
BinGo: Cross-Architecture Cross-OS Binary Search

Mahinthan Chandramohan1, Yinxing Xue1∗, Zhengzi Xu1, Yang Liu1, Chia Yuan Cho2,
and Tan Hee Beng Kuan1

1Nanyang Technological University, Singapore; 2DSO National Laboratories, Singapore

{mahinthan, tslxuey, yangliu, hbktan}@ntu.edu.sg

ABSTRACT

Binary code search has received much attention recently due to its

impactful applications, e.g., plagiarism detection, malware detec-

tion and software vulnerability auditing. However, developing an

effective binary code search tool is challenging due to the gigantic

syntax and structural differences in binaries resulted from different

compilers, architectures and OSs. In this paper, we propose BINGO—

a scalable and robust binary search engine supporting various ar-

chitectures and OSs. The key contribution is a selective inlining

technique to capture the complete function semantics by inlining

relevant library and user-defined functions. In addition, architecture

and OS neutral function filtering is proposed to dramatically reduce

the irrelevant target functions. Besides, we introduce length variant

partial traces to model binary functions in a program structure ag-

nostic fashion. The experimental results show that BINGO can find

semantic similar functions across architecture and OS boundaries,

even with the presence of program structure distortion, in a scalable

manner. Using BINGO, we also discovered a zero-day vulnerability

in Adobe PDF Reader, a COTS binary.

CCS Concepts

•Theory of computation → Program analysis; •Security and

privacy → Vulnerability scanners; •Social and professional top-

ics → Software reverse engineering;

Keywords

Binary Code Searching, Vulnerability Matching

1. INTRODUCTION
Recently, binary code searching has attracted much attention for

its important applications in software engineering and security, e.g.,

software plagiarism detection [28], reverse engineering [8], semantic

recovery [25], malware detection [30] and buggy (vulnerable) code

identification [31, 11] in various software components where the

source code is not available (e.g., legacy applications). We can even

search for zero-day vulnerabilities in proprietary binary by matching

the known vulnerability from open source software.

∗Yinxing Xue is the corresponding author.

Traditional source code search relies on the similarity analysis

of some representations of source code, e.g., approaches based on

token [24], abstract syntax tree (AST) [22] or program dependency

graph (PDG) [18]. All these representations capture the structural

information of the program, and yield accurate results for source

code search. However, code search in binary is much more challeng-

ing due to many factors (e.g., architecture and OS choice, compiler

type, optimization level or even obfuscation technique) and limited

availability of high-level program information. These factors have

a substantial influence on the assembly instructions and their final

layout in the compiled binary executable.

In the literature, various approaches have been proposed to detect

the similar binary code by using static or dynamic analysis. Static

analysis [11, 35, 28, 31, 37] relies on the syntactical and structural

information of binaries, especially control-flow structures (i.e., orga-

nization of basic blocks within a function) to perform the matching.

For example, TRACY [11] is a syntax based function matching tech-

nique that uses similarity by decomposition, COP [28] is a plagiarism

detection tool that combines program semantics with longest com-

mon subsequence based fuzzy matching and [31] is a vulnerability

matching tool that supports cross-architecture analysis via the in-

variants of vulnerability signatures. Most recently, DISCOVRE [37]

is proposed to find bugs in binaries across-architectures in a scalable

manner, where it uses two filters (numeric and structural) to quickly

locate the functions that are similar to the signature function. Apart

from static analysis, dynamic approaches [23, 36, 21, 15, 16] inspect

the invariants of input-output or intermediate values of program at

runtime to check the equivalence of binary programs. For example,

BLEX [16] is the latest dynamic function matching tool that uses

several semantic features obtained during function execution (e.g.,

values read from (written to) the program heap) in the matching

process.

To better understand the existing approaches, we identify three

desired properties for an accurate yet scalable cross-architecture and

cross-OS binary search tool.

• P1. Resilient to the syntax and structural gaps introduced due to

architecture, OS and compiler differences.

• P2. Accurate by considering the complete function semantics.

• P3. Scalable to large size real world binaries.

Unfortunately, none of the existing techniques can achieve all the

desired properties above. The structural information used by the

static approaches, e.g., basic-block structures used in [28, 31, 37]

and fixed length tracelet in [11], fail P1. Most static analysis tech-

niques [11, 31, 37] cannot satisfy P2 as they ignore the semantics of

relevant library and user-defined function invocations in the match-

ing process. Finally, scalability (P3) is a real challenge in semantic

binary matching [31, 28, 16], where, for example, COP took half

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950350

678

a day to find target functions in Firefox for a few signature func-

tions [28]. The details are further elaborated in §2.2.

In this paper, we propose a binary search engine, named BINGO,

which performs semantic matching by combining a set of key tech-

niques to address the challenges above. Given a binary function,

BINGO first inlines relevant libraries and user-defined functions in

order to capture the complete semantics of the function (for P2), then

shortlists the candidate target functions using an architecture and

OS neutral filtering technique (for P3), and finally extracts length

variant partial traces from the candidate target functions as function

models (for P1) and performs function similarity matching using

machine learning techniques.

Technically, first, to recover the complete semantics from the

functions under investigation, we propose a selective inlining tech-

nique, where the callee (both libraries and user-defined) functions

are inlined into the caller such that the complete function semantics

are captured [38] (§3). To avoid code size explosion, we selec-

tively inline the callee functions based on the invocation dependency

patterns, which differs from the traditional compiler inlining opti-

mization techniques for maximum speed or minimum size [10]. To

our best knowledge, this work is the first attempt towards investigat-

ing selective inlining in recovering binary semantics.

Second, to improve the scalability of our approach, we propose an

architecture and OS neutral filtering technique that narrows down

the search space by shortlisting the candidate target functions for

binary semantic matching (§4). Next, to overcome the challenges

arise due to basic-block structure distortion (§5), we generate func-

tion models, which are agnostic to the underlying program structure,

via the length variant partial traces1. To this end, for each function,

partial traces of length 1 to k are extracted to form the function

model such that it represents the function at various granularity

levels. Here, we also take measure to minimize the effects of infea-

sible paths and compiler specific code in calculating the function

similarity scores.

Finally, semantic features are extracted from the function models

of candidate target functions, for function similarity scoring, where

semantic features capture the machine state transitions in the form

of input-output pairs (§5). We evaluate BINGO on a number of

real-world binaries containing hundreds of thousands of functions.

The experimental results show that BINGO can effectively perform

cross-architecture and cross-OS binary code search on these binaries,

where we demonstrate that BINGO outperforms the state-of-the-art

binary matching tools such as BINDIFF [17] and TRACY [11]. Further,

we also show that recent techniques, such as [31] and [37], fail in

case of program structure distortion, while BINGO can handle such

cases swiftly. Last but not least, using BINGO, we discovered a

zero-day vulnerability (CVE-2016-0933) in the Adobe PDF Reader.

Key contributions. This work makes the following contributions:

• We propose a selective inlining algorithm to capture the complete

semantic of the binary functions.

• We introduce an architecture and OS neutral function filtering

process that helps narrow down the target function search space.

• We leverage on length variant partial traces to model the function

at various granularity levels that is agnostic to underlying program

structures.

• We empirically demonstrate that BINGO outperforms the state-

of-the-art binary function matching tools, and also report the

zero-day vulnerability discovered from Adobe PDF Reader.

1A partial trace refers to a sequence of basic-blocks that lie along
an execution path in the CFG [11].

(a) (b)

Inlined memcpy function

call memcpy

Figure 1: Code segment responsible for Heartbleed vulnera-

bility (CVE-2014-0160) appeared as in the binary (a) compiled

with gcc, and (b) compiled with mingw

2. BACKGROUND AND OVERVIEW
In this section, we provide a motivating example that emphasizes

on the need for complete semantics analysis of functions and neces-

sity to have a function model that is agnostic to underlying program

structure. Then, we explain the basic idea of our proposed solution

and sketch the system overview.

2.1 Motivating Example
A binary program consists of a number of functions, where each

function is a (directed) graph of basic blocks, i.e., CFG (control-flow

graph). The instructions in a function are systematically grouped

into several basic blocks, which are considered as the building

blocks of binary program and this representation is used by many

static binary analysis tools.

Interestingly, the same source code may have different basic-

block structures after compilation. Taking the infamous heartbleed

vulnerability (CVE-2014-0160) for example, Fig. 1(a) and (b) show

the basic-block structures of the same source code compiled with

gcc and mingw, respectively2. Apparently, these two binary code

segments share no identical basic-block structures — with gcc,

the vulnerable code is represented as a single basic block; with

mingw, represented as several basic blocks. A detailed inspection

suggests that the library function memcpy is inlined in mingw

version; while in gcc, it is not. The large syntactic and program

structural differences between the two binaries pose the biggest

challenge for the existing binary code search tools.

2.2 Challenges for Existing Approaches
Syntax is the most direct information usable for binary match-

ing. Most of existing approaches rely on syntax information have

attempted to use instruction patterns [20, 27, 35, 11]. As there is

no consistent low-level syntax representation (i.e., assembly in-

structions) across architectures, these approaches fail for cross-

architecture analysis. To make the matching resilient to syntax

differences in binaries, semantics-based matching has been pro-

posed [28, 31], in which the machine state transition represents the

semantics of a binary. Still, three challenges are faced in semantics-

based matching.

C1: The challenge of using program structural properties. Ex-

isting approaches [28, 31] assume that basic-block structure is pre-

2Ignore the contents of the basic-blocks as this diagram is to illus-
trate the program structure distortion arise due to compilation.

679

Selective
Inlining

Filtering

Partial Trace
Generation

Function Model
Generation

Similarity
Matching

Binary

Ranks

Pre-processing

Trace
Pruning

Figure 2: BINGO system architecture

served across binaries, thus the matching should be basic-block

centric. Based on this, semantic features extracted from the signa-

ture function at basic-block level are compared with the counterparts

extracted from target functions in a pairwise way. In practise, the

assumption is too restrictive to be applied for real-world cases. The

following quote from [31] clearly sums up the problem in such as-

sumption: "Our metric is sensitive to the CFG and the segmentation

of the basic block, which we found to be potentially problematic

especially for smaller functions." For example, the basic block in

Fig. 1(a) needs to be matched with several basic blocks in Fig. 1(b).

C2. The challenge of covering the complete function semantics.

Most of the existing static techniques consider functions in isolation,

i.e., semantics of callee functions are not considered as part of the

caller’s semantics. This leads to partial semantics problem, espe-

cially when the programmer makes the most commonly used code

segment as an independent function or implements her own version

of the standard C library functions (e.g., Adobe Reader has its own

malloc implementation). To address this, one can blindly inline

all the callee functions (e.g., in [38], all the user-defined functions

are inlined). Unfortunately, this approach does not work in practise

due to two main reasons: (1) heavy inlining may lead to code size

explosion [10], which is not scalable to real-world binary analysis,

and (2) not all the callee functions are closely related to the caller

function in-terms of functionality. For example, memcpy is not

inlined in Fig. 1(a) but it is in Fig. 1(b). Thus, memcpy needs to be

inlined for matching with other semantically relevant functions.

C3. The challenge of scalable searching in large real-world bi-

naries. Syntax based techniques, in general, are scalable [11]. How-

ever, as discussed earlier, they fail on cross-architecture analysis.

To address this problem, semantics based techniques are preferred,

however, extracting semantic features incur heavy overhead and

not scalable. Therefore, to facilitate scalable semantic matching, an

efficient, and architecture, OS and compiler neutral function filtering

step is required. However, exiting approaches focus only on the

efficiency aspect of the filter. For example, in [37], only program

structural features, such as number of basic blocks, are used as filters

to speed up. However, as shown in Fig. 1, such features are not

robust enough for cross-architecture, OS and compiler analysis.

2.3 Proposed Solution and System Overview
We propose BINGO as a scalable binary search engine, where

given a binary function, BINGO will return the functions from the

target binary, ranked based on their semantic similarity.

Fig. 2 shows the work flow of BINGO. First, given a signature

function, BINGO will pre-process the binaries, i.e., disassemble

and build CFGs from the functions, for further analysis. Next, for

each function, in the target binaries, closely related library and

other user-defined functions are identified and inlined (§3). Then

from these inlined target functions, a list of candidate functions

that are similar to the signature function are shortlisted using three

filters, which consider different aspects of the program semantics

(§4). Next, from the signature and the shortlisted target functions,

length variant partial traces are generated (§5.1), which are then

grouped to form the function models (§5.4). During the partial

trace generation phase, trace pruning is conducted to remove the

irrelevant and infeasible partial traces from the analysis (§5.3). After

that, semantic features are extracted from the function models (§5.2),

which are later used for semantic similarity matching (§5.4). Finally,

based on the similarity scores obtained, BINGO returns the target

functions that are semantically similar to the signature function in a

ranked order.

To sum up, to address the syntax differences of instructions, we

lift the low-level assembly instructions into a corresponding inter-

mediate representation (IR) to facilitate cross-architecture analysis.

To mitigate C1 (e.g., single basic-block in the signature function

matching to several basic-blocks in the target function in Fig. 1),

we borrow the idea of tracelet used in TRACY [11]. Different from

the original approach that uses a fixed length of tracelet, we use

length variant partial traces. Next, to overcome C2 (e.g., whether to

inline memcpy in Fig. 1(a)), we propose a selective inlining strategy

to strike a balance between the needed contextual semantics and

the overheads due to inlining. Finally, to address C3, we adopt

three filters considering different aspects of the semantics to identify

similar functions.

3. SELECTIVE INLINING
Inlining is a compiler technique to optimize the binaries for max-

imum speed and/or minimum size [10]. This section presents our

selective inlining technique, which has a different goal and strategy

compared with compilation process.

3.1 Function Invocation Patterns
In order to inline relevant functions, we use the function invo-

cation patterns to guide the inlining decision. Based on our study,

six commonly-observed invocation patterns are identified and sum-

marised in Fig. 3. Incoming (outgoing) edges in Fig. 3 represent the

incoming (outgoing) calls to (from) the function. Here, we elaborate

the six patterns as follows.

Case 1: Fig. 3(a) depicts the direct invocation of standard C library

function(s) by the caller function under investigation. To recover

the semantics, it is essential to understand the semantics of called li-

brary function(s), hence, the library function is inlined into the caller

function. Currently, we only consider the most common standard C

library functions from both Linux (libc) and Windows (msvcrt)

for inlining.

Case 2: Fig. 3(b) depicts the case of a recursive relationship be-

tween the caller and the UD (user-defined) callee function f . Hence,

we inline f into its caller. Note that the recursive functions are,

unlike in compilers, inlined only once. For example, gcc has a

default inlining depth of 8 for recursive functions.

Case 3: Fig. 3(c) depicts the common pattern of a utility function —

e.g., the UD callee function f is called by many other UD functions,

while f calls several library functions and a very few (or zero) UD

functions. This suggests that f is behaving as a utility function, as

f has some semantics that is commonly needed by other functions,

and hence f is likely to be inlined.

Case 4: The UD callee function f in Fig. 3(d) is a variant of 3(c),

where it has several references to library functions and zero refer-

ence to other UD functions. Such zero reference to UD functions

makes f an ideal candidate for inlining. Note that f is inlined as the

majority (50% or more) of its invoked library functions are not of

termination type. Hence, we can safely assume that f is doing much

more than just facilitating program termination. Here, termination

type refers to the library functions that leads to exception or program

680

Caller
UD

Callee

Libcall

Libcall

Libcall

Libcall

Libcall

Termination

Libcall

Caller UD

Callee
Caller

UD

Callee
Caller

UD

Callee

Libcall

Termination

Libcall

Termination

Caller
UD

Callee
Caller Libcall

Figure 3: Commonly observed function invocation patterns, where ‘UD’ denotes user-defined callee function. Here, all the incoming

and outgoing edges (or calls) represent user-defined functions, unless specified as Libcall or Termination Libcall next to them

Algorithm 1: Selective inlining algorithm

Data: caller F , set of callee functions C, set of termination lib. func. Lt,

set of inlining lib. func. Ls

Result: inlined function FI

1 Algorithm SelectiveInline(F, C,Ls,Lt)

2 foreach function f in C do
// inline selected library functions

3 if f ∈ Ls then

4 FI ←− F.inline(f)

5 return FI

6 else if f /∈ Ls && isLibCall(f) then

7 return null

// for all other user-defined callee functions

8 If
u ←− getIncomingCalls(f)

9 Of
u, O

f

l
←− getOutgoingCalls(f)

10 Of
u ←− Of

u\F // remove recursion

11 if |Of
u| == 0 && (|Of

l
∩ Ls| − |O

f

l
∩ Lt|) 6 0 then

12 return null

13 else

14 α = λe/(λe + λa) where λa = |If
u |, λe = |Of

u|
// lower the α, function f is likely to be inlined

15 if α > threshold t && notRecursive(F, f) then

16 return null

17 else

18 FI ←− F.inline(f)

19 if |Of
u| > 0 then

20 SelectiveInline(f,Of
u,Ls,Lt)

21 else

22 return FI

23 return FI

termination (e.g., exit and abort).

Case 5: In Fig. 3(e), The UD callee function f is a variant of 3(d),

which has only references to library functions. However, all the

invoked library functions in f are of termination type. Hence, we

consider as a function that facilitates only program termination (or

exception handling) and its semantics are of little interest to the

caller, which should not be inlined.

Case 6: Fig 3(f) depicts the scenario of a dispatcher function where

the UD function f is called by (i.e., incoming calls) many other UD

functions and f itself calls many other UD and library functions.

In this case, f appears to be a dispatcher function without much

unique semantics, and hence, in most cases, not inlined.

3.2 Inline Decision Algorithm
From the discussions above, in Fig. 3 (a), (b), (d) and (e) there

is a clear criteria in deciding whether a callee should be inlined or

not. However, for Fig. 3 (c) and (f), the most commonly observed

invocation patterns, a systematic decision making procedure is still

needed. To identify the cases of commonly-used functions (i.e.,

utility functions) to be inlined, we borrow the coupling concept

from the software quality and architecture recovery community.

In software metrics, the coupling between two software packages

is measured by the dependency between them, e.g., the software

package instability metrics [29]. In this work, similarly, we measure

the function coupling by the function coupling score.

Memory

manipulation

Level 0

Level 1

Level 2

String

String

arithmetic

String

manipulation

wcslen strcpy

Memory

allocation

Memory

malloc, HeapAlloc memcpy

Figure 4: Library function abstraction levels

Definition 1. Function Coupling Score refers to the complexity

of the invocations involved in a function and is calculated as α =
λe/(λe + λa), where λa represents the number of UD functions

that refers to the callee, and λe represents the number of UD func-

tions that is referred to by the callee.

The lower the value of α, more likely the callee should be inlined.

The rationale is that the low function coupling score implies the high

independency of the functionality — the high possibility of being

utility function. When calculating λe, we only consider the UD

functions invoked by the callee, not the library functions. As men-

tioned in case 3 (Fig. 3(c)) and 6 (Fig. 3(f)), it is the invocations of

UD functions that indicate the behavior of the callee as a dispatcher

or a utility function, not the invocations of library functions.

The proposed selective inlining process is presented in Algo-

rithm 1. As first, if the callee is one of the selected library functions

(e.g., memcpy and strlen as in case 1), it is directly inlined into

the caller (lines 3-5) and rest of the library functions are ignored.

Next, the UD functions that refer to the callee is denoted as Ifu ;

while the library and UD functions referred to by the callee are iden-

tified and denoted as Of

l and Of
u, respectively at line 8-9. Callee

that invokes only library functions that are of termination type is

not inlined (lines 11-12). Finally, for the rest of the callee functions,

the function coupling score is calculated and if it is below some

threshold value t, the callee is inlined (lines 13-24). This recursive

procedure is continued until all the related functions are analysed.

In our preliminary study on BusyBox compiled for x86 32bit, we

identify that 14 UD utility functions (Case 3) have more than 50 in-

coming calls with 1 outgoing call, while 12 UD dispatcher functions

(Case 6) have more than 50 outgoing call with just 1 incoming call.

Similarly, in BusyBox compiled for ARM, we identify 15 such UD

utility functions but only 4 UD dispatcher functions. This clearly

differentiates the function invocation patterns depicted in Fig. 3(c)

(Case 3) and Fig. 3(f) (Case 6).

4. FUNCTION FILTERING
To deal with a huge number of target functions in real-world

binaries, an effective filtering process can remove irrelevant target

functions before the expensive matching step. BINGO leverages on

three types of filters, starting from the specific one (fine-grained)

to the most general one (coarse-grained), to shortlist the candidate

target functions.

Filter 1: The first type of filters looks for identical library call in-

vocations in the target functions that are present in the signature

function. If such library function invocations are found, the cor-

responding targets functions are considered good candidates for

681

further processing. This is due to the fact that the library call in-

vocations provide an important partial semantics of the function.

However, this filter is OS dependent and fails to support library

calls that have different names yet with similar functionality (e.g.,

memcpy and memmove). This limitation leads to our next filter.

Filter 2: To address the problem in exact library call matching,

we consider the library call operation types, where we match the

high-level functionality of the library calls. As shown in Fig. 4,

there are several ways of abstracting the functionality of a library

call. Abstraction level 0 gives the base operation type (e.g., string

operation), while level 1 gives a more concrete but general abstrac-

tion supported across all OSs. For example, strcpy and strcat

can be mapped to string manipulation operation. In this work, we

adopt abstraction level 1 to summarize the library function behav-

ior. Further, Filter 2 is OS neutral, where functions that perform

similar task but with different names across OSs are mapped to the

same operation type. For example, malloc (Windows/Linux) and

HeapAlloc (Windows) are mapped to memory allocation oper-

ation type as shown in Fig. 4. Unfortunately, library calls can be

inlined by the compiler or programmers might implement the same

functionality in user-defined functions. Hence, relying on library

call names or the operation types might not be sufficient to identify

candidate target functions. To address this, we propose Filter 3.

Filter 3: The third filter is designed to capture the instruction type

similarities between the signature and target functions. Here, in-

struction type refers to a high-level operation carried out by an

instruction [26]. To this end, instructions are categorized into 14 and

8 instruction types for Intel and ARM architectures, respectively.

For example, mov instruction is mapped to data movement instruc-

tion type while push is mapped to stack operation. In addition,

instruction types also support cross-architecture function match-

ing, where assembly instructions from ARM and Intel architectures

are mapped to the same instruction type even though they are not

identical at the instruction level, e.g., call (Intel) and bl (ARM)

instructions are mapped to function invocation instruction type.

Filtering Algorithm Filter 1 is specific and OS dependent. Filter 2

and 3 are general and cross-OS and cross-architecture. Our filtering

process is shown in Algorithm 2. At lines 7, 9 and 11, we use

Jaccard distance [9] to measure the similarity between the signature

and target functions in terms of each filter, i.e., their similarity

in identical library calls, in library call operation types, and in

instruction types. Following the design of applying the filters one by

one from the most specific one to the general one, we set the weights

(w1 > w2 > w3 > 0) to the similarities achieved by Filter 1 to 3.

At line 12, we sort the candidate functions according to the overall

similarity on three filters (calculated at line 10). Finally, at line 13,

we get the top N of the sorting results and use them for function

model matching. Note that our filtering process is performed after

selective inlining step, hence we keep a mapping from the candidate

function to its invoked libraries in order to apply the filters.

5. SCALABLE FUNCTION MATCHING
In BINGO, similarity matching is done at the granularity of func-

tion and/or sub-function levels. To this end, we propose function

models consisting of length variant partial traces that are more flex-

ible, in terms of comparison granularity, compared to basic-block

centric function models [31, 28]. Then, from these partial traces we

extract symbolic expressions and based on the I/O samples generated

from these symbolic expressions, we match the partial traces inside

two functions. To reduce the noise, we remove the partial traces

Algorithm 2: Function Filtering Algorithm

Data: signature function f , set of target functions T
Result: set of candidate target functions Tc

1 Algorithm FunFilter()

2 S ←− {} // store similarity score

3 Get the set of library call names Lf , library call operation typesOf

and function instruction type If from the signature function f .

4 foreach function t in T do

5 st ←− ∅
6 Lt ←− getLibFuncNameList(t) // Filter 1

7 st += w1 ∗ getLibFuncNameJaccardSim(Lf ,Lt)
8 Ot ←− getLibFuncOpType(Lt) // Filter 2

9 st += w2 ∗ getLibFuncOpTypeJaccardSim(Of ,Ot)
10 It ←− getFuncInstrType(t) // Filter 3

11 st += w3 ∗ getFuncInstrTypeJaccardSim(If , It)

12 S[t] = st

13 Ss ←− sortCanditTargetFunc(S) // sort target functions

14 Tc ←− topNTargetFunc(Ss,N)
15 return Tc

BB0
push
mov
test

jnz BB3

BB1
cmp

jb BB3

BB2
mov
ret

BB3
push
mov
ret

3-length
 partial trace

2-length
 partial trace

push
mov
test
cmp
mov
ret

push
mov
test
cmp
push
mov
ret

BB0,BB1,BB2

BB0,BB1,BB3

push
mov
test
cmp

cmp
push
mov
ret

push
mov
test
push
mov
ret

cmp
mov
ret

BB0,BB1

BB1,BB2

BB0,BB3

BB1,BB3

(a) (b) (c)

Figure 5: A sample CFG (a) and the extracted length-3 (b) and

length-2 (c) partial traces

that are infeasible to reach (via solving the symbolic expressions)

or are specific to compilers. Lastly, we apply Jaccard containment

similarity [3] to measure the similarity score of two function models.

5.1 Length Variant Partial Trace Extraction
Our partial trace extraction is based on the technique proposed

by David et. al. [11]. We omit the algorithm and explain the

results using one example (please refer to [11] for more information

on partial trace extraction). Fig. 5 depicts a sample CFG of a

function and the extracted length-2 and length-3 partial traces. We

can observe that the original control-flow instructions (jnb, and

jb) are omitted as the flow of execution is already determined. Note

that the feasibility of the flow of executions is not considered at this

step. In §5.3.1, we show how the partial traces that are infeasible to

reach are identified and pruned.

5.2 Semantic Feature Extraction
Similar to [31] and [28], a set of symbolic formulas (called, sym-

bolic expressions) are extracted from each partial trace, where they

capture the effects of executing the partial trace on the machine state.

Here, machine state is characterized by a 3-tuple 〈mem, reg, flag〉
denoting the memory mem, general-purpose registers reg and the

condition-code flags flag [31, 28]. For example, if a machine state,

before executing a partial trace, is given by X = 〈mem, reg, flag〉,
then the machine state immediately after execution is given by

X ′ = 〈mem′, reg′, f lag′〉. Here, X and X ′ are referred to as pre-

and post-state, respectively, and the symbolic expressions capture

the relationship between these pre and post machine states.

In order to measure the similarity between a signature and a tar-

get function, one can use a constraint solver, such as Z3 [12], to

calculate the semantic equivalence between the symbolic expres-

sions extracted from the signature and target functions. However,

using a constraint solver to measure semantic equivalence is very

expensive [28] and not scalable for real-world cases, considering

the complexity of pair-wise matching between the signature and a

682

mov eax, gs : 20

mov [ebp− 12], eax

xor eax, eax

compiler specific code in function prologue

. . .

mov eax, [ebp− 12]

xor eax, gs : 20

jne .L5

compiler specific code in function epilogue

Figure 6: Sample code generated by gcc to enable Stack

Smashing Protector (SSP) compiler feature

possible huge number of target functions. To tackle the scalability

issue, in [31], a machine learning technique is applied. Specifically,

Input/Output (or I/O) samples are randomly generated from the

symbolic expressions and are fed into the machine learning mod-

ule to find semantically similar functions. Here, I/O samples are

generated by assigning concrete values to the pre-state variables

and obtaining the corresponding output values (concrete) for the

post-state variables in the symbolic expressions.

One of the drawbacks in randomly generating I/O samples is that

the dependency among symbolic expressions are ignored [31]. For

example, consider the following two symbolic expressions extracted

from a single partial trace:

zf
′ ≡ (edx < 2) ∧ (edx > 0) (1)

ecx
′ ≡ edx+ 4 (2)

The symbolic expression in Eq. 1 has one pre-state (i.e., edx) and

one post-state (i.e., zf′) variables, on the other hand, the symbolic

expression in Eq. 2 has the same pre-state variable (i.e., edx) but a

different post-state variable (i.e., ecx′). Therefore, we can conclude

that these two symbolic expressions are mutually dependent through

a common pre-state variable edx. However, in randomly generated

I/O samples (as in [31]), edx can be assigned to two different values

in each symbolic expression, which ignores the dependency and

may lead to inaccurate semantics.

In the above example, to satisfy the symbolic expressions in Eq. 1

and Eq. 2, the pre-state state variable edx needs to be set to 1, which

makes the post-state variables zf
′ to be true and ecx

′ to be 5.

From this example, it is evident that constraint solving is required

to find appropriate values for pre- and post-state variables, as it

considers all the symbolic expressions from the same partial trace

into consideration when arriving at the solution. To this end, we

use Z3 constraint solver to generate the I/O samples. Generating

I/O samples via Z3 is much more scalable than using it to prove the

equivalence of two symbolic expressions — I/O sample generation

is a one-time job for each partial trace, while equivalence checking

(as in [28]) uses the constraint solver every single time a partial trace

is compared with another one. In many cases, there are more than

one concrete value for any pre- or post-state variable that satisfy

all the symbolic expressions. Thus, we set an upper limit N for

possible values. According to the study in [16], N is set to 3 in our

design.

5.3 Trace Pruning
In BINGO, we adopt two trace pruning methods to reduce the

noise in the results and also to speed up the matching process.

5.3.1 Infeasible Partial Trace Pruning

BINGO is a static analysis based tool and therefore, it is difficult

(or even impossible) to identify all the infeasible partial traces in

practice. In BINGO, we prune the obvious infeasible partial traces

with the help of the constraint solver. That is, given the symbolic

expressions, extracted from a partial trace, we rely on the constraint

solver to determine whether all the constraints can be satisfied. As

3

7

4 65

1

2

9

8

a

c

b

d

f

i

h

e g

(a) (b)

Figure 7: A sample signature (a) and target (b) functions,

where the lines indicate the matched partial traces and the

nodes refer to the basic-blocks.

we use constraint solver to generate the I/O samples (§5.2), we need

no additional effort to identify the infeasible partial traces — if the

constraint solver is unable to find appropriate concrete values for the

pre- and post-state variables, the relevant partial trace is considered

infeasible.

We also observe that some partial traces, for which the solver is

able to generate models (or I/O samples), might be infeasible during

actual execution, as the feasibility of their paths depends on various

other factors, such as global variables, values in the heap and other

dynamic data, that are beyond the scope of our analysis. Further, in

general, infeasible path elimination (or detection) by itself is a hard

problem [5]. However, compared with the static analysis solutions

proposed in the literature [11, 32, 31], this work makes an attempt

to reduce the search candidates using a pruning technique.

5.3.2 Compiler Specific Code Pruning

Based on the compilation option selected, the compiler might

include additional code (i.e., code that is not originally written by the

programmer) into the compiled binary. For example, there are more

than 150 compiler options available for both gcc and MS Visual

Studio. Some of these options result in adding extra code into the

binary (e.g., Stack Smashing Protector or SSP shown in

Fig. 6). The code segments in the function prologue and epilogue in

Fig. 6 ensure the stack integrity is not violated. These code segments

are automatically included by the gcc compiler when stack smash

protection is enabled.

In similarity matching between the signature and target functions,

the additional compiler specific code can introduce noise by chang-

ing the code structures and diluting the similar parts, especially

when the functions are small. Thus, it is necessary to identify and

remove the compiler specific code from the partial traces. However,

directly removing some code from a partial trace might lead to in-

correct semantic features, as these features are very sensitive to the

underlying code semantics. To this end, we propose a conservative

approach to address this problem by generalizing the compiler spe-

cific code into some patterns and systematically pruning the partial

traces that contain these patterns. That is, instead of removing the

compiler specific code from a partial trace, which is error prone,

we just remove the partial trace itself if the compiler specific code

pattern accounts for the majority (50% or more) of the code.

5.4 Function Matching
In BINGO, we leverage on length variant partial traces to model

the functions. We generate partial traces with three different lengths

(i.e., k = 1, 2 and 3) from each function, all of which collectively

constitute the function model. For example, the function models

generated from the signature (Msig) and target (Mtar) functions

shown in Fig. 7 are as follows:

Msig : {〈1〉, 〈2〉, . . . , 〈1, 2〉, 〈2, 5〉, . . . , 〈1, 2, 4〉, 〈2, 4, 7〉, . . .}

683

Mtar : {〈c〉, 〈b〉, . . . , 〈a, b〉, 〈b, c〉, . . . , 〈a, b, c〉, 〈b, c, f〉, . . .}

In BINGO, we support function model similarity matching in terms

of n-to-m, 1-to-n, n-to-1 and 1-to-1 partial trace matching across

signature and target functions, mitigating the impact of program

structural difference.

n-to-m Partial traces of length-n (n ∈ Z>1) generated from the

signature function are matched against the partial traces of

length-m (m ∈ Z>1) generated from the target function. In

Fig. 7, partial traces 〈3, 6, 8〉 and 〈d, g〉 are in 3-to-2 match-

ing.

1-to-n Basic-blocks (partial trace of length 1) in the signature

function are matched against the partial traces of length-n
(n ∈ Z>1) generated from the target function. In Fig. 7, par-

tial traces 〈1〉 and 〈5〉 are matched with 〈a, b〉 and 〈f, h, i〉,
respectively.

n-to-1 Partial traces of length-n (n ∈ Z>1) generated from the

signature function are matched against the basic-blocks in the

target function. In Fig. 7, partial trace 〈4, 7, 9〉 is matched

with 〈e〉.

1-to-1 Basic-blocks in the signature function are matched against

Basic-blocks in the target function. In Fig. 7, partial trace 〈2〉
is matched with 〈c〉.

1-to-n matching addresses the issue of basic-block splitting —

a single basic block in the signature function is split into several

smaller basic blocks in the target function. Similarly, n-to-1 match-

ing addresses the basic-block merging problem. In tracelet modeling

[11], authors recommended that both the signature and target should

be of the same size (i.e., k = 3), and hence only n-to-n match-

ing is performed. In [31] and [28], pairwise comparison of single

basic-block (i.e., 1-to-1 matching) is performed as an initial step to

shortlist the candidate target functions. In contrast, in BINGO, all the

above 4 types of function matchings are performed to cover all possi-

ble basic-block structure variances that arise due to architecture, OS

and compiler differences. Finally, considering the function model as

a bag of partiral traces, Jaccard containment similarity [3] is used to

measure the similarity score between two different function models,

and is defined below:

sim(Msig,Mtar) =
Msig

⋂
Mtar

Msig

(3)

where Msig and Mtar refer to function models generated from

signature and target functions, respectively.

6. IMPLEMENTATION
In BINGO, we use IDA Pro [2] to disassemble and generate CFGs

from the functions in the binaries. Partial traces are generated from

the function CFGs, using an IDA Pro plugin, where they are of three

different lengths (length-1, 2 and 3). Finally, to extract semantic

features, similar to [31] and [28], we lift the low-level assembly

instructions to an architecture and OS independent intermediate

language, REIL [14]. Based on our initial experiments, we set the

function coupling score α to 0.01 in the selective inlining algorithm

(Algorithm 1). Similarly, filter weights w1 (for Filter 1), w2 (for

Filter 2) and w3 (for Filter 3) are set to 1.0, 0.8 and 0.5, respectively

in Algorithm 2. All the experiments were conducted on a machine

with Intel Core i7-4702MQ@2.2GHz with 32GB DDR3-RAM.

7. EXPERIMENTAL RESULTS
Through our experiments, we aim at answering four research

questions (RQs) categorized into three major topics, namely robust-

ness (RQ1 and RQ2), application (RQ3) and scalability (RQ4):

0

0.1

0.2

0.3

0.4

0.5

0.6

%
 o

f
fu

cn
ti

o
n

s
ra

n
k

e
d

 #
1

Before inlining

After inlinig

Figure 8: Percentage of functions ranked #1 in cross-

architecture function matching before/after selective inlining

RQ1. How robust is BINGO in detecting semantically equivalent

functions across architectures and compilers with code opti-

mization?

RQ2. How robust is BINGO in identifying semantically similar func-

tions, across OS, in wild binary executables?

RQ3. What are the key real-world applications of BINGO?

RQ4. How scalable is BINGO?

In RQ1, we evaluate the selective inlining algorithm to show its

effectiveness. In RQ2, we compare BINGO with BINDIFF [17] and

TRACY [11], indirectly showing the merits of using length vari-

ant partial traces in modelling functions. In RQ3, we evaluate

BINGO in finding real-world vulnerabilities and compare it against

discovRE [37] and [31]. Finally, in RQ4, we demonstrate the per-

formance of BINGO by the virtue of the proposed function filtering.

7.1 Robustness
The robustness of BINGO lies in (1) matching semantically equiv-

alent functions, and (2) matching semantically similar functions.

RQ1 falls under criteria one as we aim to match all functions in

binary A to all the functions in binary B, where they both stem

from the same source code (i.e., syntactically identical at the source

code level) but compiled for different architectures using different

compilers and code optimization options. RQ2 focuses more on

finding semantically similar functions across binaries that do not

stem from the same source code (i.e., syntactically different even at

the source-code level with different programming style and coding

conventions). Through answering RQ1 and RQ2, we evaluate how

good for BINGO to be a search engine that find wild binary exe-

cutables that share no source-code but perform semantically similar

operations.

7.1.1 Answer to RQ1: Cross-architecture analysis.

We conduct two experiments. First experiment is to match all

functions in coreutils binaries compiled for one architecture

(i.e., x86 32-bit, x86 64-bit and ARM) to the semantically equivalent

functions in binaries compiled for another architecture. For exam-

ple, binaries compiled for ARM are matched against the binaries

compiled for x86 32-bit and x86 64-bit architectures, and vice versa.

In all three architectures, the compilation uses gcc (v4.8.2) and

clang (v3.0) with the optimization level O2 (default settings in

many Linux distributions).

Fig. 8 summarizes the average results (before and after selective

inlining) obtained for coreutils binaries, where we report the

percentage of functions ranked one (i.e., best match). In the plot,

the bar G64-G32 (after inlining) should be read as, when functions

compiled, using gcc, for x86 64-bit architecture are used as sig-

nature, around 55% of the functions compiled, using gcc, for x86

32-bit architecture achieve rank one. It is observed that when ARM

684

Table 1: Total number of functions selectively inlined in

coreutils binaries compiled using gcc and clang for ARM,

x86 32-bit and 64-bit architectures.

ARM C64 G64 C32 G32

Total functions 27,820 23,782 24,489 24,002 24,792

Inlined functions 1,620 776 1,002 823 1,188

Table 2: Percentage of functions ranked #1 in intra-compiler

(x86 32-bit) comparison. Here, G and G’ represent gcc v4.8.3

and v4.6 compilers, respectively.
G0 G1 G2 G3

G’0 0.43 0.36 0.36 0.27

G’1 0.37 0.46 0.48 0.36

G’2 0.4 0.44 0.52 0.41

G’3 0.4 0.44 0.49 0.49

G’0 G’1 G’2 G’3

G0 0.44 0.4 0.41 0.42

G1 0.38 0.47 0.48 0.45

G2 0.4 0.49 0.52 0.5

G3 0.32 0.39 0.43 0.52

binary functions are used as signatures, the overall results consider-

ably degrade — only 18% of the functions are ranked one compare

to x86 32-bit and 64-bit architectures, where it is around 41%. We

also notice that matches (after inlining) between binaries compiled

for ARM and x86 64-bit yield higher ranking compared to ARM

and x86 32-bit binaries. The rationale is that ARM and x86 64-bit

architectures are register intensive compared to x86 32-bit, where

there are only 8 general-purpose registers in x86 32-bit architecture

while there are 16 in 64-bit.

Considering the fact that coreutils binaries are relatively

small with around 250 functions (on average) per binary, we con-

duct the second experiment using BusyBox (v1.21.1) that contains

2,410 functions. We observe that the obtained results are compara-

ble with the results of coreutils binaries — on average 41.3%

of the functions are ranked one in BusyBox while it is 35% for

coreutils binaries across 16 experiments shown in Fig. 8. This

is an improvement of 27.5% over the accuracy achieved by [31]

for BusyBox. However, for top 10 matches (i.e., ranks 1-10),

coreutils binaries achieve better results than BusyBox (78.4%

vs. 67%). This result might be due to the number of function

comparisons performed in each binary — in BusyBox, a function

needs to be compared against, on average, 3,250 functions, and in

coreutils only around 250 functions need to be compared per

binary.

As shown in Fig. 8, our selective inlining significantly improves

the overall matching accuracy by, on average, 150%. In particular,

when ARM architecture is used as target, selective inlining improves

the total matching accuracy by, on average, 400%. Table 1 summa-

rizes the total number of functions inlined for each architecture. We

notice that coreutils compiled for ARM contains more func-

tions (27,820 across 103 binaries) than that compiled for x86 32-bit

(avg. 24,397) and x86 64-bit (avg. 24,136). From the second row

of Table 1, it can be seen that 61% and 82% more functions are

selectively inlined by BINGO in ARM than that in x86 32-bit and

64-bit architectures, respectively. In ARM binaries, the larger num-

ber of functions suggests that compiler inlining does not happen as

frequently as it does in the other two architectures. Hence, our selec-

tive inlining technique is required to capture the complete function

semantics, which in return improves the matching accuracy.

7.1.2 Answer to RQ1: Cross-compiler analysis

Table 3 summarizes the results obtained by BINGO for different

compilers (gcc and clang) with various optimization levels (O0,

O1, O2 and O3) for x86 32-bit architecture. Here, each row and

column of the table represents the compiler (including the level of

optimization) used to compile the signature and target functions,

respectively. For example, the cell denoted by the second row

Table 3: Percentage of functions ranked #1 in inter-compiler

(x86 32-bit) comparison. Here, C and G represent clang and

gcc compilers, respectively and 0-3 represents optimization O0-

O3.
C0 C1 C2 C3 G0 G1 G2 G3

C0 - 0.402 0.373 0.372 0.371 0.4 0.451 0.332

C1 0.392 - 0.456 0.455 0.396 0.429 0.503 0.388

C2 0.345 0.426 - 0.576 0.344 0.411 0.488 0.478

C3 0.344 0.425 0.575 - 0.343 0.41 0.488 0.477

G0 0.344 0.354 0.334 0.333 - 0.374 0.398 0.302

G1 0.37 0.409 0.41 0.409 0.376 - 0.517 0.395

G2 0.412 0.462 0.474 0.473 0.428 0.514 - 0.48

G3 0.326 0.372 0.438 0.439 0.331 0.42 0.5 -

and fifth column (C1G0) represents the result for which signature

functions are compiled using clangwith optimization level O1 and

the target functions are compiled using gccwith O0. From the table,

we observe that BINGO is very robust as, on average, 41.5% of the

functions achieve rank one across all the experiments, while 84% of

the functions ranked within top 10. We observed similar behaviour

in binaries compiled for x86 64-bit architecture and due to space

constraints, the results are reported in our tool webpage [1]. Further,

in [1], for each experiment, we also report the results obtained by

each binary (e.g., ls, true, etc. . .) in the coretuils suite.

Interestingly, we find that regardless of the compiler type, matches

between the binaries that are compiled with high code optimization

levels (i.e., O2 and O3) yield better results compare to matches

between binaries with no code optimization (i.e.,O0). That is, high

code optimization levels lead to the similar binary code even with

diferent compilers, whereas without optimization the influence of

compiler in the binary is very evident. This observation is consis-

tent with [31]. Further, within one compiler type (e.g., gcc), the

matching accuracy achieved by optimization level O2, across all

other compiler types and optimization levels, is always better or

consistent with the results obtained by O3 (relevant rows are shaded

in light gray in Table 3). This behaviour is observed in x86 64-bit

architecture too.

Further, we repeated the experiments across different versions of

the same compiler (gcc v4.8.3 vs. gcc v4.6) and the results (for

x86 32-bit architecture) are summarized in Table 2. As expected,

the highest accuracy is achieved when the signature and target func-

tions are of the same optimization level, except when the signature

functions are compiled with optimization level O1, where on such

occasions, target functions compiled with optimization level O2

yield better accuracy. The best results obtained for each signature

binary is highlighted in light gray in Table 2. In addition, we also

observe that the overall accuracy for intra-compiler analysis (42.7%)

is slightly better than the inter-compiler analysis (41.5%). Finally, in

intra-compiler analysis, on average, 76.3% functions ranked within

top 5 positions, whereas it is only 68.5% for inter-compiler analysis,

an 11.8% improvement. Details on the results of intra-compiler

analysis for x86 64-bit architecture are reported in [1].

Complying with the results reported in Section 7.1.1, we observe

that selective inlining improves the average matching accuracy by

around 140% for cross-compiler analysis. Many functions are in-

lined when the binaries are compiled with the optimization level O0

compared to O3. In particular, on average, 1,473 functions (across

gcc and clang) are inlined in for optimization level O0 compare

to only 831 for O3.

7.1.3 Answer to RQ2: Cross-OS analysis

To evaluate BINGO as a search engine for binary programs (i.e.,

matching against wild binaries that do not share the same source

685

Table 4: Rankings (top 10 matches) obtained by BINGO for func-

tions in msvcrt against libc
Rank Library functions #

1
tolower, memset, wcschr, wcsncmp, toupper, memcmp, str-

spn, wcsrchr, memchr, strrchr, strchr
11

2-3

wcstoul, wcstol, strtoul, fopen, strncpy, strtol, itoa, wcscmp,

wcsncat, itow, longjmp, strcspn, wcsncpy, labs, strpbrk, toup-

per, write, memcpy, memmove, tolower
20

4-5 mbtowc, wcstombs, strcat, remove, mbstowcs, wctomb 6

6-10
rename, strstr, wcspbrk, iswctype, strtok, wcscoll, strcoll, set-

locale, qsort, wcsspn, swprintf, wcstod, strerrorr
13

code base), we conduct an experiment with open-source and close-

source binaries. In this experiment, we choose Windows mscvrt

as the binary (closed-source) from which the search queries are

obtained, and Linux libc as the target binary (open-source) to be

searched on.

In conducting this experiment, we face a challenge in obtaining

the ground truth. Ideally, for each function in msvcrt, we want to

identify the corresponding semantically similar function in libc,

so that we can faithfully evaluate BINGO. To reduce the bias in

obtaining the ground truth through manual analysis, we rely on the

function names and the high-level description provided in the official

documentation, e.g., strcpy function in msvcrt is matched with

strcpy (or its variants) from libc. Besides, several variants of

the same function are grouped into one family3.

In total, we build the ground truth for 60 standard C library

functions in msvcrt and Table 4 summarizes the results obtained

by BINGO. Among these, 11 functions (18.3%) are ranked one,

around 51.7% of the functions are within top 5 matches, whiles

83.3% of the functions are ranked within top 10 positions. The

results demonstrate the robustness of BINGO in identifying functions

that share no code base but with the similar semantics.

To compare BINGO with the state-of-the-art tools, we repeat the

aforementioned experiment using BINDIFF [17], an industry stan-

dard binary comparison tool, and TRACY [11], a publicly available

academic tool. BINDIFF (v4.1.0), somehow, is unable to correctly

match any of the 60 functions in mcvcrt to their counterparts in

libc. Its failure roots back to heavy relying on the program struc-

ture and call-graph pattern, which is less likely to be preserved in

binaries compiled from completely different source-code bases. On

the other hand, TRACY matches only 27 functions (out of 60) within

the top 50 positions. Among the 27 matches, 5 (8.3%) are ranked

one (best matches), 23 (38.3%) are ranked within top 5 positions.

However, when the binaries are compiled for different architectures,

TRACY totally fails as it does not support cross-architecture binary

matching.

7.2 Answer to RQ3: Applications
As part of the on-going research, we leveraged on BINGO to per-

form vulnerability extrapolation [32] — given a known vulnerable

code, called vulnerability signature, using BINGO, we try to find

semantically similar vulnerable code segments in the target binary.

This line of work is receiving more attention recently from the aca-

demic research community [32, 31]. However, there is few evidence

of using such technique to hunt real-world vulnerabilities. One rea-

son could be these tools cannot handle large complex binaries. Due

to the program structure agnostic function modeling and effective

filtering, BINGO is capable of handling large binaries. Hence, we

evaluate the practicality of our tool in hunting real-world vulnerabil-

ities.

Zero-day Vulnerability (CVE-2016-0933) Found: In vulnerabil-

3For example, in libc, memcpy function has around 15 variants
(e.g., memcpy_ia32, memcpy_ssse3, etc. . .).

ity extrapolation, we discovered a zero-day vulnerability in one of

3D libraries used in Adobe PDF Reader. At the high level, we dis-

covered a network exploitable heap memory corruption vulnerability

in an unspecified component of the latest version of Adobe PDF

Reader. The root cause for this vulnerability is the lack of buffer size

validation, which subsequently allows an unauthenticated attacker

to execute arbitrary code with a low access complexity. We use

a previously known vulnerability, in input size handling code seg-

ment of the same 3D module, as the signature, where the signature

function consists of more than 100 basic-blocks. We modelled the

known vulnerable function and all other ‘unknown’ functions in

the library using BINGO, then used the known vulnerable function

model as the signature and searched for semantically similar func-

tions. BINGO returned the ‘potential’ vulnerable function (ranked

#1) in the suspected 3D library. With some additional manual effort,

we were able to confirm the vulnerability. Later, Adobe confirmed

and subsequently released a patch for it.

Matching Known Vulnerabilities: To evaluate whether BINGO is

capable of finding vulnerabilities across-platform, we repeated the

two experiments reported in [31]. First one is libpurple vulnerability

(CVE-2013-6484), where this vulnerability appears in one of the

Windows application (Pidgin) and its counterpart in Mac OSX

(Adium). In [31], it is reported that without manually crafting the

vulnerability signature, matching from Windows to Mac OSX and

vice versa, achieved the ranks #165 and #33, respectively. In BINGO,

we achieve rank #1 for both cases. Thanks to Filter 2 used in our

filtering algorithm (i.e., library call abstraction technique), we iden-

tify four library calls (i.e., ‘string manipulation’: strlcpy, ‘time’:

time, ‘input/output’: ioctl and ‘internet address manipulation’:

inet_ntoa) that match the vulnerable functions across OSs.

The second experiment is SSL/Heartbleed bug (CVE-2014-0160),

we compile the openssl library for Windows and Linux using

Mingw and gcc, respectively (vulnerable code is shown in Fig. 1).

The vulnerability is matched from Windows to Linux, using basic-

block centric matching, similar to [31], we achieve the ranks #22 and

#24 for dtls1_process_heartbeat and tls1_process_-

heartbeat functions, receptively. For Linux to Windows match-

ing, we achieve rank #4 for both functions. This is due to the fact

that Mingw significantly modifies the program structure through

inlining, and hence the basic-block structure is not preserved across

binaries. Binary compiled using Mingw contains 24,923 more basic

blocks compared to the Linux binary. This observation confirms

that the basic-block centric matching fails in such conditions, where

the program structure is heavily distorted. However, using func-

tion model of length variant partial traces together with selective

inlining, we are able to achieve rank #1 for both functions in Win-

dows to Linux matching and vice versa with the average semantic

similarity score of 0.62 and 0.59, respectively. DISCOVRE tool [37]

fails to identify any of the aforementioned vulnerable functions, as

we observe that in Mingw version of openssl, the library func-

tions (such as memset, memcpy, and strtol) are inlined in most

cases, leading to program structure distortion that is not handled by

DISCOVRE.

7.3 Answer to RQ4: Scalability
BINGO has demonstrated its scalability through out the experi-

ments. It particular filtering process takes only few milliseconds for

coretutils binaries to shortlist the candidate target functions.

For example, in cross-architecture analysis, it takes, on average,

91.8 milliseconds to compare entire coreutils suite (in total,

103 binaries each containing, on average, 250 functions) compiled

for one architecture against another, while it is reduced to 68.6 mil-

liseconds for cross-compiler analysis. Besides, function filtering

686

reduces the search space dramatically. After filtering, for each signa-

ture function in coreutils binary, on average, 21 target functions

are shortlisted in cross-architecture analysis and it is further reduced

to 13 functions in cross-compiler analysis. For large binaries such

as BusyBox (around 3,250 functions with 39,179 basic-blocks), it

takes, on average, 6.16 seconds to filter the target functions and for

each signature function, less than 40 target functions are shortlisted.

Similarly, for SSL/Heartbleed vulnerability search in openssl

(around 5,700 functions with more than 60K basic-blocks), filtering

process takes 12.24 seconds, with only 53 functions shortlisted.

The major overhead in BINGO is the partial trace generation and

semantic feature extraction operation. For example, it takes 4,469s

to extract semantic features from 2,611 libc functions — on aver-

age, taking 1.7s to extract semantic features from a libc function,

whereas, it takes only 1,123s to extract semantic features from 1,220

msvcrt functions (on average 0.9s per function). By virtue of our

filtering technique, the time-consuming step of semantic feature

extraction is not applied on all the functions in a binary. In practise,

semantic feature extraction is a one time job that can be easily paral-

lelized. Finally, in locating the vulnerable function in Adobe PDF

Reader, it takes, in total, 88 seconds to filter and extract semantic

features from the shortlisted target functions and an additional 2.7

seconds to do the semantic matching. This shows that using BINGO,

it allows us to find a zero-day vulnerability in a real-world COTS

binary within two minutes, provided a good vulnerability signature.

7.4 Threats to Validity
The major limitation in selective inlining is that we cannot inline

functions that are invoked indirectly (i.e., indirect call). However,

this limitation is not particular to BINGO but an inherent problem

in all static analysis based techniques. Early in 2005, people have

identified this problem and proposed solutions, such as VSA (value-

set analysis) [4]. However, we did not incorporate VSA into BINGO

as it involves heavyweight program analysis, which might leads

to heavy performance cost. The other limitation in BINGO is that

not all floating-point (FPU) instructions are currently handled by

our IR language, REIL. However, in the future, we will be adding

support for more FPU instructions. Finally, in our experiments, we

use the following parameter setup to achieve the results, (α = 0.01
, w1 = 1.0, w2 = 0.8, w3 = 0.5). In future, we will investigate the

impact of different values in other case studies.

8. RELATED WORK
Binary similarity analysis Saebjornsen et al. [35] is one of the pi-

oneers in binary code search, where they propose a binary code

clone detection framework that leverage on normalized syntax (i.e.,

normalised operands) based function modelling technique. Jang et

al. [20] propose to use n-gram models to get the complex lineage

for binaries, and normalize the instruction mnemonics. Based on the

n-gram features, the code search is done via checking symmetric

distance. Binary control flow graphs are considered in similarity

check. [7] aims to detect infected virus from executables via a CFG

matching approach. [27] proposes a graphlet-based approach to

identify malware, which generates connected k-subgraphs of the

CFG and apply graph-coloring to detect common subgraphs be-

tween a malware sample and a suspicious one. Besides, [34] and

[33] also adopt CFG in recovery of the information of compilers

and even authors. Tracelet [11] is presented to capture syntax sim-

ilarity of execution sequences and facilitate searching for similar

functions. Concurrent to our work, Kam1n0 [13] is proposed to

solve the efficient subgraph search problem for assembly functions.

Unfortunately, the aforementioned syntax based binary similarity

matching techniques fail during cross-architecture analysis.

Value based equivalence check Input-output (I/O) and intermediate

values can be leveraged for identification of semantic clones, regard-

less of the availability of source code. Jiang et al. [23] regard the

problem of detecting semantic clones as a testing problem. They use

random testing and then cluster the code fragments according to the

I/O samples. [36] presents a method to compare x86 loop-free snip-

pets for testing transformation correctness. The equivalence check is

based on the selected inputs, outputs and states of the machine when

the execution is complete. Note that intermediate values are not

considered in [23][36]. Nevertheless, intermediate values are used

to mitigate the problem of identifying I/O variables in binary code.

In [21], Jhi et al. state the importance of some specific intermediate

values that are unavoidable in various implementations of the same

algorithm and thus qualify to be good candidates for fingerprinting.

According to this assumption, the studies on plagiarism detection

[40] and matching execution histories of program [41] are proposed.

Diff based equivalence check BINDIFF [17] builds CFGs of the two

binaries and then adopts a heuristic to normalize and match the two

CFGs. Essentially, BINDIFF resolves the NP-hard graph isomor-

phism problem (matching CFGs). BINHUNT [19], a tool that extends

BINDIFF, is enhanced for binary diff at the two following aspects:

considering matching CFGs as the Maximum Common Induced

Subgraph Isomorphism problem, and applying symbolic execution

and theorem proving to verify the equivalence of two basic code

blocks. To address non-subgraph matching of CFGs, BINSLAYER [6]

models the CFG matching problem as a bipartite graph matching

problem. For these tools, the compiler optimization options may

change the structure of CFGs and fail the graph-based matching.

Recently, BLEX [15] is presented to tolerate such optimization and

obfuscation differences. Basically, BLEX borrows the idea of [23]

to execute functions of the two given binaries with the same inputs

and compare the output behaviors.

Bug Detection based on Binary Analysis Dynamic analysis faces

challenges from two aspects: the difficulty in setting up the execu-

tion environment, and the scalability issue that prevents large-scale

detection. Pinpointed by Zaddach et al. [39], these dynamic ap-

proaches are far from practical application onto highly-customized

hardware like mobile or embedded devices. Thus it is difficult for

these approaches to conduct cross-architecture bug detection. To

address this issue, Pewny et al. [31] and DISCOVRE [37] propose a

static analysis technique with the aim to detect vulnerabilities inside

multiple versions of the same program compiled for different archi-

tectures. Unfortunately, due to heavy dependence on the function

CFG structure, their approach is good for finding clones of the same

program but not suitable for finding semantic binary clones among

applications that stem from completely different source code bases.

9. CONCLUSION
In this work, we propose the scalable solution of binary code

search framework, BINGO, which aims to search similar binary code

regardless of the differences in architectures and OS. At modelling

aspect, BINGO leverages on the complete function semantics and

length variant partial trace based function models to perform the

similarity search. The promising experimental results deliver the

claim of cross-architecture and cross-OS binary search. Further

BINGO has outperformed the state-of-the-art binary matching tools

like TRACY and BINDIFF. Finally, using BINGO, we also discovered

a zero-day vulnerability in Adobe PDF Reader.

10. ACKNOWLEDGEMENTS
This research is supported in part by the National Research Foun-

dation, Singapore under its National Cybersecurity R&D Program

(Award No. NRF2014NCR-NCR001-30).

687

References

[1] BinGo: Cross-Architecture Cross-OS Binary Search. https:

//sites.google.com/site/bingofse2016/, 2016. [Online; accessed

11-March-2016].

[2] IDA Pro - Interactive Disassembler. http://www.hex-rays.com/

idapro/, 2016. [Online; accessed 11-March-2016].

[3] P. Agrawal, A. Arasu, and R. Kaushik. On indexing error-

tolerant set containment. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data,

pages 927–938. ACM, 2010.

[4] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. Wys-

inwyx: What you see is not what you execute. In Verified soft-

ware: theories, tools, experiments, pages 202–213. Springer,

2005.

[5] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow

information using infeasible paths. In Foundation of Software

Engineering ESEC/FSE’97, pages 361–377. Springer, 1997.

[6] M. Bourquin, A. King, and E. Robbins. Binslayer: accurate

comparison of binary executables. In Proceedings of the 2nd

ACM SIGPLAN Program Protection and Reverse Engineering

Workshop 2013, PPREW@POPL 2013, January 26, 2013,

Rome, Italy, pages 4:1–4:10, 2013.

[7] D. Bruschi, L. Martignoni, and M. Monga. Detecting self-

mutating malware using control-flow graph matching. In De-

tection of Intrusions and Malware & Vulnerability Assessment,

Third International Conference, DIMVA 2006, Berlin, Ger-

many, July 13-14, 2006, Proceedings, pages 129–143, 2006.

[8] J. Caballero, N. M. Johnson, S. McCamant, and D. Song.

Binary code extraction and interface identification for security

applications. Technical report, DTIC Document, 2009.

[9] S.-H. Cha. Comprehensive survey on distance/similarity mea-

sures between probability density functions. City, 1(2):1, 2007.

[10] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W.-M. W. Hwu.

Profile-guided automatic inline expansion for c programs. Soft-

ware: Practice and Experience, 22(5):349–369, 1992.

[11] Y. David and E. Yahav. Tracelet-based code search in exe-

cutables. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, Edinburgh,

United Kingdom - June 09 - 11, 2014, page 37, 2014.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In

Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008.

[13] S. H. Ding, B. C. Fung, and P. Charland. Kam1n0: Mapreduce-

based assembly clone search for reverse engineering. In Pro-

ceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (SIGKDD. ACM,

2016.

[14] T. Dullien and S. Porst. Reil: A platform-independent inter-

mediate representation of disassembled code for static code

analysis. Proceeding of CanSecWest, 2009.

[15] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket

execution: Dynamic similarity testing for program binaries

and components. In Proceedings of the 23rd USENIX Security

Symposium, San Diego, CA, USA, August 20-22, 2014., pages

303–317, 2014.

[16] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket

execution: Dynamic similarity testing for program binaries

and components. In USENIX Security Symposium, 2014.

[17] H. Flake. Structural comparison of executable objects. In De-

tection of Intrusions and Malware & Vulnerability Assessment,

GI SIG SIDAR Workshop, DIMVA 2004, Dortmund, Germany,

July 6.7, 2004, Proceedings, pages 161–173, 2004.

[18] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic

clones. In 30th International Conference on Software Engi-

neering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,

pages 321–330, 2008.

[19] D. Gao, M. K. Reiter, and D. X. Song. Binhunt: Automat-

ically finding semantic differences in binary programs. In

Information and Communications Security, 10th International

Conference, ICICS 2008, Birmingham, UK, October 20-22,

2008, Proceedings, pages 238–255, 2008.

[20] J. Jang, M. Woo, and D. Brumley. Towards automatic software

lineage inference. In Proceedings of the 22th USENIX Security

Symposium, Washington, DC, USA, August 14-16, 2013, pages

81–96, 2013.

[21] Y. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu. Value-

based program characterization and its application to software

plagiarism detection. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE 2011, Waikiki,

Honolulu , HI, USA, May 21-28, 2011, pages 756–765, 2011.

[22] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:

scalable and accurate tree-based detection of code clones. In

29th International Conference on Software Engineering (ICSE

2007), Minneapolis, MN, USA, May 20-26, 2007, pages 96–

105, 2007.

[23] L. Jiang and Z. Su. Automatic mining of functionally equiva-

lent code fragments via random testing. In Proceedings of the

Eighteenth International Symposium on Software Testing and

Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009,

pages 81–92, 2009.

[24] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-

linguistic token-based code clone detection system for large

scale source code. IEEE Trans. Software Eng., 28(7):654–670,

2002.

[25] D. Kim, W. N. Sumner, X. Zhang, D. Xu, and H. Agrawal.

Reuse-oriented reverse engineering of functional components

from x86 binaries. In Proceedings of the 36th International

Conference on Software Engineering, pages 1128–1139. ACM,

2014.

[26] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.

Polymorphic worm detection using structural information of

executables. In Recent Advances in Intrusion Detection, pages

207–226. Springer, 2005.

[27] C. Krügel, E. Kirda, D. Mutz, W. K. Robertson, and G. Vi-

gna. Polymorphic worm detection using structural information

of executables. In Recent Advances in Intrusion Detection,

8th International Symposium, RAID 2005, Seattle, WA, USA,

September 7-9, 2005, Revised Papers, pages 207–226, 2005.

688

https://sites.google.com/site/bingofse2016/
https://sites.google.com/site/bingofse2016/
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/

[28] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu. Semantics-based

obfuscation-resilient binary code similarity comparison with

applications to software plagiarism detection. In Proceed-

ings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 389–400. ACM,

2014.

[29] R. C. Martin. Agile software development: principles, patterns,

and practices. Prentice Hall PTR, 2003.

[30] J. Ming, D. Xu, and D. Wu. Memoized semantics-based

binary diffing with application to malware lineage inference.

In ICT Systems Security and Privacy Protection, pages 416–

430. Springer, 2015.

[31] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz.

Cross-architecture bug search in binary executables. In 2015

IEEE Symposium on Security and Privacy, SP 2015, San Jose,

CA, USA, May 17-21, 2015, pages 709–724, 2015.

[32] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow.

Leveraging semantic signatures for bug search in binary pro-

grams. In Proceedings of the 30th Annual Computer Security

Applications Conference, pages 406–415. ACM, 2014.

[33] N. E. Rosenblum, B. P. Miller, and X. Zhu. Extracting compiler

provenance from program binaries. In Proceedings of the 9th

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, PASTE’10, Toronto, Ontario,

Canada, June 5-6, 2010, pages 21–28, 2010.

[34] N. E. Rosenblum, X. Zhu, and B. P. Miller. Who wrote this

code? identifying the authors of program binaries. In Com-

puter Security - ESORICS 2011 - 16th European Symposium

on Research in Computer Security, Leuven, Belgium, Septem-

ber 12-14, 2011. Proceedings, pages 172–189, 2011.

[35] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su.

Detecting code clones in binary executables. In Proceedings

of the eighteenth international symposium on Software testing

and analysis, pages 117–128. ACM, 2009.

[36] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superop-

timization. In Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’13, Houston, TX,

USA - March 16 - 20, 2013, pages 305–316, 2013.

[37] E. Sebastian, Y. Khaled, and G.-P. Elmar. discovre: Efficient

cross-architecture identification of bugs in binary code. In

In Proceedings of the 23nd Network and Distributed System

Security Symposium. NDSS, 2016.

[38] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng. Bi-

nary code continent: Finer-grained control flow integrity for

stripped binaries. In Proceedings of the 31st Annual Com-

puter Security Applications Conference, pages 331–340. ACM,

2015.

[39] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti.

AVATAR: A framework to support dynamic security analy-

sis of embedded systems’ firmwares. In 21st Annual Network

and Distributed System Security Symposium, NDSS 2014, San

Diego, California, USA, February 23-26, 2014, 2014.

[40] F. Zhang, Y. Jhi, D. Wu, P. Liu, and S. Zhu. A first step towards

algorithm plagiarism detection. In International Symposium

on Software Testing and Analysis, ISSTA 2012, Minneapolis,

MN, USA, July 15-20, 2012, pages 111–121, 2012.

[41] X. Zhang and R. Gupta. Matching execution histories of pro-

gram versions. In Proceedings of the 10th European Software

Engineering Conference held jointly with 13th ACM SIGSOFT

International Symposium on Foundations of Software Engi-

neering, 2005, Lisbon, Portugal, September 5-9, 2005, pages

197–206, 2005.

689

	Introduction
	Background and Overview
	Motivating Example
	Challenges for Existing Approaches
	Proposed Solution and System Overview

	Selective Inlining
	Function Invocation Patterns
	Inline Decision Algorithm

	Function Filtering
	Scalable Function Matching
	Length Variant Partial Trace Extraction
	Semantic Feature Extraction
	Trace Pruning
	Infeasible Partial Trace Pruning
	Compiler Specific Code Pruning

	Function Matching

	Implementation
	Experimental Results
	Robustness
	Answer to RQ1: Cross-architecture analysis.
	Answer to RQ1: Cross-compiler analysis
	Answer to RQ2: Cross-OS analysis

	Answer to RQ3: Applications
	Answer to RQ4: Scalability
	Threats to Validity

	Related Work
	Conclusion
	Acknowledgements

