aspect of distributed
development was reinforced. Finally, the involvement of some
stakeholders was possible first after the strategies were
formulated: the interest and time to analyze partial solutions and
alternatives with too many degrees of freedom was minimal, and a
full strategy was needed to ensure the full attention. Note also that
there is substantial effort needed for the method as many
stakeholders are involved. We think that to minimize the time and
effort, it is important to plan workshops and other interaction
early, ensuring that the effort spent is balanced with expected
gains in reduced problems. All these observations will affect the
next revision of the described method.

4. RELATED WORK
This section describes work that has been done related to
influences between architecture, organization, and processes.

Various methods concerning the business objectives impact on
both process and architecture exists but none combining the three.
For architectural analysis the Architecture Tradeoff Analysis
Method, ATAM [8], can be used. The goal of ATAM is to assess
the consequences of architectural decisions in the light of quality
attribute requirements. Typically there exist competing quality
attributes such as modifiability, security, reliability, and
maintainability that different stakeholders consider to be the most
important. These quality attributes are broken down into
scenarios. ATAM is divided into nine steps. These steps involve
eliciting a utility tree and identifying risks, sensitivity, and
tradeoff points. Since ATAM focuses on technical tradeoffs it can
be complemented with the Cost Benefit Analysis Method, CBAM
[10]. CBAM aids in the process of making architectural decisions
by providing a return of investment (ROI), ratio. This ratio is the
benefit divided by cost. A problem with quality attributes is that
they are abstract and each stakeholder has it own interpretation of
it. Neither ATAM nor CBAM compares different architectures
and can therefore be hard to use when it comes to choosing a
between different architectures. To aid in selecting a specific
architecture over another, a method is presented in [15]. This
method uses the elicitation of scenarios from ATAM and then
analysis different architectural approaches with the Chainwise
Paired Comparison method (CPC). CPC is based on the
Analytical Hierarchy Process, AHP [12] but CPC only requires
O(n) comparisons instead of the O(n2) needed with AHP. This
method provides a structured reasoning why a specific
architecture is chosen. The method is also highly scalable and can
therefore be adapted to fit the resources available, however it does
not consider the implications the chosen architecture has on the
process, or how the process affects the architecture.

Another example, where different scenario-based methods have
been used as a basis for assessment of architectures, has been
described by Del Rosso [2]. This investigation is interesting as it

65

describes the evolution of a product line, and can be compared to
the case study in this paper. It also compares scenario-based
methods with performance assessments and experience-based
assessments. However, the connections to process and
organization are not examined.

Several methods, such as SCAMPI [13] and ISO/IEC TR 15504
(SPICE) [5], are available for assessing processes, and there are
also methods available for evaluations of specific processes such
as TPI. However, none of these are designed specifically to
understand the combined changes of architecture, organization,
and processes. Additional support for assessing processes can be
found in different standards and reference models for
development life-cycles [3, 6, 7, 14].

In [11], Ovaska et al describes how the architecture supports the
product development processes in a multi-site environment, and
the influence between the two is implicitly described. The study
suggests that coordination efforts for activities are not enough, but
that interdependencies between activities must be handled. This
requires that a common understanding of the architecture. There is
however no discussion about how the changes of architecture or
process would influence each other.

5. CONCLUSIONS AND FUTURE WORK
Development of business objectives may initiate changes in the
product development. The changes can affect architecture,
organization, and process. However, our observation is that a
change in one of these three aspects may influence the other two
as a secondary consequence. We have described a method for
assessing the influence a proposed architectural change can have
on the process. Central to this method is the use of scenarios and
process reference models. Combining solutions to process
requirements into strategies gives a possibility for stakeholders to
easy understand the implications of different decisions. By
applying the proposed method during the refactoring of an
industrial control system, we have based on the proposed method
identified key areas and changes to these that need to be
implemented in the development process. The case study has also
resulted in the identification of additional details as useful input to
the method. The case study supports our proposal that a structured
method supports efficient and effective investigations of process
changes due to architectural changes.

Threats to validity are that the reference models may be
inappropriate for the investigation and that the selected scenarios
are not representative and exhaustive for the product and
organization. We argue that by selecting different reference
models that are used in the organization today we cover current
knowledge of processes for product and system development in
this context. We have also ensured that the scenarios have been
validated through review with product management, as well as
with process owners, developers, and architects.

Future work includes detailing the description in the method,
adding details on how each step should be performed, and also
give additional examples. Additional details need to be added
regarding scalability and resource needs for using the model in
different types of organizations. There is also a need to expand the
method to describe also remaining relationships depicted in
Figure 1. This involves finding appropriate reference models for
investigating organizations and architectures, and including the

use of scenarios and combined solutions as strategies into the
additional methods.

6. REFERENCES
[1] Bennett, K.H. and Rajlich, V.T., Software maintenance and

evolution: a roadmap. in Proceedings of the Conference on
The Future of Software Engineering, (Limerick, Ireland,
2000), ACM Press, 73-87.

[2] Del Rosso, C. Continuous evolution through software
architecture evaluation: a case study. Journal of Software
Maintenance and Evolution: Research and Practice, 18 (5).
351-383.

[3] EIA-731.1. Systems Engineering Capability Model,
Electronic Industries Alliance, 2002.

[4] Greer, D. and Ruhe, G. Software release planning: an
evolutionary and iterative approach. Information and
Software Technology, 46 (4). 243-253.

[5] ISO/IEC15504:2004. Information technology - Process
assessment, ISO/IEC, 2004.

[6] ISO/IEC12207:1995. Information technology - Software life
cycle processes, ISO/IEC, 1995.

[7] ISO/IEC15288:2002. Systems engineering - Systems life
cycle processes, ISO/IEC, 2002.

[8] Kazman, R., Klein, M. and Clements., P. ATAM: Method for
architecture evaluation. CMU/SEI-2000-TR-004, Carnegie
Mellon University, Software Engineering Institute, 2000.

[9] McFeeley, R. IDEALSM: A User’s Guide for Software
Process Improvement, Carnegie Mellon University, Software
Engineering Institute, 1996.

[10] Nord, R.L., Barbacci, M.R., Clements, P., Kazman, R.,
Klein, M., O’Brien, L. and Tomayko, J.E. Integrating the
Architecture Tradeoff Analysis Method (ATAM) with the
Cost Benefit Analysis Method (CBAM), CMU/SEI-2003-
TN-038, Carnegie Mellon University, Software Engineering
Institute, 2003.

[11] Ovaska, P., Rossi, M. and Marttiin, P. Architecture as a
coordination tool in multi-site software development.
Software Process: Improvement and Practice, 8 (4). 233-247.

[12] Roper-Lowe, G.C. and Sharp, J.A. The Analytic Hierarchy
Process and Its Application to an Information Technology
Decision. The Journal of the Operational Research Society,
41 (1). 49-60.

[13] SCAMPI update team, Standard CMMI® Appraisal Method
for Process Improvement (SCAMPISM) A, Version 1.2:
Method Definition Document, Carnegie Mellon University,
Software Engineering Institute, 2006.

[14] SEI. CMMI® for Development, Version 1.2., Pittsburgh,
PA, USA,, 2006.

[15] Wallin, P., Fröberg, J. and Axelsson, J., Making Decisions in
Integration of Automotive Software and Electronics: A
Method Based on ATAM and AHP. In Fourth International
Workshop on Software Engineering for Automotive Systems
(SEAS 2007), (Minneapolis, USA, 2007).

66

