

Precise Range Analysis on Large Industry Code

Shrawan Kumar, Bharti Chimdyalwar, Ulka Shrotri

Tata Consultancy Services, India

shrawan.kumar@tcs.com, bharti.c@tcs.com, ulka.s@tcs.com

ABSTRACT
Abstract interpretation is widely used to perform static code
analysis with non-relational (interval) as well as relational
(difference-bound matrices, polyhedral) domains. Analysis using
non-relational domains is highly scalable but delivers imprecise
results, whereas, use of relational domains produces precise results
but does not scale up. We have developed a tool that implements
K-limited path sensitive interval domain analysis to get precise
results without losing on scalability. The tool was able to
successfully analyse 10 million lines of embedded code for
different properties such as division by zero, array index out of
bound (AIOB), overflow-underflow and so on. This paper presents
details of the tool and results of our experiments for detecting
AIOB property. A comparison with the existing tools in the market
demonstrates that our tool is more precise and scales better.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program
analysis; D.2.4 [Software/ Program Verification]: Validation.

General Terms
Experimentation, Verification, Scalability, Precision, Soundness

Keywords
Abstract Interpretation, Interval Domain, Range Analysis

1. I&TRODUCTIO&

Abstract interpretation [12] is a method to compute finitely smaller
abstract state space by approximating large (possibly infinite)
concrete states of programs using an abstract domain. These
approximations are sound in the sense that when a property holds
with approximations, it is guaranteed to hold in concrete program
also but not necessarily the other way round. Static analysis based
on abstract interpretation is widely used to detect errors such as
array index out of bound (AIOB), arithmetic overflow, zero
division and so on [9, 10, 13]. Such instances of analysis using
complex relational abstract domain produce precise results but do
not scale-up [3]. Analysis using non-relational domain scales to
Millions of Lines of Code (MLOC) but at the cost of precision.
In simple terms, non-relational domain maintains merged range of
a variable along all paths in a program, whereas relational domain
additionally maintains the range of relations among variables.

Since non-relational domain maintains less information, it is
scalable but lacks precision compared to relational domain.
Maintaining path-wise information of variables along different but
limited paths will combine benefits of both the domains and should
help to match the precision of complex relational domains while
retaining scalability. This idea, termed as trace partitioning, is
proposed in [7].
We have adapted trace partitioning and have developed a static
analysis tool-chain which was used to analyze 10 MLOC industry
code for AIOB property. We have extended standard interval
domain [1] and power set domain concept [15]. We maintain
variables’ value ranges along subsets of paths, for each subset.
Keeping path-wise value ranges implicitly provides inter-variable
relationships as a correlation. We keep a configurable limit, K, on
the number of subsets of paths for which we maintain this
information. When number of paths at a program point exceeds K,
we partition the set of paths into K subsets and information is
computed with respect to each of these K subsets. Paths are
partitioned arbitrarily. The space complexity of using proposed
domain is O(Kpn) for a program of size p, with n variables. In
practice, since n is quite large compared to K (n >> K), this
complexity is linear in n and scalability is comparable to simple
interval domain analysis. Further, we have observed that when K is
configured based on the program size and computing/storage size,
it gives better results than a fixed K.
We conducted three experiments. First one showed that our tool-
chain can analyze 10 million lines of industry code. Program
analysis tools such as Polyspace (version 7) [8] and Astrée

(version 11.08) [9] could not run on this code because they do not
scale beyond 100KLOC [3] and 1 MLOC [14] respectively. We
used the ratio of number of warnings to the number of review
points, for a given property as an indicator of precision of the tool.
In the second experiment we observed effect of various values of
K. The last experiment was to compare precision with other tools.
This comparison was done on an industry module of 40KLOC for
an AIOB property. Astrée reported 166 warnings while our tool
and Polyspace (at highest precision) reported only 13 warnings.
In this paper, we

• explain precise range analysis with an example

• present a tool-chain that was used to analyze 10 MLOC

• demonstrate higher precision achieved without loss of
scalability on large industry code

• show effects of configurable limit, K, on industry code

• compare precision of our tool with Polyspace and Astrée

We believe this will help practitioners to understand the benefits of

K-limited path sensitive interval domain.

2. EXAMPLE

To illustrate the idea, we present an example in Figure 1 extracted
from a real life battery controller application.
To reach the point after line 12 there are three paths namely P1: (3,
6, 9, 10, 11, 12), P2: (3, 6, 7, 8, 11, 12) and P3: (3,4,5,12). Numbers
in parenthesis denote line numbers of statements on the path.
In Table 1, we show the results computed using three different
domains - simple interval domain, our domain (with K=3), and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia.

Copyright 2013 ACM 978-1-4503-2237-9/13/08 …$15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2494569

675

 1. int arr[100];
 2. void func (unsigned int v) {
 3. unsigned int f =0;
 4. if (v >0 && v <25) {
 5. ...; // some code not modifying v and f
 6. } else {
 7. if (0 == v){
 8. ...; // some code not modifying v and f
 9. } else {
10. f =1 ;
11. }
12. }
13. if (0==f)
14. if (0 != v) {
15. if (arr[(v-1)] >= 255) ...; // some code } }

Figure 1. Example

 Table 1. Different Domain Analysis of Example Program
Lin

e

Interval

domain

Our domain DBM

domain

4 (<f,[0,0]>,
<v,[1,24]>)

{P3:(<f,[0,0]>,<v,[1,24]>)}

1≤v-f≤24

6 (<f,[0,0]>,
<v,[0,M]>)

{P1:(<f, 0,0]>,<v,[0,M]>) } 0≤v-f≤M

7 (<f,[0,0]>,
<v,[0,0]>)

{P2:(<f,[0,0]>,<v,[0,0]>)} v-f=0

9 (<f,[0,0]>,
<v,[25,M]>)

{P1:(<f,[0,0]>, <v,[25,M]>)} 25≤v-f≤M

10 (<f,[1,1]>,
<v,[25,M]>)

{P1:(<f,[1,1]>, <v,[25,M]>)} 24≤v-f≤M-1

11 (<f,[0,1]>,
<v,[0,M]>)

{P2:(<f,[0,0]>,<v,[0,0]>),
P1:(<f,[1,1]>,<v,[25,M]>)}

0≤v-f≤M-1

12 (<f,[0,1]>,
<v,[0,M]>)

{P2:(<f,[0,0]>,<v,[0,0]>),
P3:(<f,[0,0]>,<v,[1,24]>),
P1:(<f,[1,1]>,<v,[25,M]>)}

0≤v-f≤M-1

13 (<f,[0,0]>,
<v,[0,M]>)

{P2:(<f,[0,0]>,<v,[0,0]>),
P3:(<f,[0,0]>,<v,[1,24]>)}

0≤v-f≤M-1

14 (<f,[0,0]>,
<v,[1,M]>)

{P3:(<f,[0,0]>,<v,[1,24]>)} 1≤v-f≤M-1

Difference-Bound Matrices (DBM) [4], a relational domain.
DBM, along with ranges of individual variables, tracks differences
between every pair of variables in a program. So, for example, in
Figure 1 DBM domain maintains ranges of values of v, f and v-f
while simple interval domain only maintains ranges of values of v
and f. In this example, ranges for v and f are identical in DBM and
in simple interval domain. We have shown values of v and f in the
Interval domain column and values of v-f in the DBM domain
column in Table 1. In addition to v and f, DBM will compute ranges
of v-f at different program points (although, in this example, there is
no relationship between v and f). In our approach, at the end of line
11, we keep information for P1 and P3 and at the end of line 12, we
keep it for P1, P2 and P3. As a result, at line 14, we carry
information only along P3, because P1 and P2 cease to extend from
line 13 and line 14 respectively. Thus at line 14, we safely conclude
that v can only be in the interval [1, 24] whereas the other two
approaches conclude that v can be in the interval [1, M], where M
denotes the maximum value of an unsigned integer variable. Hence,
we can precisely infer that array access at line 15 is safe but other
approaches will be imprecise and report it as may-be-unsafe.

3. APPROACH

3.1 Background

1) PRISM: our in-house data flow analysis framework which takes
specification of a data flow problem to be solved as input and

generates a data flow analyzer for the specified problem.
Specification consists of transfer functions for different constructs,
meet operation and optional widening operation.
2) TECA: a static analysis tool [11] which is based on PRISM
framework and verifies different properties such as zero division,
AIOB, underflow-overflow etc.
3) Clustering: a process to divide a large code base into small
clusters using the algorithm presented in [6]. Each cluster consists
of one top-level function that is not invoked within the code base
and all the functions that are directly or transitively invoked from
the top-level function. The result of analyzing the complete code
base is the same as merging the analysis results of individual
clusters.

3.2 The Tool-Chain

We have developed a tool-chain that implements clustering, K-
limited path analysis and property verifier. The tool-chain is
implemented in JAVA and its architecture is depicted in Figure 2.

Figure 2. Tool Chain Architecture

1) Cluster Generator: The code is divided into several clusters
using the clustering algorithm.
2) K-limited path sensitive interval domain analyzer: K-limited
path sensitive interval domain, as explained earlier, is specified as
a data flow problem for PRISM. For specifying this we have used
some ideas from [1] for transfer functions of assignments involving
complex arithmetic expressions and relational operators. In order
to get more precise intervals in cases such as, bit-wise operations
and linear inequalities, we have developed our own strategies.
The proposed domain is an extension of interval domain [1]. We
extend the abstraction to enable path sensitivity. Instead of keeping
a single interval for each variable in isolation, we maintain a set of
variables to range (interval) mappings. Number of such mappings
is limited to K, which is chosen based on the program under
analysis. Each mapping represents abstraction over a subset of
paths and every path is included in some mapping. Choice of a
particular partitioning of set of paths, when there are more than K
paths, is arbitrary.
This analysis guarantees that range of a variable in a map
represents the abstraction of values of that variable when control
reaches through any of the paths of corresponding path subset.
This way, analysis performed is conservative and interval for a
variable will have all possible values, therefore it is sound. Formal
proof of soundness is out of the scope of this paper.
To resolve pointers, we compute and use flow insensitive points-to
information [2]. Abstract interpretation needs widening when
underlying abstract domain is not finite. Widening strategy with K-
limited path sensitive interval domain used in our tool is described
in the next sub-section. PRISM generated data flow analyzer is run
on each cluster as a single unit and results are passed on to the
property verifier.

Cluster

Generator

C1 Cn …
..

K-limited path sensitive interval domain

analyzer

Property verifier

C

Final
report

676

3) Property verifier: TECA verifies the code for AIOB property
using the analysis results of K-limited path sensitive analyzer. At
property checking point, a check is made against each mapping of
variables to ranges computed at that point. As explained earlier,
there could be at most K such mappings. When the property is
satisfied against all mappings, it is considered safe. As the
underlying value range analysis is sound, this property verifier
doesn’t miss any property violation. It verifies each cluster
individually and creates a final combined analysis report.

3.3 Widening and Loop Unrolling

In abstract interpretation, presence of loops in a program requires
widening [1] to terminate the analysis. In our tool, we use the
concept of widening operator as defined in [1] to perform
widening. We compute information at each program point as a set
S of maps M1, M2, ..., Mt where t ≤ K. Each Mi is a map from a
variable to its range value. Let S1= {M11, M12, .., M1h} and S2 ={
M21, M22,., M2r} , where h ≤ K and r ≤ K, be the information
computed at a loop head in two successive iterations of the loop.
To compute widening of S1 with S2, first we compute a map M2 as
merge of maps M2j where 1≤ j ≤ r. Elements of widening result are
computed by widening individual elements of S1 with M2.
Widening so defined, satisfies the property of stabilization to
guarantee the termination. Proof of stabilization is out of scope of
this paper.
Since widening results in imprecision, we unroll the loop for a
fixed number of iterations before applying widening. In many
cases, the unrolling itself leads to fix point results and therefore
imprecision due to widening is avoided. The number of times a
loop is to be unrolled, called widening parameter, is also
configurable in our tool. Increase in value of this parameter
increases precision.
Consider the code snippet in Figure 3. Here division expression is
reported as safe when K is 7 and widening parameter is 3. This is
because information at the loop head will reach a fixed point in just
three loops unrolling and widening will not be needed. Had we
applied widening without unrolling the loop, the range of c would
have been [0, 255] and division expression would have been
reported as possibly unsafe.

unsigned char c; unsigned int a,b;
scanf(“%d”, &b); a = 0; c = 0;
while(a<3) {
 if (b<=4) c++;
 a++;
}
if (b <5) z = t/c // division expression

Figure 3. Example

Similar to standard interval domain [1], analysis using K-limited
path sensitive interval domain becomes imprecise after applying
widening. However, experiments shared show that with this
domain we could get better precision than Astrée and it remained
at par with Polyspace which implements more complex domains.

4. EXPERIME&TAL SETUP A&D RESULTS

The experiments were conducted on two real-life automotive
applications using dual core 2.26 GHz processor with 2.0 GB of
RAM. Both the applications were in C language and were tested
completely. First application (A1) of 10 MLOC implements the
navigation functionality of an automotive. It was first divided into
94 clusters (C1, .., C94); smallest cluster of 11 KLOC and largest
cluster of 2.1 MLOC. The second application (A2) implements
battery controller functionality. It was not divided into clusters.

4.1 Scalability

A1 was used to demonstrate the scalability of our tool-chain. We
successfully ran our tool on all 94 clusters with the value of K as 3.
Total end-to-end execution time of our tool-chain was 7 hours. A1
is a client application and the client is very happy with the
precision and the scalability of the tool-chain.
Polyspace and Astrée couldn’t run on this code as these tools
cannot scale up beyond 100 KLOC and 1 MLOC respectively. As
an indicator of the precision of our tool, we measured the ratio of
number of warnings to number of review points for a given
property. We computed this ratio on 4 clusters of varying sizes of
A1 for AIOB property. Table 2 describes these results and we can
see that the analysis precision is maintained even with increase in
size of clusters.

Table 2. Precision Results

Cluster LOC Precision ratio
C1 110K 1:11

C2 224K 1:9

C3 311K 1:10

C4 2.1M 1:12

4.2 Configuration of K
To assess the effect of increasing K, that is the number of path sets,
the tool was run with different values of K on second application,
A2, and on four different clusters of A1. In each run, we measured
the number of array accesses which were reported as safe, unsafe
or may-be-unsafe. As expected, we observed that some may-be-
unsafe array accesses were converted into safe or unsafe with
increase in value of K. We show our results in Table 3. In column
1, A2 represents second application of 40 KLOC and C1-C4
represent different clusters of first application A1. Results show
that, the precision increases with larger value of K. Table 3 shows
the percentage improvement in precision(percentage reduction in
may-be-unsafe array access) with respect to K=1 (all paths merged
together). For example, if the warnings reported by K=1 and K= 3
be W1 and W3 respectively, precision improvement cell for K =3
is computed as (W1-W3 / W1) * 100. Similarly, it is computed for
other values of K. For different values of K, it also shows the
analysis time (in minutes).

Table 3. Experimental Results

App LOC Precision

improvement (%)

Analysis time (min)

 K=3 K=10 K=15 K=3 K=10 K=15

A2 40K 0.75 4.01 24.9 1.8 1.9 2

C1 110K 2.86 3.1 3.1 2.1 2.3 2.5

C2 224K 2.07 2.3 6.5 7 7.2 7.8

C3 311K 1.5 4.2 4.2 7.5 8 8.3

C4 2.1M 2.9 4.2 4.4 56.7 58.3 61.7

An important point to note is that there is no significant increase in
the analysis time when value of K is increased. This clearly
highlights the practicality of our approach.

4.3 Comparison with Astrée and Polyspace
A2 (of 40 KLOC) was selected for comparative study of precision
as both tools scaled on this application. We analyzed this
application’s result for AIOB property using Astrée, Polyspace and
our tool with K=15. Results are summarized in Table 4.
Results show that our approach produced more precise results than
Astrée. It demonstrates that while Polyspace uses complex
polyhedral and some other complex relationship inferring

677

algorithms, in practice, our approach is as precise as Polyspace. It
also shows our tool runs much faster than the other two.

Table 4. Comparison Report

Tool May-be-unsafe warnings Time (min)

Astrée 166 21

Polyspace 13 360

Our approach 13 10

5. LIMITATIO&S

1. Precision of our domain is less than DBM domain in certain
cases. Consider this example:
 for (i=0, j=0; i< 10; i++) { sum = sum + arr [j]; j++; }

Assume that an array arr is of size 10. According to our domain,
with K=3 and widening parameter as 3, we will infer that at array
access point the value of i is in the interval [0, 9] and that of j is in
the interval [0, MAX]. On the other hand, using DBM domain,
which is relational domain, relation i-j will be tracked and value of
j will correctly be inferred to be in the interval [0, 9]. Thus, in
such cases, relational domain will be more precise than K-limited
path sensitive interval domain.
2. Due to widening, the effect of K path sets tracked before any
loop gets diluted after the loop. Consider an example shown in
Figure 4. Let K be 2 and the default widening parameter be 3.
Here, division expression is reported as potential division by zero
error because after the loop, g’s range will be considered as [0...20]
at division point. However, K paths are tracked after the loop as
well, concluding the last array access to be safe.

unsigned int a,x,g; int arr[100]; scanf (“%d”, &a); x = 255;
if (a < 10) g =20; else g =0 ;
while(x != 0) { x--; }
if (a < 8) {
 z = t/g; // division expression – range of g is [0..20]
 g = 100; }
if (a >= 50) arr[g] = 40; // Array access - range of g is [0..20]

Figure 4. Example

6. RELATED WORK

Tools Coverity and UNO perform standard interval analysis and
scale to million lines of code but with unsound analysis [13]. These
tools do not track any branching correlation. Frama-C’s value
analysis plug in [5] computes sets of possible values for the
variables in a program; however, it does not track branching
correlations among variables.
Polyspace [8], a commercial tool, performs sound analysis at
different levels of precision which is configurable. At lower
precision level, it performs standard interval domain analysis. And
at higher precision level configuration it uses some complex
algorithms along with complex relational domain and is able to
track some of branching correlation, as done by our approach.
However, its scalability is limited to 100 KLOC [3, 13] while our
approach could run on million lines of code.
Astrée [9, 10] performs sound, precise and scalable analysis for the
family of programs it was designed for. It is scalable because it
does not use complex polyhedral domain (uses only octagon
domain). But as shown through experiments, it becomes less
precise for a significant set of practical scenarios.

Our extension is based on the trace partitioning idea [7] which is
also implemented in Astrée. However, in Astrée its effect to track
branching correlation can be seen by specifying directives in user
code. Our implementation does not require any such modification.

7. CO&CLUSIO&

Using trace partitioning idea from [7], we extended standard
interval domain by introducing path sensitivity and limited the
number of paths to be maintained to K. We have demonstrated
better precision along with scalability by successfully analyzing a
system of 10 MLOC. Through experiments, we observed that the
relationship we are tracking is not tracked by other tools that use
relational domain analysis. We have shown that a configurable K
helps produce precise results with acceptable scalability so as to
make the technique useful for analyzing large industry
applications. Therefore, even in presence of commercial tools like
Polyspace and Astrée, due to better scalability with precision, our
tool chain is successfully used by one of the leading automotive
OEM (Original Equipment Manufacturer) on their large
applications.

8. REFERE&CES

[1] P. Cousot, R. Cousot. Static Determination of Dynamic
Properties of Programs. In proceedings of the 2nd
international symposium on programming, pages 106-130, 13-
15 April 1976, Dunod, Paris.

[2] M. Das. 2000. Unification-based pointer analysis with
directional assignments. In Proceedings of the ACM
SIGPLA7 PLDI ’00. ACM, 35-46.

[3] P. Emanuelsson, U. Nilsson. 2008. A Comparative study of
Industrial static analysis tool. E7TCS. 217, 5-21.

[4] A. Mine. 2001. A New Numerical Abstract Domain Based on
Difference-Bound Matrices. In Proceedings of the 2nd
Symposium PADO’01.Springer-Verlag, London, UK, 155-172.

[5] http://frama-c.com

[6] S. Khare, S. Saraswat and S. Kumar. 2011. Static program
analysis of large embedded code base: an experience. In
Proceedings of the 4th ISEC ’11. ACM, 99-102.

[7] L.Mauborgne, X. Rival. 2005. Trace partitioning in abstract
interpretation based static analyzers. In proceedings of 14th
ESOP’05. Springer-Verlag, Berlin, Heidelberg, 5-20.

[8] Polyspace. http:// www.mathworks.in/products/polyspace/.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D.
Monniaux, X. Rival. 2005.The Astrée Analyzer. In
proceedings of 14th ESOP’05. Springer-Verlag, Berlin,
Heidelberg, 21-30.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D.
Monniaux, X. Rival, D. Monniaux. 2007. Varieties of static
analyzers: A comparison with Astrée. In proceedings of 1st
Symposium TASE’07. Pages 3-20.

[11] TCS Embedded Code Analyzer. http://www.tcs.com/resources
/brochures/Pages/TCS_Embedded_Code_Analyzer.aspx

[12] P. Cousot, R. Cousot. Abstract Interpretation: A unified lattice
model for static analysis of programs by construction or
approximation of fix-points. 1977. In proceedings of 4th ACM
SIGACT-SIGPLAN symposium POPL’77. ACM, 238-252.

[13] C. Bharti. 2012. Survey of array out of bound access checkers
for C code. In Proceedings of the 5th ISEC’12. ACM, 99-102.

[14] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, and
X. Rival. 2009. Why does Astrée scale up? In Journal,
Formal Methods in System Design, 35, 3, 229-264.

[15] B. Gulavani, S. Rajamani. 2006. Counterexample Driven
Refinement for Abstract Interpretation. In proceedings of
TACAS’06, L7CS 3920, 474-488.

678

