
Automatically Analyzing Groups of Crashes
for Finding Correlations

Marco Castelluccio
Mozilla

London, UK
University Federico II of Naples

Naples, Italy
marco.castelluccio@unina.it

Carlo Sansone
University Federico II of Naples

Naples, Italy
carlo.sansone@unina.it

Luisa Verdoliva
University Federico II of Naples

Naples, Italy
verdoliv@unina.it

Giovanni Poggi
University Federico II of Naples

Naples, Italy
poggi@unina.it

ABSTRACT
We devised an algorithm, inspired by contrast-set mining algo-
rithms such as STUCCO, to automatically find statistically signifi-
cant properties (correlations) in crash groups. Many earlier works
focused on improving the clustering of crashes but, to the best of
our knowledge, the problem of automatically describing properties
of a cluster of crashes is so far unexplored. This means developers
currently spend a fair amount of time analyzing the groups them-
selves, which in turn means that a) they are not spending their
time actually developing a fix for the crash; and b) they might miss
something in their exploration of the crash data (there is a large
number of attributes in crash reports and it is hard and error-prone
to manually analyze everything). Our algorithm helps developers
and release managers understand crash reports more easily and
in an automated way, helping in pinpointing the root cause of the
crash. The tool implementing the algorithm has been deployed on
Mozilla’s crash reporting service.

CCS CONCEPTS
• Software and its engineering→ Software reliability;

KEYWORDS
Crashes; Crash Reports; Crash Analysis.

ACM Reference format:
Marco Castelluccio, Carlo Sansone, Luisa Verdoliva, and Giovanni Poggi.
2017. Automatically Analyzing Groups of Crashes for Finding Correlations.
In Proceedings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17),
10 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106306

https://doi.org/10.1145/3106237.3106306

1 INTRODUCTION
Fixing crashes is one of the top priorities for software organizations,
as they are one of the main pain points for users and might lead
them to leave. Even a single crash can dramatically worsen how
users perceive a software, especially if it causes the loss of important
data. Acting quickly is thus really important to avoid losing users
and keep a high quality software.

Several software organizations have deployed automated crash
reporting systems, such asMozilla’s Socorro [1] andWindows Error
Reporting [12], which are used to collect reports from users at the
time of crash. A report received by Socorro comprises typically
more than a hundred attribute-value fields. These reports are then
analyzed by dedicated personnel to find out fixes and improve
software quality. It should be realized, however, that these systems
collect a huge number of crash reports daily, about three hundred
thousand reports/day for Socorro, which cannot be processed on
an individual basis. Therefore, the typical workflow consists of two
key phases

(1) crash report clustering;
(2) cluster featuring and analysis.

The goal of clustering is to group together similar reports, as they
are likely originated by multiple instances of the same software
problem. Once the problem is fixed, all these reports can be dis-
carded at once from further analysis. Moreover, clustering allows
one to compute precious statistics on the cluster itself, enabling
the second phase of the workflow. In fact, the typical features of
interest in a cluster concern the frequency of occurrence of attribute-
value pairs, which may provide useful hints for the solution of the
problem. As an example, assume that a perfect clustering process
succeeds in grouping together all crash reports originated by a
given software bug, and assume also that all such reports are char-
acterized by a distinctive feature which is never observed in reports
of other clusters. While not conclusive, this observation would pro-
vide a strong clue for the analyst, and would probably allow a quick
fix of the problem. This idealized process is summarized graphically
in Figure 1.

717

https://doi.org/10.1145/3106237.3106306
https://doi.org/10.1145/3106237.3106306

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi

CLUSTERING

FEATURING

…

Group 1 Group 2

G1 features G2 features Overall features

Dataset

Figure 1: Idealized process: with perfect clustering, proper-
ties that define the groups are easily found.

Needless to say, real-world operations are very far from this sim-
plistic case. On/off features rarely occur, and the analyst must focus
on minor variations in the frequencies of occurrence of attribute-
value pairs across groups. Moreover, the most distinctive features
concern usually joint occurrences. If the number of elementary
features is already large, the number of features concerning more
complex behaviors, possibly involving tuples of attribute-value
pairs, makes brute force analysis simply infeasible. It requires very
skilled analysts to navigate effectively through these data and ex-
tract useful clues. To further complicate things, the preliminary
clustering of crashes is itself far from perfect, which may strongly
affect the results of subsequent analyses. When a cluster includes
reports that have no relation with one another, the resulting fea-
tures are averaged together and hardly distinctive anymore. On
the contrary, when there are too small groups, since reports for
the same crash are divided in multiple clusters, features become
unstable, leading to erroneous conclusions.

The above discussion underlines the need of effective automated
tools that support the analyst’s work in both phases on the process
to i) perform a reliable clustering of crash reports, and ii) single
out the most meaningful features. Many previous studies in the
literature have focused on the first problem, namely, proposing a
number of competing solutions to best cluster crashes in groups.
Section 6 contains a more detailed explanation of some of them. In
this paper, instead, we focus on the second problem, and propose
an automated tool to support group understanding after the clus-
tering has already taken place. The proposed tool finds statistically
significant properties in crash groups, sorts them by decreasing
importance, and submits them to the analyst. Developers are there-
fore freed from this tedious preliminary analysis, and can focus
on fixing the crash. It should be also underlined that the manual
analysis, given the large number of attributes in crash reports, is not
only tedious but also error-prone (also due to the effects of fatigue).
The proposed tool may happen to find interesting properties that

Figure 2: Dialog window presented to the users when they
experience a crash.

the analyst could miss. Automatically finding properties of crash
groups also allows release managers to quickly act with temporary
workarounds, for example by blocking updates to a crashy version
for a particular set of users.

Specifically, our approach is based on a data mining technique,
contrast-set learning [24], applied successfully to a number of other
problems in software engineering [27] and beyond (e.g. [16]). The
approach we present in our study can also help with the triage of
crash groups, in fact release managers can decide on their impor-
tance, after understanding the possible causes and properties of a
crash. We evaluate the system using crash data collected from the
Mozilla crash reporting system and bug tracking system. Although
a systematic analysis of performance in not feasible for practical
reasons, we collected significant evidence that the system may ac-
tually help understanding a group of crashes and reduce the time
needed to solve the problem.

The remainder of this paper is organized as follows. Section 2
provides background information about Socorro, the Mozilla crash
reporting system used in our study. Section 3 describes the proposed
algorithm. Section 4 presents the validation of the results of our
algorithm, applied to real world cases for Mozilla Firefox crashes.
Section 5 discusses threats to the validity of this study. Section 6
summarizes related works and Section 7 concludes the paper.

2 SOCORRO AND CRASH REPORTS
Mozilla’s applications are shipped with a built-in automatic crash
reporting tool [1]. When end users encounter a crash, they are
presented with a dialog window that asks them to submit a report
(see Figure 2).

Crash reports include stack traces of the threads that were run-
ning at the time of the crash and other information about the user’s
environment (e.g. operating system, memory-related information,
modules loaded in the process, etc.). A subset of the fields contained
in a crash report is depicted in Table 1. The reader may refer to
[21] for an up-to-date JSON schema of a crash report. Some of the
information contained in a crash report might be sensitive, which

718

Automatically Analyzing Groups of Crashes
for Finding Correlations ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: A subset of the attributes present in a crash report.

Name Description

Platform The name of the Operating System.

Platform Version The detailed version of the Operating System
(e.g. uname -a on Linux).

Addons A list of the addons, with their version, in-
stalled in the Firefox profile.

Modules A list of the modules (DLL files on Windows,
SO files on Linux, dylib files on Mac), with
their version, loaded in the application’s pro-
cess.

User Comment A (usually brief) comment left by the user at
the time of crashing.

CPU Info Detailed information (vendor, family, model,
stepping, number of cores) about the CPU of
the user.

Adapter Vendor ID The vendor of the graphics card on the user’s
machine. There are other related attributes
such as Adapter Device ID, Adapter Driver
Version, etc.

Safe Mode A boolean variable that indicates whether
Firefox was running in safe mode.

User Agent Locale The language of the user.

... ...

is why the submission of crash reports is not silent, but requires
the user to accept a prompt.

As can be seen from Figure 2, the user has a chance to enter a
short comment at the time of crash. This allows users to specify
details about their crash report. For example, what they were doing
right before they experienced the crash. Crash reports are then sent
to the Socorro server [23], which:

(1) assigns a unique ID to each report;
(2) performs some post-processing on the reports;
(3) groups the reports together using an extremely fast, but

not very reliable, algorithm, described below.
See Figure 3 for an overview of the Socorro architecture.

The reports are clustered based on the top method signature
of the stack trace of the crashing thread (or another thread, if the
crash is due to the application willingly terminating itself after a
hang). Table 2 shows an example of a stack trace, with the group
name it was assigned by the Socorro algorithm.

There are several rules that allow to skip some methods if they
are deemed to be useless for grouping purposes (e.g. a very generic
function, a function from an external driver, etc.). Some of the
rules are general purpose (e.g. C++ standard library functions),
some are really specific to the Mozilla applications (e.g. XPCOM
[22] functions). This large set of rules has been built over time,
manually, by developers.

This algorithm is sometimes ineffective, as two crashes that
happen in the same function might be completely different from

Table 2: Example stack trace. The group name is in bold.

Frame Module Signature
0 xul.dll mozilla::storage::Service::getSingleton()
1 xul.dll mozilla::storage::ServiceConstructor
2 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const*, nsISupports*, nsID const&, void**)
3 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const*, nsID const&, void**)
4 xul.dll nsCOMPtr_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)
5 xul.dll nsCOMPtr<mozIStorageService>::nsCOMPtr<mozIStorageService>(nsGetServiceByContractID)
6 xul.dll nsPermissionManager::OpenDatabase(nsIFile*)
7 xul.dll nsPermissionManager::InitDB(bool)
8 xul.dll nsPermissionManager::Init()
9 xul.dll nsPermissionManager::GetXPCOMSingleton()
10 xul.dll nsIPermissionManagerConstructor
11 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const*, nsISupports*, nsID const&, void**)
12 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const*, nsID const&, void**)
13 xul.dll nsCOMPtr_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)
14 xul.dll nsCOMPtr<nsIPermissionManager>::nsCOMPtr<nsIPermissionManager>(nsGetServiceByContractID)
15 xul.dll mozilla::services::GetPermissionManager()
16 xul.dll mozilla::dom::NotificationTelemetryService::RecordPermissions()
17 xul.dll NotificationTelemetryServiceConstructor
18 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const*, nsISupports*, nsID const&, void**)
19 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const*, nsID const&, void**)
20 xul.dll nsCOMPtr_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)
21 xul.dll nsCOMPtr<nsISupports>::nsCOMPtr<nsISupports>(nsGetServiceByContractID)
22 xul.dll NS_CreateServicesFromCategory(char const*, nsISupports*, char const*, char16_t const*)
23 xul.dll nsXREDirProvider::DoStartup()
24 xul.dll XREMain::XRE_mainRun()
25 xul.dll XREMain::XRE_main(int, char** const, nsXREAppData const*)
26 xul.dll XRE_main
27 firefox.exe do_main
28 firefox.exe wmain
29 firefox.exe __scrt_common_main_seh
30 kernel32.dll BaseThreadInitThunk
31 ntdll.dll __RtlUserThreadStart
32 ntdll.dll _RtlUserThreadStart

Figure 3: Overview of the crash reporting system

each other. This is particularly noticeable with crashes related to
the JavaScript JIT compiler. However, processing speed is deemed
more important than accuracy in this context and new clustering
methods should be also very fast to qualify as a viable alternative.

3 AUTOMATIC ANALYSIS OF CRASH
GROUPS

The analysis method adopted here is a slightly modified version of
the contrast set mining algorithm STUCCO (Searching and Testing
for Understandable Consistent COntrasts) proposed originally by
Bay and Pazzani [3, 4]. To illustrate the method we will refer to a
toy example, with the dataset partitioned in two clusters, or groups,
with cardinalities |G1 | = 700 and |G2 | = 300, and reports including
only n = 2 attributes, platform (p), and graphics card (д), which can

719

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi

ROOT

p=W p=L p=M g=N g=A

p=W, g=N p=W, g=A p=L, g=N p=L, g=A p=M, g=N p=M, g=A

Figure 4: Root and all possible specializations

take three and two values respectively,p ∈ {W ,L,M} (forWindows,
Linux, and Mac) and д ∈ {N ,A} (for NVIDIA, and AMD).

3.1 The Contrast Set Mining Problem
In the contrast set mining framework, the dataset is a set of n-
dimensional vectors, whose components are discrete values. The
vectors are partitioned beforehand in mutually exclusive groups,
G1,G2, . . ., according to external criteria.

A contrast-set is defined as a set of attribute-value pairs. For
example, cset1 = {p =W } is a contrast set concerning a single
attribute-value pair, while cset2 = {p = W ,д = N } concerns a
couple of attribute-value pairs, and is actually a specialization of the
former. The support of a contrast-set in a group, S(cset ,G), is the
percentage of vectors in the group for which the contrast-set is true.
Contrast-set supports are the features used to characterize groups.
So, for example, having S(cset1,G1) = 0.7 and S(cset1,G2) = 0.3,
means that, in Group 1, 70% of crashes occurred on a Windows
platform, while in Group 2 the percentage was 30%. Such a large
difference seems to indicate that the platform is not irrelevant
for these crashes. Accordingly, the goal of contrast-set mining is
to find contrast-sets, also called deviations, whose support differs
meaningfully across groups.

More formally, for a contrast set to be declared a deviation, it
must be both large and significant. The first condition is expressed
as

max
i j

��S(cset ,Gi) − S(cset ,G j)
�� ≥ δ (1)

where δ is a constant (minimum support difference) defined by the
user. Significance, instead, is declared based on the outcome of a
statistical test of hypotheses,{

H0 : P(cset = true |Gi) = P(cset = true |G j)
H1 : P(cset = true |Gi) , P(cset = true |G j)

(2)

carried out for all couples of groups, Gi ,G j , with a user-defined
false alarm level, α .

3.2 STUCCO
In STUCCO, contrast-set mining is cast as a tree search problem.
The root node is an empty contrast-set. Then, for each step of
the algorithm, existing nodes are specialized by appending new
attribute-value pairs to existing ones. A canonical ordering of the
attributes is used to avoid visiting the same node twice. With refer-
ence to our toy example, Figure 4 shows the search tree after two
levels of specialization. Note that the nodes д = N and д = A have
no children, as д comes after p in our ordered attribute list.

STUCCO performs a breadth-first level-wise search in the tree.
We provide, here, a very high-level description of the algorithm,
going into more details in the following subsection. For each node
at a given level, the number of occurrences for each group in the
dataset is counted. Based on such data, some heuristics are applied

Algorithm 1: STUCCO algorithm
Set of candidates C ← {};
Set of deviations D ← {};
Set of pruned candidates P ← {};
Let prune(c) return True if c should be pruned;
while C is not empty do

scan data and count support ∀c ∈ C;
foreach c ∈ C do

if siдni f icant(c) ∧ larдe(c) then
D ← D ∪ c

end
if prune(c) = True then

P ← P ∪ c
else

Cnew ← Cnew ∪GenChildren(c, P)
end

end
C ← Cnew

end
Dsurpr isinд ← FindSurprisinд(D)

to decide on whether the node should be pruned, become a terminal
node, or generate new children. The tree grows until no more child
node can be generated, or a suitable stopping condition (applied
to limit processing time) is met. After the whole tree is grown,
each surviving node corresponds to a valid candidate contrast-
set. Contrast-sets that are found to be both large and significant
(deviations), and also surprising, are eventually kept, and submitted
to the analyst as an ordered list, from largest to smallest. Algorithm 1
provides a pseudo-code description of the process. Figure 5, instead,
shows the first few steps of the algorithm applied to our toy example.
In particular:

(1) all possible attribute-value pairs (“candidates”) are gener-
ated for each attribute in a crash report (figure 5a);

(2) the number of occurrences for each candidate in each group
is counted (figure 5b);

(3) some nodes are pruned based on suitable heuristics (figure
5c);

(4) new candidates are generated by merging previous ones
which survived pruning, for example {p =W } and {д =
N } give rise to {p =W ,д = N } (figure 5d).

Steps 2-4 are repeated until there are no more candidates or a suit-
able stopping condition is met, for example, the maximum number
of iterations. Eventually, all nodes/contrast-sets are tested, and only
those that are large, significant, and surprising are submitted to the
analyst.

The following subsections provide the necessary details for a full
comprehension of the algorithm, describing the tests on largeness,
significance, and surprise, as well as the heuristic rules for tree
pruning.

3.2.1 Selecting Large Contrast-Sets. This is a straightforward
test: For a contrast-set to be large, its support must be larger than
the threshold, δ , defined by the user.

720

Automatically Analyzing Groups of Crashes
for Finding Correlations ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

ROOT
g1=700
g2=300

p=W p=L p=M g=N g=A

(a) Generation of all possible attribute-value pairs

ROOT
g1=700
g2=300

p=W
g1=600
g2=295

p=L
g1=70
g2=5

p=M
g1=30
g2=0

g=N
g1=200
g2=200

g=A
g1=500
g2=100

(b) Count of the occurrences for all candidates

ROOT
g1=700
g2=300

p=W
g1=600
g2=295

X X
g=N

g1=200
g2=200

g=A
g1=500
g2=100

(c) Pruning of candidates using a set of heuristics

ROOT
g1=700
g2=300

p=W
g1=600
g2=295

X X
g=N

g1=200
g2=200

g=A
g1=500
g2=100

p=W, g=N p=W, g=A

(d) Generation of a new level of candidates

Figure 5: Sample run of the algorithm in the context of crash
reports

3.2.2 Selecting Significant Contrast-Sets. To evaluate whether a
contrast-set is significant, we rely on the test of hypotheses of Eq.2.
The null hypothesis is that the support of the contrast-set is equal
across all groups or, differently said, it is independent of group
membership. To this end, we build a contingency table like that
shown in Table 3 reporting the occurrences of a contrast set across
groups and the corresponding supports, our features of interest,
that is, the frequencies of occurrence in the group.

Table 3: Example contingency table

p =W p ,W group size
Group 1 600 (85%) 100 (15%) 700
Group 2 295 (98%) 5 (2%) 300
Overall 895 (90%) 105 (10%) 1000

In our example we analyze cset1, namely, platform=Windows.
If group and the platform were independent variables, the propor-
tion of crash reports with the Windows platform should be about
the same across all groups. This is not the case in our example.
However, the supports may differ just because of random fluctua-
tions, and the difference may not be statistically significant. Hence,
we need to determine whether such differences are the effect of a
true dependency between the variables or if it can be attributed
to randomness, which is why we need a statistical test. The stan-
dard test for independence of variables in contingency tables is the
chi-square test:

χ2 =
r∑
i=1

c∑
j=1

(oi j − ei j)2

ei j
(3)

where oi j is the observed frequency in cell ij and ei j is the frequency
expected under the hypothesis of independence between row and
column variables. We then compare the resulting value against
the χ2 distribution under the null hypothesis, selecting level of
significance α , which represents the probability of rejecting the
null hypothesis when it holds (false alarm).

For a single test, a level α = 0.05, implying a false alarm prob-
ability of 5%, could be considered acceptable for our application.
However, since a large number of contrast sets are typically tested
for significance, the overall number of false alarms may be dis-
turbingly large. For example, if we ran 100 tests at α = 0.05, and the
null hypothesis were always true, we would detect on the average 5
significant differences that are not actually there. To keep the false
alarm rate within acceptable limits, STUCCO reduces α according
to the Bonferroni correction: given H1,H2, . . . ,Hk hypotheses, and
their corresponding p-values p1,p2, . . . ,pk , the hypothesis Hi is
rejected if pi < α/k . The Bonferroni correction controls the fami-
lywise error rate (FWER), which is the probability of incorrectly
rejecting at least one true hypothesis Hi , at <= α .

FWER = P

ktrue⋃
i=1

(
pi ≤

α

k

) (4)

≤
ktrue∑
i=1

{
P
(
pi ≤

α

k

)}
≤ ktrue

α

k
≤ α

This holds no matter how many of the null hypotheses are true and
even with dependent tests [26].

There are two problems in the application of the Bonferroni
correction in the context of STUCCO: first of all, if we report results
in a level-wise fashion (shorter first, then longer), we cannot know
how many tests we will perform in total, which makes it impossible
to know the exact value of k . Moreover, as α gets smaller, the
statistical power of the tests decreases, increasing the probability of
producing false negatives. This cannot be avoided, since we want

721

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi

to reduce the probability of false positives. However, we can use
different values of α for tests concerning different levels of the tree,
ensuring a high power for tests at higher levels (which are more
general and easier to understand) and accepting a lower power for
tests more down the tree. Since the Bonferroni method holds as
long as

∑
i αi ≤ α , STUCCO adopts level-dependent values

αl = min
(
α

2l
/|Cl | ,αl−1

)
(5)

where αl is the cutoff for level l , and |Cl | is the number of candidates
at level l . This way we assign 1

2 of the total α risk to tests at level
1, 14 to tests at level 2, etc. The min rule ensures that, as we move
to deeper levels, the α cutoff can only decrease, making the tests
more likely not to reject the null hypothesis.

3.2.3 Selecting Surprising Contrast-Sets. As already said, contrast-
sets are shown in a level-wise fashion given higher priority to higher
levels (e.g. level 1, with a single attribute-value pair) as they are
easier to interpret. Further specializations are then included only
if they are “surprising”, namely, when the observed frequencies
depart significantly from the expected frequencies. For example,
if for all Gi ’s, S(p = W ,д = N |Gi) ≃ S(p = W |Gi) × (д = N |Gi),
that is the support of the specialization can be derived based on
an independence conjecture, than the specialization itself does not
add information (is not surprising) and thus can be discarded even
when it is a deviation according to the definition.

3.2.4 Pruning the Search Space. When building the contrast-set
tree, a number of heuristics can be applied to limit its size and hence
reduce the computational burden.
Minimum deviation size.When a contrast-set has support less
than δ for every node, it can be pruned. In fact, if the support is
smaller than δ for any given group, the difference between any two
supports cannot be larger than δ .
Expected cell frequencies. The validity of a test depends on the
size of the available sample, becoming scarcely reliable when only
a small number of items are available. A typical lower bound for
the χ2 test is 5 [11]. Therefore, when we reach a contrast-set with a
number of occurrences smaller than 5, we can safely prune it, since
any further specialization can only further reduce the number of
occurrences.
χ2 bounds. Bay and Pazzani showed that it is possible to define an
upper bound on the χ2 statistic. This can be used to prune nodes,
when we know that the corresponding statistic will not exceed the
α cutoff.
Identical support. Specializations with the same support as the
parent might be not interesting and can be discarded. They target
the same set of dataset entries as the parent and often represent
findings that are common knowledge (e.g. the support of {plat-
form_detail = Debian Wheezy} will obviously be the same as the
support of {platform = Linux, platform_detail = Debian Wheezy}:
the addition of {platform = Linux} provides no information).
Fixed relations. Often a group has larger support for a given
contrast-set than any other group and specializing the contrast-set
with additional attribute-value pairs does not change the situation.
In those cases, the node can be pruned.

platform

platform_version cpu_brand adapter_vendor_id

LIST OF modules cpu_microcode_version adapter_device_id

adapter_subsys_id adapter_driver_version

Figure 6: Detail of the dependency graph

3.3 Domain-Specific Variations
The implementation of the algorithm must take into account the
large number of items to deal with in our real-world application. At
the time of writing, around 500000 crash reports per week are gen-
erated for a single Firefox version1. Moreover, each report contains
a large number of attributes (more than 200) spanning different
possible values. This means that the number of possible candi-
dates explodes very rapidly as soon as contrast-sets are specialized
beyond level 1. Testing candidates for each couple of groups is
clearly infeasible. Therefore, in our implementation, we test each
group against the rest of the dataset, that is, we look for features
that present anomalies w.r.t. the average behavior over the whole
dataset. In addition, for performance reasons, we have implemented
the tool using Apache Spark [28].

Another specific feature of our application is the existence of
strong dependencies among groups of attributes. For example, the
presence of a given DLL might be directly linked to a particular
version of Windows; the CPU microcode version is directly linked
to the CPU vendor; etc. We modified STUCCO to take into account
such information by means of a graph of dependencies (see Figure 6
for a detail of the dependency graph). When a dependency is found,
the percentage of occurrence is recalculated restricting the group
to the reports where the dependency holds true. For example, in a
group we studied, the module “bcryptPrimitives.dll” was present
in 83.9% of crash reports vs. 33.91% overall, qualifying for a likely
deviation. However, if we take into account the operating system
(Windows 10), the percentages change to 100% vs 98.44%, and hence
this rule could be ignored.

One of the fields of the crash reports is a small text area where
the user who experiences the crash can write a short comment.
Most users do not provide useful information but express only their
frustration, which makes the comments field widely different from
usual bug reports. Nonetheless, in our manual inspections, we have
found comments to be sometimes useful, even if just as hints.

With the aim to extract some useful information from the com-
ments field, we employed a well known information retrieval tech-
nique, term frequency and inverse document frequency (TF-IDF),
which highlights the words most frequently used in the comments
for a given crash group vs. other groups. This allows developers to
quickly glance if there is something wrong with a particular setting.
For example, in one particular instance, many users were mention-
ing “playing”, and the crash turned out to be due to a resource
exhaustion due to videogames running in the background.

1https://crash-stats.mozilla.com/search/?product=Firefox&version=51.0.1&date=>%
3D2017-02-14&date=<2017-02-21#crash-reports

722

https://crash-stats.mozilla.com/search/?product=Firefox&version=51.0.1&date=>%3D2017-02-14&date=<2017-02-21#crash-reports
https://crash-stats.mozilla.com/search/?product=Firefox&version=51.0.1&date=>%3D2017-02-14&date=<2017-02-21#crash-reports

Automatically Analyzing Groups of Crashes
for Finding Correlations ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 4: Summary of the results of the validation.

Type Number of bugs

Very useful – results that directly
helped fixing the bug.

19

Compatible – results that were compat-
ible with the resolution of the bug, but
were not useful for fixing the bug.

19

Misleading – results not compatible
with the resolution of the bug.

3

4 VALIDATION OF RESULTS
In order to validate the results, we have selected a set of bug reports
where we knew developers used our tool and we have verified
whether the tool

• helped in the resolution of the bug,
• gave compatible clues but did not help solving the bug,
• gave some misleading clues.

The tool has been integrated in Socorro, but we do not know
when the developers use it for their investigations. Some developers,
when using the tool, copied the results of the tool in the bug report
they are working on. This allows us to select a set of real world
cases that we can analyze, given that developers have fixed them
already, so we can evaluate if the results of the tool have been useful
for fixing the bug.

We considered about 800 crash bug reports (approximately 400
closed) generated from September 2016, when our tool has been put
in production, to February 2017, mostly from Mozilla developers.
For 90 of these reports (41 closed) we have definitive evidence
that our tool was used. We have manually analyzed this set of bug
reports and the code changes that are attached to them, finding 19
cases where the tool has been really useful; 19 cases where the tool
generated compatible results, but did not help solving the bug; 3
cases where the tool has produced misleading results. These results
are summarized in Table 4.

In some of the cases where the tool has been useful, we believe
the bug would not have been solved if not with very large investiga-
tive effort. Out of the three cases where the tool has beenmisleading,
we believe that, by improving the initial clustering algorithm, two
misleading results would have been avoided. These are analyzed in
more detail in section 4.1.4 and 4.1.5. As already said in the Intro-
duction, the quality of clustering can strongly affect the results of
the algorithm, polluting group statistics with unrelated reports, or
generating groups too small to provide meaningful statistics at all.

When the clustering algorithm fails by generating groups that
are too large (clustering together crashes that have no relation with
each other), it is harder for the correlation tool to find interesting
properties. Indeed, as many crashes which are actually really dif-
ferent from each other get clustered together, it gets more difficult
to analyze them (both manually and automatically).

When the clustering algorithm fails by generating groups that
are too small (allocating reports for the same crash to different

groups), the correlation tool, and manual analysis, is more prone to
find spurious correlations.

The clusters’ dimensions can vary wildly between thousands of
reports (the most crowded cluster contains around 20000 crashes)
and a very small number of reports (even a single one). We only
apply the tool to the largest 200 clusters, as they are the most
important ones (after the 200th cluster, we only have clusters with
less than 100 reports). These top clusters account for around 55%
of all reports, but there is a very long tail of clusters with very few
reports.

4.1 Deployment on Socorro
We tested the tool on crash groups which we already analyzed
in the past, to assess its validity, and we put it in production for
new crash groups. In this section, we summarize a few interesting
results that we obtained during our analysis.

4.1.1 AMD CPU Bug. A group of crashes was found to be cor-
related with a particular family of AMD CPUs. We later found that
the particular family of AMD CPUs that was involved in the crash
group was affected by a hardware bug, and developers were able to
find a workaround for it.

4.1.2 Antivirus-Related Crash. A group of crashes was found to
be correlated with a version of an addon of an antivirus suite. In
cases like this, the tool allows us to act quickly and simply block
the addons (or modules) that cause problems, while we talk with
the vendors to solve the problem in the long term.

4.1.3 Crash Without AdBlock. Interestingly, the tool also gen-
erates results that are quite open to intepretation. For example,
there was a crash group that was more common to users without
ad-blocking addons. It was a crash happening often with a very
famous Flash game. We believe the crash was caused by some ad
network serving particular advertisement that would cause the
browser to crash. The crash disappeared quickly on its own, which
supports that hypothesis.

4.1.4 Misleading Result Caused by Clustering Failure (Too Few
Clusters). Crashes related to the JIT compiler for JavaScript are a
clear example of how crash clustering can affect the results of the
tool. The clustering algorithm employed by Socorro does not work
well for those kind of crashes, often lumping unrelated crashes
together. The correlation tool is only able to tell that the group of
crashes is related to the JIT, but cannot say much more.

4.1.5 Misleading Result Caused by Clustering Failure (Too Many
Clusters). There was a crash, which was later diagnosed to be due
to concurrency issues, which was happening in different functions
according to CPU brand or graphics card. This caused the clustering
algorithm used by Socorro to generate a new cluster for each CPU
brand / graphics card, making each cluster obviously correlated to
those. Clearly, the correlations were spurious.

4.1.6 Analyzing Crash Reports Before/After a Change. The al-
gorithm is really useful when analyzing a crash group generated
by Socorro, but can be used for generic groups as well. For exam-
ple, to analyze the differences in the properties of crash reports

723

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi

before/after a change, e.g. to assess the effectiveness of the change
and as another means to ensure that it did not cause regressions.

We employed the tool to analyze the differences between the
crashes before/after a change that relaxed the blocklist for graphics
acceleration on NVIDIA graphics cards. We found that the change
improved the stability with a particular version of the NVIDIA dri-
vers (one where hardware acceleration was previously blocked and
unblocked by the change), probably because hardware acceleration
is a more common and thoroughly tested code path.

4.2 Feedback from Developers
Developers and people triaging crash bugs generally expressed
favourable opinions about the tool. We collected suggestions from
them since the deployment to Socorro. Most of the suggestions
were requests of addition of new possible fields to the analysis
(sometimes meta-information dynamically generated from already
existing fields). Some of the suggestions were instead related to the
way results are shown, which is actually a pretty important aspect.
Indeed, we empiricaly noticed that, if the information presented
to the user is too crowded (e.g. too many useless attributes, too
much information), the user is more likely to complain or overlook
something. In the remainder of this section, we present some of the
more specific suggestions that we received from developers.

4.2.1 Employing the Correlation Results Themselves to Improve
Clustering. The correlation analysis itself might be useful to im-
prove the clustering algorithm. For example, two groups which
present similar correlations might be clustered together. Groups
which do not have any interesting correlation, might be candidates
to be split.

We observed that this operation was done manually by devel-
opers in the results validation. Concerning two bugs where the
correlations were very similar, the developers noticed that the two
groups were actually a single one (and closed a bug as a duplicate
of the other).

4.2.2 Extract Information from Unstructured Crash Report Fields.
The algorithm we presented only works with discrete fields, but
crash reports often contain unstructured information too. The user
comment is a clear example. The TF-IDF solution works for simple
cases and it could be greatly improved. For example, if several users
mention the same thing in different ways, TF-IDF will not notice it.
Using a more powerful text mining algorithm might improve the
results, although it is still not clear to us how much information is
actually contained in the users’ comments. We noticed some cases
where it turned out to be useful, but devolving time and resources
for this might not be too valuable.

4.2.3 Driving Automated Tests Configuration. At Mozilla, we
developed a tool which automatically tries to reproduce crashes
with different settings and under different configurations, called
BugHunter [20]. The correlation results could help in driving the
tool to directly test under a configuration that is more likely to
reproduce the crash, both saving running time (e.g. if a crash is
only happening with a specific graphics card vendor and a specific
driver, there is no point in trying to reproduce it with a graphics
card from a different vendor) and making reproducibility easier.

4.2.4 Predicting Volume of a Crash in a Release Channel from
Pre-release Channels. By linking the data generated by the corre-
lation tool with data about the user population distribution, we
can estimate how a crash that is affecting a pre-release version
will affect the release version. The reader can refer to the work
by Khomh et al. [14] for an explanation of the Firefox pipelined
release model. This has been attempted in the past using machine
learning techniques: in Kim et al. [10] it was used to predict which
crash stack is more probable to become a “top crash” and should be
fixed first. For example, Firefox Beta users are predominantly from
the United States. The percentage of those users is fairly lower in
Firefox Release. This means that crashes that are easily reproducible
on a website that is not in the English language, are very likely to
go unnoticed during the Beta cycle and explode when Firefox is
released. If we had a way to re-rank the crashes considering the
attributes to whom they are correlated and the incidence of those
attributes in different channels, then those crashes would less likely
go unnoticed.

5 THREATS TO VALIDITY
Internal validity threats concern factors that may affect a dependent
variable and were not considered in the study.We evaluated our tool
on 41 closed bugs, which might not be a representative dataset. We
have chosen to evaluate the results on the fixed bugs as we needed
to check if the fix was compatible with the findings of the tool.
External validity threats are concerned with the generalizability
of our results. In this paper, we only evaluated the results of the
tool applied to Mozilla Firefox crashes, because its crash data, bug
reports and source code are publicly available.

6 RELATEDWORK
Bird et al. [5] studied the effect of extrinsic factors on software
reliability. In our experience we found evidence that corroborates
their findings: there are several crashes that are due to external
software badly interacting with Firefox. In our case though we often
noticed security applications being the root cause of the crashes.

6.1 Automatic Crash Reporting Systems
Several past studies have shown how a crash reporting system,
such as Socorro, can be very valuable for discovering and fixing
crashes. For example, Glerum et al. [12] presented their experience
with WER (Windows Error Reporting). Ahmed et al. [1] studied
the Mozilla crash reporting system. One of the problems presented
in [1] is the overwhelming amount of data that is made available
through a crash reporting system. Our work tries to solve this
problem by using data mining techniques to handle the complexity
of the data and provide a way to automatically understand it.

6.2 Crash Clustering
The crash clustering problem has been studied extensively in the
literature and is closely related to the technique presented in our pa-
per. Indeed, a good clustering technique is needed in order to avoid
false positives or false negatives. Lohman et al. [18] and Modani et
al. [19] adapted stop-word removal to call stacks, removing recur-
sive calls, and using similarity measures like edit distance, longest
common subsequence, and prefix matching. Bartz et al. [2] used

724

Automatically Analyzing Groups of Crashes
for Finding Correlations ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

edit distance, proposing seven types of edits assigned with different
weights. Dhaliwal et al. [9] proposed a two-level grouping of crash
reports, using Levenshtein distance [25] to evaluate the similar-
ity between stack traces. Dang et al. [8] presented ReBucket, an
algorithm for clustering crashes based on a custom method (called
PDM, Position Dependent Model) that uses the position of a func-
tion in the stack trace and the offset between matched functions
for calculating the similarity between stack traces. Lerch et al. [17]
proposed using a well known information retrieval technique, term
frequency and inverse document frequency, to rate stack traces.
Campbell et al. [6] presented an overview of several clustering
algorithms, including the one presented by Lerch et al., evaluating
their results in the same setting (Ubuntu Apport crashes). They
found traditional information retrieval techniques to outperform
techniques specifically designed for crash clustering. The proposed
algorithm is strongly related to crash clustering, as it operates on
clusters of crashes. Thus, its performance is directly affected by the
quality of the clustering algorithm employed.

6.3 Visualization of Crash Reports
Another related area of research is the visualization of crash reports
to aid in the understanding by developers. For example, Kim et al.
[15] proposed an approach based on an aggregated graph view of
multiple crashes. They also presented a way to use the crash graphs
for clustering. Chan et al. [7] presented three types of graphs to
analyze field testing results under three different perspectives. The
above approaches could be combined with our proposed approach
to improve understanding of group of crash reports.

6.4 Triaging of Crash Reports
Kim et al. [10] presented a machine learning technique to predict
which crash stacks are more probable to become “top crashers”
and should be fixed first. Khomh et al. [13] proposed an entropy
evaluation approach, taking into account volume of crash groups
and distribution among users, to rank the crash clusters by impor-
tance. The above approaches focused on prioritizing the groups
of crash reports for bug fixing. Our approach instead identifies
generic properties of the groups, which can be later used by devel-
opers and managers, not only for prioritization, but also to directly
understand possible causes.

7 CONCLUSION
Crashes are one of the main pain points for users of a software.
Fixing them promptly can improve the users’ perception of the
quality of a software. We found that analyzing crash reports in
an automated manner can help developers in fixing crashes, by
removing manual analysis burden from developers, or by finding
properties that would have been really difficult to find with manual
analysis, or can give clues in the characterization of crashes. Soft-
ware organizations can use these data mining techniques to speed
up and simplify the resolution of crashes and to reduce the amount
of manual tedious work for developers.

7.1 Future Work
We identified two interesting directions for future work. First, as
discussed in the Validation section (section 4), with examples in

section 4.1.4 and 4.1.5, the results of the crash clustering can greatly
affect the results of our tool. Thus, improvements to the clustering
algorithm used by Socorro, other than being useful by themselves,
would benefit our results as well. Second, it could be useful to have
a dashboard to simplify finding reproducible crashes. At Mozilla,
we are often helped by volunteers in reproducing crashes that
are specific to some configuration that we do not have readily
available. The correlation results might be useful to create a way
for volunteers to automatically find the crashes that they might be
able to reproduce, by showing them the crash groups that are related
to their hardware or software (e.g. installed addons, antivirus, etc.)
configuration.

ACKNOWLEDGMENTS
The authors would like to thank the Socorro developers for their
help in the deployment of the tool in the Socorro crash reporting
system. The authors would also like to thank the Mozilla develop-
ers that have used the tool and gave us important feedback and
comments.

This research was carried out within the Fault-Injection-Driven
Approach project in the frame of Programme STAR, financially
supported by University Federico II of Naples and Compagnia di
San Paolo foundation.

REFERENCES
[1] I. Ahmed, N. Mohan, and C. Jensen. 2014. The impact of automatic crash re-

ports on bug triaging and development in Mozilla. In Proc. of the International
Symposium on Open Collaboration. 1:1–1:8.

[2] K. Bartz, J.W. Stokes, J.C. Platt, R. Kivett, D. Grant, S. Calinoiu, and G. Loihle. 2008.
Finding similar failures using callstack similarity. In Proc. of the Third Conference
on Tackling Computer Systems Problems with Machine Learning Techniques. 1–1.

[3] S.D. Bay and M.J. Pazzani. 1999. Detecting change in categorical data: mining
contrast sets. In Proc. of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 302–306.

[4] S.D. Bay and M.J. Pazzani. 2001. Detecting group differences: mining contrast
sets. Data Mining and Knowledge Discovery 5, 3 (July 2001), 213–246.

[5] C. Bird, V.P. Ranganath, T. Zimmermann, N. Nagappan, and A. Zeller. 2014.
Extrinsic Influence Factors in Software Reliability: A Study of 200,000 Windows
Machines. In Companion Proceedings of the 36th International Conference on
Software Engineering. 205–214.

[6] J.C. Campbell, E.A. Santos, and A. Hindle. 2016. The unreasonable effectiveness
of traditional information retrieval in crash report deduplication. In Proc. of the
13th International Conference on Mining Software Repositories. 269–280.

[7] B. Chan, Y. Zou, A.E. Hassan, and A. Sinha. 2010. Visualizing the Results of Field
Testing. In IEEE International Conference on Program Comprehension. 114–123.

[8] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. 2012. ReBucket: a method for
clustering duplicate crash reports based on call stack similarity. In Proc. of the
34th International Conference on Software Engineering. 1084–1093.

[9] T. Dhaliwal, F. Khomh, and Y. Zou. 2011. Classifying field crash reports for fixing
bugs: a case study of Mozilla Firefox. In IEEE International Conference on Software
Maintenance (ICSM). 333–342.

[10] K. Dongsun, W. Xinming, K. Sunghun, A. Zeller, S.C. Cheung, and S. Park. 2011.
Which crashes should I fix first?: Predicting top crashes at an early stage to
prioritize pebugging efforts. IEEE Transactions on Software Engineering 37, 3
(May 2011), 430–447.

[11] B.S. Everitt. 1992. The Analysis of Contingency Tables. Chapman & Hall/CRC.
[12] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols, D.

Grant, G. Loihle, and G. Hunt. 2009. Debugging in the (very) large: ten years of
implementation and experience. In Proc. of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles. 103–116.

[13] F. Khomh, B. Chan, Y. Zou, and A.E. Hassan. An entropy evaluation approach for
triaging field crashes: a case study of Mozilla Firefox. In 18th Working Conference
on Reverse Engineering. 261–270.

[14] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. 2012. Do faster releases improve
software quality? An empirical case study of Mozilla Firefox. In IEEE Working
Conference on Mining Software Repositories (MSR). 179–188.

[15] S. Kim, T. Zimmermann, and N. Nagappan. 2011. Crash graphs: An aggregated
view of multiple crashes to improve crash triage. IEEE Compute Society, 486–493.

725

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi

[16] P. Kralj, N. Lavrač, D. Gamberger, and A. Krstačic̀. 2007. Contrast Set Mining
for Distinguishing between Similar Diseases. In Proc. of the 11th conference on
Artificial Intelligence in Medicine. 109–118.

[17] J. Lerch and M. Mezini. 2013. Finding duplicates of your yet unwritten bug report.
In Proc. of European Conference on Software Maintenance and Reengineering. 69–
78.

[18] G. Lohman, J. Champlin, and P. Sohn. 2005. Quickly Finding Known Software
Problems via Automated Symptom Matching. In Proc. of the Second International
Conference on Automatic Computing. 101–110.

[19] N. Modani, R. Gupta, G.M. Lohman, T. Syeda-Mahmood, and L. Mignet. 2007.
Automatically identifying known software problems. In Proc. of the 23rd Interna-
tional Conference on Data Engineering Workshops. 433–441.

[20] Mozilla. 2017. BugHunter. https://wiki.mozilla.org/Auto-tools/Projects/
BugHunter. (2017). Online; Accessed February 21st, 2017.

[21] Mozilla. 2017. Socorro Crash Report Schema. https://github.com/mozilla/socorro/
blob/master/socorro/schemas/crash_report.json. (2017). Online; Accessed Febru-
ary 21st, 2017.

[22] Mozilla. 2017. Socorro Crash Report Schema. https://developer.mozilla.org/
en-US/docs/Mozilla/Tech/XPCOM. (2017). Online; Accessed February 21st, 2017.

[23] Mozilla. 2017. Socorro server. https://crash-stats.mozilla.com/. (2017). Online;
Accessed February 21st, 2017.

[24] P.K. Novak, N. Lavrač, and G.I. Webb. 2009. Supervised descriptive rule discovery:
a unifying survey of contrast set, emerging pattern and subgroup mining. Journal
of Machine Learning Research 10 (2009), 377–403.

[25] D. Sankoff and J.B. Kruskal. 1983. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. 1–44 pages.

[26] J.P. Shaffre. 1995. Multiple Hypothesis Testing. Annual Review of Psychology 46,
1 (1995), 561–584.

[27] X. Yu, S. Han, D. Zhang, and T. Xie. 2014. Comprehending performance from
real-world execution traces: a device-driver case. In Proc. of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems. 193–206.

[28] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. 2010. Spark:
cluster computing with working sets. In Proc. of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing. 10–10.

726

https://wiki.mozilla.org/Auto-tools/Projects/BugHunter
https://wiki.mozilla.org/Auto-tools/Projects/BugHunter
https://github.com/mozilla/socorro/blob/master/socorro/schemas/crash_report.json
https://github.com/mozilla/socorro/blob/master/socorro/schemas/crash_report.json
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM
https://crash-stats.mozilla.com/

	Abstract
	1 Introduction
	2 Socorro and Crash Reports
	3 Automatic Analysis of Crash Groups
	3.1 The Contrast Set Mining Problem
	3.2 STUCCO
	3.3 Domain-Specific Variations

	4 Validation of Results
	4.1 Deployment on Socorro
	4.2 Feedback from Developers

	5 Threats to Validity
	6 Related Work
	6.1 Automatic Crash Reporting Systems
	6.2 Crash Clustering
	6.3 Visualization of Crash Reports
	6.4 Triaging of Crash Reports

	7 Conclusion
	7.1 Future Work

	References

