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ABSTRACT 
Abstract interpretation is widely used to perform static code 
analysis with non-relational (interval) as well as relational 
(difference-bound matrices, polyhedral) domains. Analysis using 
non-relational domains is highly scalable but delivers imprecise 
results, whereas, use of relational domains produces precise results 
but does not scale up. We have developed a tool that implements 
K-limited path sensitive interval domain analysis to get precise 
results without losing on scalability. The tool was able to 
successfully analyse 10 million lines of embedded code for 
different properties such as division by zero, array index out of 
bound (AIOB), overflow-underflow and so on. This paper presents 
details of the tool and results of our experiments for detecting 
AIOB property. A comparison with the existing tools in the market 
demonstrates that our tool is more precise and scales better. 

Categories and Subject Descriptors 
F.3.2 [Semantics of Programming Languages]: Program 
analysis; D.2.4 [Software/ Program Verification]: Validation.  

General Terms 
Experimentation, Verification, Scalability, Precision, Soundness 

Keywords 
Abstract Interpretation, Interval Domain, Range Analysis 

1.  I&TRODUCTIO& 

Abstract interpretation [12] is a method to compute finitely smaller 
abstract state space by approximating large (possibly infinite) 
concrete states of programs using an abstract domain. These 
approximations are sound in the sense that when a property holds 
with approximations, it is guaranteed to hold in concrete program 
also but not necessarily the other way round. Static analysis based 
on abstract interpretation is widely used to detect errors such as 
array index out of bound (AIOB), arithmetic overflow, zero 
division and so on [9, 10, 13]. Such instances of analysis using 
complex relational abstract domain produce precise results but do 
not scale-up [3]. Analysis using non-relational domain scales to 
Millions of Lines of Code (MLOC) but at the cost of precision.  
In simple terms, non-relational domain maintains merged range of 
a variable along all paths in a program, whereas relational domain 
additionally maintains the range of relations among variables. 

Since non-relational domain maintains less information, it is 
scalable but lacks precision compared to relational domain. 
Maintaining path-wise information of variables along different but  
limited paths will combine benefits of both the domains and should 
help to match the precision of complex relational domains while 
retaining scalability. This idea, termed as trace partitioning, is 
proposed in [7].  
We have adapted trace partitioning and have developed a static 
analysis tool-chain which was used to analyze 10 MLOC industry 
code for AIOB property. We have extended standard interval 
domain [1] and power set domain concept [15]. We maintain 
variables’ value ranges along subsets of paths, for each subset. 
Keeping path-wise value ranges implicitly provides inter-variable 
relationships as a correlation. We keep a configurable limit, K, on 
the number of subsets of paths for which we maintain this 
information. When number of paths at a program point exceeds K, 
we partition the set of paths into K subsets and information is 
computed with respect to each of these K subsets. Paths are 
partitioned arbitrarily. The space complexity of using proposed 
domain is O(Kpn) for a program of size p, with n variables. In 
practice, since n is quite large compared to K (n >> K), this 
complexity is linear in n and scalability is comparable to simple 
interval domain analysis. Further, we have observed that when K is 
configured based on the program size and computing/storage size, 
it gives better results than a fixed K.  
We conducted three experiments. First one showed that our tool-
chain can analyze 10 million lines of industry code. Program 
analysis tools such as Polyspace (version 7) [8] and Astrée 

(version 11.08) [9] could not run on this code because they do not 
scale beyond 100KLOC [3] and 1 MLOC [14] respectively. We 
used the ratio of number of warnings to the number of review 
points, for a given property as an indicator of precision of the tool. 
In the second experiment we observed effect of various values of 
K. The last experiment was to compare precision with other tools. 
This comparison was done on an industry module of 40KLOC for 
an AIOB property. Astrée reported 166 warnings while our tool 
and Polyspace (at highest precision) reported only 13 warnings.  
In this paper, we  

• explain precise range analysis with an example  

• present a tool-chain that was used to analyze 10 MLOC 

• demonstrate higher precision achieved without loss of 
scalability on large industry code 

• show effects of configurable limit, K, on industry code 

• compare precision of our tool with Polyspace and Astrée  

We believe this will help practitioners to understand the benefits of 

K-limited path sensitive interval domain.  

2.  EXAMPLE 

To illustrate the idea, we present an example in Figure 1 extracted 
from a real life battery controller application.  
To reach the point after line 12 there are three paths namely P1: (3, 
6, 9, 10, 11, 12), P2: (3, 6, 7, 8, 11, 12) and P3: (3,4,5,12). Numbers 
in parenthesis denote line numbers of statements on the path.  
In Table 1, we show the results computed using three different 
domains - simple interval domain, our domain (with K=3), and  
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 1. int arr[100]; 
 2. void func ( unsigned int v) {  
 3.    unsigned int f =0; 
 4.    if (v >0 && v <25) {          
 5.        ...; // some code not modifying v and f 
 6.    } else { 
 7.        if ( 0 == v){              
 8.             ...; // some code  not modifying v and  f  
 9.         } else { 
10.             f =1 ; 
11.        } 
12.       }                 
13.    if (0==f)                      
14.        if ( 0 != v) {              
15.            if ( arr[ (v-1)]  >= 255)   ...; // some code } } 

Figure 1. Example 

 Table 1.   Different Domain Analysis of Example Program 
Lin

e 

Interval 

domain 

Our domain DBM 

domain  

4 (<f,[0,0]>, 
<v,[1,24]>) 

{P3:(<f,[0,0]>,<v,[1,24]>)} 
 

1≤v-f≤24 

6 (<f,[0,0]>, 
<v,[0,M]>) 

{P1:(<f, 0,0]>,<v,[0,M]>)  } 0≤v-f≤M 

7 (<f,[0,0]>, 
<v,[0,0]>) 

{P2:(<f,[0,0]>,<v,[0,0]>)}  v-f=0 

9 (<f,[0,0]>, 
<v,[25,M]>) 

{P1:(<f,[0,0]>, <v,[25,M]>)} 25≤v-f≤M 

10 (<f,[1,1]>, 
<v,[25,M]>) 

{P1:(<f,[1,1]>, <v,[25,M]>)} 24≤v-f≤M-1 

11 (<f,[0,1]>, 
<v,[0,M]>) 

{P2:(<f,[0,0]>,<v,[0,0]>), 
P1:(<f,[1,1]>,<v,[25,M]>)} 

0≤v-f≤M-1 

12 (<f,[0,1]>, 
<v,[0,M]>) 

{P2:(<f,[0,0]>,<v,[0,0]>), 
P3:(<f,[0,0]>,<v,[1,24]>), 
P1:(<f,[1,1]>,<v,[25,M]>)} 

0≤v-f≤M-1 

13 (<f,[0,0]>, 
<v,[0,M]>) 

{P2:(<f,[0,0]>,<v,[0,0]>), 
P3:(<f,[0,0]>,<v,[1,24]>)} 

0≤v-f≤M-1 

14 (<f,[0,0]>, 
<v,[1,M]>) 

{P3:(<f,[0,0]>,<v,[1,24]>)} 1≤v-f≤M-1 

   

Difference-Bound Matrices (DBM) [4], a relational domain. 
DBM, along with ranges of individual variables, tracks differences 
between every pair of variables in a program. So, for example, in 
Figure 1 DBM domain maintains ranges of values of v, f and v-f 
while simple interval domain only maintains ranges of values of v 
and f. In this example, ranges for v and f are identical in DBM and 
in simple interval domain. We have shown values of v and f in the 
Interval domain column and values of v-f in the DBM domain 
column in Table 1. In addition to v and f, DBM will compute ranges 
of v-f at different program points (although, in this example, there is 
no relationship between v and f). In our approach, at the end of line 
11, we keep information for P1 and P3 and at the end of line 12, we 
keep it for P1, P2 and P3. As a result, at line 14, we carry 
information only along P3, because P1 and P2 cease to extend from 
line 13 and line 14 respectively. Thus at line 14, we safely conclude 
that v can only be in the interval [1, 24] whereas the other two 
approaches conclude that v can be in the interval [1, M], where M 
denotes the maximum value of an unsigned integer variable. Hence, 
we can precisely infer that array access at line 15 is safe but other 
approaches will be imprecise and report it as may-be-unsafe. 

3.   APPROACH 

3.1 Background 

1) PRISM: our in-house data flow analysis framework which takes 
specification of a data flow problem to be solved as input and 

generates a data flow analyzer for the specified problem. 
Specification consists of transfer functions for different constructs, 
meet operation and optional widening operation. 
2) TECA: a static analysis tool [11] which is based on PRISM 
framework and verifies different properties such as zero division, 
AIOB, underflow-overflow etc.  
3) Clustering: a process to divide a large code base into small 
clusters using the algorithm presented in [6]. Each cluster consists 
of one top-level function that is not invoked within the code base 
and all the functions that are directly or transitively invoked from 
the top-level function. The result of analyzing the complete code 
base is the same as merging the analysis results of individual 
clusters. 

3.2 The Tool-Chain 

We have developed a tool-chain that implements clustering, K-
limited path analysis and property verifier. The tool-chain is 
implemented in JAVA and its architecture is depicted in Figure 2. 
 
 
 

 

 

 

 

 

Figure 2.  Tool Chain Architecture 

1) Cluster Generator: The code is divided into several clusters 
using the clustering algorithm. 
2) K-limited path sensitive interval domain analyzer: K-limited 
path sensitive interval domain, as explained earlier, is specified as 
a data flow problem for PRISM. For specifying this we have used 
some ideas from [1] for transfer functions of assignments involving 
complex arithmetic expressions and relational operators. In order 
to get more precise intervals in cases such as, bit-wise operations 
and linear inequalities, we have developed our own strategies.  
The proposed domain is an extension of interval domain [1]. We 
extend the abstraction to enable path sensitivity. Instead of keeping 
a single interval for each variable in isolation, we maintain a set of 
variables to range (interval) mappings. Number of such mappings 
is limited to K, which is chosen based on the program under 
analysis. Each mapping represents abstraction over a subset of 
paths and every path is included in some mapping. Choice of a 
particular partitioning of set of paths, when there are more than K 
paths, is arbitrary. 
This analysis guarantees that range of a variable in a map 
represents the abstraction of values of that variable when control 
reaches through any of the paths of corresponding path subset. 
This way, analysis performed is conservative and interval for a 
variable will have all possible values, therefore it is sound. Formal 
proof of soundness is out of the scope of this paper. 
To resolve pointers, we compute and use flow insensitive points-to 
information [2]. Abstract interpretation needs widening when 
underlying abstract domain is not finite. Widening strategy with K-
limited path sensitive interval domain used in our tool is described 
in the next sub-section. PRISM generated data flow analyzer is run 
on each cluster as a single unit and results are passed on to the 
property verifier. 

Cluster 

Generator 

C1 Cn …
..

K-limited path sensitive interval domain 

analyzer  

Property verifier 

C 

Final  
report 
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3) Property verifier: TECA verifies the code for AIOB property 
using the analysis results of K-limited path sensitive analyzer. At 
property checking point, a check is made against each mapping of 
variables to ranges computed at that point. As explained earlier, 
there could be at most K such mappings. When the property is 
satisfied against all mappings, it is considered safe. As the 
underlying value range analysis is sound, this property verifier 
doesn’t miss any property violation. It verifies each cluster 
individually and creates a final combined analysis report. 

3.3 Widening and Loop Unrolling 

In abstract interpretation, presence of loops in a program requires 
widening [1] to terminate the analysis. In our tool, we use the 
concept of widening operator as defined in [1] to perform 
widening.  We compute information at each program point as a set 
S of maps M1, M2, ..., Mt where t ≤ K. Each Mi is a map from a 
variable to its range value. Let S1= {M11, M12,  .., M1h} and S2 ={ 
M21, M22,., M2r} , where h ≤ K and r ≤ K, be the information 
computed at a loop head in two successive iterations of the loop. 
To compute widening of S1 with S2, first we compute a map M2 as 
merge of maps M2j where 1≤ j ≤ r. Elements of widening result are 
computed by widening individual elements of S1  with M2.  
Widening so defined, satisfies the property of stabilization to 
guarantee the termination. Proof of stabilization is out of scope of 
this paper.  
Since widening results in imprecision, we unroll the loop for a 
fixed number of iterations before applying widening. In many 
cases, the unrolling itself leads to fix point results and therefore 
imprecision due to widening is avoided. The number of times a 
loop is to be unrolled, called widening parameter, is also 
configurable in our tool. Increase in value of this parameter 
increases precision. 
Consider the code snippet in Figure 3. Here division expression is 
reported as safe when K is 7 and widening parameter is 3. This is 
because information at the loop head will reach a fixed point in just 
three loops unrolling and widening will not be needed. Had we 
applied widening without unrolling the loop, the range of c would 
have been [0, 255] and division expression would have been 
reported as possibly unsafe. 

unsigned char c; unsigned int a,b;  
scanf(“%d”, &b); a = 0;  c = 0;      
while(a<3) { 
  if (b<=4) c++; 
   a++;  
} 
if (b <5) z = t/c  // division expression 

Figure 3.  Example  

Similar to standard interval domain [1], analysis using K-limited 
path sensitive interval domain becomes imprecise after applying 
widening. However, experiments shared show that with this 
domain we could get better precision than Astrée and it remained 
at par with Polyspace which implements more complex domains. 

4.  EXPERIME&TAL SETUP A&D RESULTS 

The experiments were conducted on two real-life automotive 
applications using dual core 2.26 GHz processor with 2.0 GB of 
RAM. Both the applications were in C language and were tested 
completely. First application (A1) of 10 MLOC implements the 
navigation functionality of an automotive. It was first divided into 
94 clusters (C1, .., C94); smallest cluster of 11 KLOC and largest 
cluster of 2.1 MLOC. The second application (A2) implements 
battery controller functionality. It was not divided into clusters. 

4.1 Scalability 

A1 was used to demonstrate the scalability of our tool-chain. We 
successfully ran our tool on all 94 clusters with the value of K as 3. 
Total end-to-end execution time of our tool-chain was 7 hours. A1 
is a client application and the client is very happy with the 
precision and the scalability of the tool-chain.   
Polyspace and Astrée couldn’t run on this code as these tools 
cannot scale up beyond 100 KLOC and 1 MLOC respectively. As 
an indicator of the precision of our tool, we measured the ratio of 
number of warnings to number of review points for a given 
property. We computed this ratio on 4 clusters of varying sizes of 
A1 for AIOB property. Table 2 describes these results and we can 
see that the analysis precision is maintained even with increase in 
size of clusters.  

Table 2. Precision Results 

Cluster LOC Precision ratio 
C1 110K 1:11 

C2 224K 1:9 

C3 311K 1:10 

C4 2.1M 1:12 

  

4.2 Configuration of K 
To assess the effect of increasing K, that is the number of path sets, 
the tool was run with different values of K on second application, 
A2, and on four different clusters of A1. In each run, we measured 
the number of array accesses which were reported as safe, unsafe 
or may-be-unsafe. As expected, we observed that some may-be-
unsafe array accesses were converted into safe or unsafe with 
increase in value of K. We show our results in Table 3. In column 
1, A2 represents second application of 40 KLOC and C1-C4 
represent different clusters of first application A1. Results show 
that, the precision increases with larger value of K. Table 3 shows 
the percentage improvement in precision( percentage reduction in 
may-be-unsafe array access) with respect to K=1 (all paths merged 
together). For example, if the warnings reported by K=1 and K= 3 
be W1 and W3 respectively, precision improvement cell for K =3 
is computed as (W1-W3 / W1) * 100. Similarly, it is computed for 
other values of K.   For different values of K, it also shows the 
analysis time (in minutes).  

Table 3. Experimental Results 

App LOC Precision 

improvement (%) 

Analysis time (min) 

  K=3 K=10 K=15 K=3 K=10 K=15 

A2 40K 0.75 4.01 24.9 1.8 1.9 2 

C1 110K 2.86 3.1 3.1 2.1 2.3 2.5 

C2 224K 2.07 2.3 6.5 7 7.2 7.8 

C3 311K 1.5 4.2 4.2 7.5 8 8.3 

C4 2.1M 2.9 4.2 4.4 56.7 58.3 61.7 

 
An important point to note is that there is no significant increase in 
the analysis time when value of K is increased. This clearly 
highlights the practicality of our approach. 

4.3 Comparison with Astrée and Polyspace 
A2 (of 40 KLOC) was selected for comparative study of precision 
as both tools scaled on this application. We analyzed this 
application’s result for AIOB property using Astrée, Polyspace and 
our tool with K=15. Results are summarized in Table 4.  
Results show that our approach produced more precise results than 
Astrée. It demonstrates that while Polyspace uses complex 
polyhedral and some other complex relationship inferring 
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algorithms, in practice, our approach is as precise as Polyspace. It 
also shows our tool runs much faster than the other two.  

Table 4.  Comparison Report   

Tool May-be-unsafe warnings Time (min) 

Astrée 166 21 

Polyspace 13 360 

Our approach 13 10 

 

5.   LIMITATIO&S 

1. Precision of our domain is less than DBM domain in certain 
cases. Consider this example: 
       for (i=0, j=0; i< 10; i++) { sum = sum + arr [j];  j++; } 

Assume that an array arr is of size 10. According to our domain, 
with K=3 and widening parameter as 3, we will infer that at array 
access point the value of i is in the interval [0, 9] and that of j is in 
the interval [0, MAX].  On the other hand, using DBM domain, 
which is relational domain, relation i-j will be tracked and value of 
j will correctly be inferred to be in the interval [0, 9].  Thus, in 
such cases, relational domain will be more precise than K-limited 
path sensitive interval domain. 
2. Due to widening, the effect of K path sets tracked before any 
loop gets diluted after the loop. Consider an example shown in 
Figure 4. Let K be 2 and the default widening parameter be 3. 
Here, division expression is reported as potential division by zero 
error because after the loop, g’s range will be considered as [0...20] 
at division point. However, K paths are tracked after the loop as 
well, concluding the last array access to be safe. 
 

unsigned int a,x,g;  int arr[100];  scanf (“%d”, &a); x = 255; 
if (a < 10)  g =20; else g =0 ;     
while(x != 0) {   x--; } 
if (a < 8)  { 
      z = t/g;  // division expression – range of g is [0..20] 
      g = 100; } 
if (a >= 50) arr[g] = 40;   // Array access  - range of g is [0..20] 

Figure 4.  Example  

6.  RELATED WORK 

Tools Coverity and UNO perform standard interval analysis and 
scale to million lines of code but with unsound analysis [13]. These 
tools do not track any branching correlation. Frama-C’s value 
analysis plug in [5] computes sets of possible values for the 
variables in a program; however, it does not track branching 
correlations among variables. 
Polyspace [8], a commercial tool, performs sound analysis at 
different levels of precision which is configurable. At lower 
precision level, it performs standard interval domain analysis. And 
at higher precision level configuration it uses some complex 
algorithms along with complex relational domain and is able to 
track some of branching correlation, as done by our approach. 
However, its scalability is limited to 100 KLOC [3, 13] while our 
approach could run on million lines of code.  
Astrée [9, 10] performs sound, precise and scalable analysis for the 
family of programs it was designed for. It is scalable because it 
does not use complex polyhedral domain (uses only octagon 
domain). But as shown through experiments, it becomes less 
precise for a significant set of practical scenarios.  

Our extension is based on the trace partitioning idea [7] which is 
also implemented in Astrée. However, in Astrée its effect to track 
branching correlation can be seen by specifying directives in user 
code. Our implementation does not require any such modification.  

7.   CO&CLUSIO& 

Using trace partitioning idea from [7], we extended standard 
interval domain by introducing path sensitivity and limited the 
number of paths to be maintained to K.  We have demonstrated 
better precision along with scalability by successfully analyzing a 
system of 10 MLOC. Through experiments, we observed that the 
relationship we are tracking is not tracked by other tools that use 
relational domain analysis. We have shown that a configurable K 
helps produce precise results with acceptable scalability so as to 
make the technique useful for analyzing large industry 
applications. Therefore, even in presence of commercial tools like 
Polyspace and Astrée, due to better scalability with precision, our 
tool chain is successfully used by one of the leading automotive 
OEM (Original Equipment Manufacturer) on their large 
applications. 
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