Recommender System for Model Driven Software Development

Stefan Kogel*
Institute of Software Engineering and Programming Languages, Ulm University
Ulm, Germany
stefan.koegel@uni-ulm.de

ABSTRACT

Models are key artifacts in model driven software engineering, sim-
ilar to source code in traditional software engineering. Integrated
development environments help users while writing source code,
e.g. with typed auto completions, quick fixes, or automatic refac-
torings. Similar integrated features are rare for modeling IDEs. The
above source code IDE features can be seen as a recommender
system.

A recommender system for model driven software engineer-
ing can combine data from different sources in order to infer a
list of relevant and actionable model changes in real time. These
recommendations can speed up working on models by automat-
ing repetitive tasks and preventing errors when the changes are
atypical for the changed models.

Recommendations can be based on common model transforma-
tions that are taken from the literature or learned from models in
version control systems. Further information can be taken from
instance- to meta-model relationships, modeling related artifacts
(e.g. correctness constraints), and versions histories of models under
version control.

We created a prototype recommender that analyses the change
history of a single model. We computed its accuracy via cross-
validation and found that it was between 0.43 and 0.82 for models
from an open source project.

In order to have a bigger data set for the evaluation and the
learning of model transformation, we also mined repositories from
Eclipse projects for Ecore meta models and their versions. We found
4374 meta models with 17249 versions. 244 of these meta models
were changed at least ten times and are candidates for learning
common model transformations.

We plan to evaluate our recommender system in two ways: (1)
In off-line evaluations with data sets of models from the literature,
created by us, or taken from industry partners. (2) In on-line user
studies with participants from academia and industry, performed
as case studies and controlled experiments.

CCS CONCEPTS

« Software and its engineering — System modeling languages;

*Advisor: Matthias Tichy; EMail: matthias.tichy@uni-ulm.de

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3119874

1026

KEYWORDS

Model Driven Software Engineering; Recommender System; Data
Mining; Machine Learning; Heuristic Search Algorithms

ACM Reference Format:

Stefan Kogel. 2017. Recommender System for Model Driven Software Devel-
opment. In Proceedings of 2017 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, Paderborn, Germany, September 4-8, 2017
(ESEC/FSE’17), 4 pages.

https://doi.org/10.1145/3106237.3119874

1 INTRODUCTION

Models are key artifacts in model driven software engineering.
They offer a higher level of abstraction than source code, speed
up development through the generation of code from them, and
simplify the development of domain specific languages [3].

There are many tools that help software engineers during the
development of models, but most of these are analysis tools that
are used after changing models. An example is the recommender
for conflict resolution in merging models from Brosch et al. [4].

A recommender system uses data about previous actions or
expert knowledge to generate lists of possible future user actions
based on current user actions [15]. Recommender systems are often
used to propose music, films, or products to users based on their
previous behavior.

Simple recommender systems for source code are available in
almost every development environment, e.g. simple auto comple-
tions of names, templates for method stubs or loops, and refactoring
tools that automate common operations.

We present a vision for a recommender system that can be used
during modeling, that supports users by speeding up their work
and notifying them about possible errors.

In our vision, when a user changes a model, the recommender
system will show a list of further model changes based on the cur-
rent ones. These lists of model changes can be based on three data
sources:

(1) past changes to the currently changed model as recorded in a
version control system [11].

(2) additional user defined meta data or artifacts, i.e. documenta-
tion, explicit traces between model elements [6], and consistency
constraints (e.g. OCL) [21]

(3) common changes to models of a similar type that can be gath-
ered from literature [2] or mined via machine learning [20] from
data sets of models under version control.

Models are much more abstract than source code, but there is still
repetition during modeling that can be automated. In the following,
we present possible use cases:

https://doi.org/10.1145/3106237.3119874
https://doi.org/10.1145/3106237.3119874

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

o In a class diagram, most classes will have a super class or other
associated classes. When a user adds a new class, a recom-
mender system can give the user a hint to click on another
class. If the user accepts the hint, a new reference link to the
clicked class can be inserted automatically. The type of the
reference (composition, inheritance, etc.) can be based on the
most common type of reference in the diagram.
Some projects require that every element in a certain model
has a documentation attribute. A recommender can infer this
requirement automatically from this model and highlight ele-
ments that do not yet have such an attribute.
A user may start refactoring a model manually, for example
by moving all common attributes in a set of subclasses into
their parent class [1]. A recommender can then check if the
manual changes match an expert defined model transforma-
tion and automatically recommend the remaining steps of the
refactoring.

e The classes in a class diagram can also appear in a sequence
diagram. If a class is renamed or if its methods change, then
the sequence diagram might need to be updated so that the
two models remain consistent with each other. A recommender
system that is integrated into an IDE can use inter-model traces
between related elements to notify users of such possible in-
consistencies [6].

From the above, we infer four aims for our recommender system:
Aim 1: Recommendations are relevant to the currently edited model
and actionable for the software engineer.

Aim 2: The recommender has information about the model’s his-
tory and other related models in order to make recommendations
based on past changes and related elements in other models.

Aim 3: The recommender will be be evaluated off-line with data
sets and on-line in case studies and controlled experiments.

Aim 4: The user interface is good enough so that users don’t get
frustrated by usability problems and stop using the recommender.

We give an overview of related work in Section 2. Section 3
presents our approach for developing the recommender system.
This section also describes our results achieved so far and outlines
our plan for evaluation. Section 4 contains a short summary of this

paper.

2 RELATED WORK

Ricci et al. [15] describe fundamental recommender techniques
(Aim 1), evaluation techniques (Aim 3), and usability issues (Aim
4). They also discuss how user generated content can be incorpo-
rated into recommender systems, which is relevant to our approach
of learning recommendations from how users change models.

Robillard et al. [16] focus on recommender systems for software
engineering. For these they identify the challenge of automatically
interpreting technical data stored in software repositories (Aim 2).

For Aim 1 we need to generate and rank recommendations:

Sen et al. [18] present a system that completes an instance model
so that it becomes valid to its meta model. While their system does
not take the instance model’s history or related models into account,
it could be used for generating recommendations for incomplete
models. (They also implemented a user interface for their system,
which is relevant for Aim 4.)

1027

Stefan Kogel

Bruch et al. [5] developed and evaluated several techniques to
improve the auto completion for source code in Eclipse. They rank
auto completions by counting how often they match code frag-
ments from the software engineers source code repository. Their
techniques can also be applied to ranking recommendations for
models.

For Aim 2 we need to analyze and represent the changes to
models over time:

Herrmannsdorfer et al. [7, 8] have analyzed Ecore meta mod-
els [19] from the Eclipse Graphical Modeling Framework!. They
inferred a set of atmoic change operations that can be combined to
describe all changes to these models. Langer et al. [13] developed
this idea further by identifying complex change operations that
consist of the atmoic change operations. These complex change
operations can be used to describe changes to a model on a more
abstract level in our recommender.

Kehrer et al. [10] developed the tool SiLift. This tool automati-
cally generates consistency-preserving model transformations that
describe the difference between two versions of the same model.
These models can be instance or meta models, as long as they are
based on EMF and their meta models are available. The transfor-
mations are made up of the above atomic and complex change
operations, represented as Henshin [1] rule applications. We use
this tool in our work to analyze changes between model version.

The second part of Aim 2 encompasses the analysis of inter
model relations:

Getir et al. [6] proposed a framework for model co-evolution,
where users generate traces between related elements in different
models. This approach requires additional information from the
software engineer. When this data is available, it can be used to
improve recommendations.

Ricci et al. [15] give two main approaches for evaluating recom-
mender systems that are relevant for Aim 3:

(1) In an off-line evaluation, an appropriate data set is split into
a training and evaluation set and used for generating recommen-
dations and validating these. But this is not sufficient on its own,
because no human subjects are involved.

(2) An on-line evaluation can be done as a controlled experiment
(Wohlin et al. [22]) or as a case study (Runeson et al. [17]). Both
approaches require human subjects.

Because there are few recommender systems for modeling, we
looked at usability studies for other types of recommender systems
in order to achieve our Aim 4:

Zins et al. [23] evaluated a travel recommendation system using
a combination of objective and subjective metrics. They found that
there are three factors for user satisfaction: ease-of-use/learnability,
effectiveness/outcome, and reliability. These factors are also rele-
vant for a software development related recommender system.

3 PROPOSED APPROACH

In order to implement our proposed recommender and achieve the
aims, we propose the following approach.

Figure 1 shows an outline of the artifacts required to develop
our recommender system. The plan consists of four phases: data
gathering, analysis (Aim 1 and 2), evaluation (Aim 3 and 4), and

!https://www.eclipse.org/modeling/gmp/

https://www.eclipse.org/modeling/gmp/

Recommender System for Model Driven Software Development

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Year 1 Data Gathering Analysis Evaluation (and Required Implementations) Synthesis
Done Eclipse Projects
MetapModel.i, (A1) l Recommender Prototype (A5)
Eclipse Projects x\ Common Model
Year 2 Instance Models (A2), ransformations (A6 [T=IRecommender 1.0 (A8)
wip !
PPU-Models (A3) Model Evolution
Patterns and Artefacts (A7)
Results of User Interface (A10)
Year 3 Evaluations \i/ 1 J/
planned Models and with Case Study
Contacts to Practitioners c ind” ’ Results of Recommender 2.0
from Industry (A4) ontrolle User Acceptance (A12)
Experiments (A9) Testing (A11)

Figure 1: Required artifacts for finishing the recommender. Sorted by project phase and estimated finishing time. Dependen-

cies are depicted as arrows.

synthesis. Some of these phases will be worked on in parallel. The
artifacts are ordered according to their dependencies. Along the
x-axis is a rough time plan indicating when the artifacts will be
done, or which artifacts (A[1-12]) have already been finished.

Data gathering: Recommendations cannot be made in a vac-
uum. Additional context information about a modified model needs
to be gathered in order to make relevant recommendations. We see
two main approaches here:

(1) Similar models and their change histories can be analyzed for
common changes and refactorings. These can be precomputed and
integrated into the recommender.

(2) The history or meta information of the model that is currently
worked on can be analyzed to generate specialized recommenda-
tions for this exact model. This needs to be computed on the user
side.

In respect to point (1) above, we mined open source git reposito-
ries hosted on Eclipse projects for Ecore meta models [12] (A1). We
found 4374 Ecore meta models with 17249 versions from Eclipse
projects. 244 of these meta models were changed at least ten times.
These changes were distributed over the whole lifetimes of the
models and give insights into how meta models are changed by
users.

We plan to use this data set to learn common model transforma-
tions for Ecore meta models [9, 20] and to use it for off-line evalua-
tions of our recommender system. Common model transformations
can be used as blueprints for recommendations by matching them
to changes made by a user. When a common transformation be-
comes a good enough match for a sequence of user changes, the
remaining changes in the transformation can be recommended to
the user. This is similar to a live application of model repair [21].
Note that we will also have to investigate what good enough means.

The Ecore meta model data set can also be used as a starting
point for identifying instances of these meta models in Eclipse
projects (A2). These instance models will enable us to learn addi-
tional common model transformations for other types of models,
increasing the generality of our recommender.

Our work is part of a joint project that uses a common demon-
strator called the Pick-and-Place-Unit [14] (PPU). The PPU is a
bench-scale manufacturing system that is used as an open case

1028

study for studying evolution of automation systems. We plan to
create further models based on the PPU in a case study of our own
in order to further evaluate our recommender system (A3).

For our final data set we plan to use our contacts to industry to
get access to models and practitioners from an industrial setting
(A4) in order to further evaluate our recommender system.

Analysis: The quality of recommendations depends in part on
the availability of information about how certain types of models
are changed, or how they evolve.

Based on our data sets of models and their meta data (from A1
and A2) we plan to apply machine learning techniques and heuristic
search algorithms similar to [20] in order to learn common model
transformations (A6). For this, we currently evaluate an approach
where model transformations are represented as sets of atmoic
change operations[10] and we use a genetic algorithm to find model
transformations that appear often in the data set from A1.

Another possible approach is applying association rule learning
or random decision forests to our data set of model versions A1.
The resulting rules or decision trees can then be used to generate
recommendations.

Note that the above approaches will not necessarily generalize
between different types of models.

To get a better insight into how models and their related artifacts
(generated code, OCL constraints, instances of meta models, etc.)
evolve over time we will also perform further studies of the artifacts
contained in the repositories identified in A1. We will use this
result to decide which artifacts are most helpful for generating and
improving recommendations (A7).

Evaluation: We have created a prototype recommender [11]
(A5) that represents recommendations as Henshin rule applica-
tions [1]. This recommender computes the atmoic change opera-
tions between all consecutive versions of a model including the
most recent change by a user. It then searches for matches of the
user change in the historic changes. If there is a match, it is extended
by related atmoic change operations from the historic changes. Here
model transformations are related if they simultaneously modified
the same elements in the model. For every related model transforma-
tion, one recommendation is generated. Finally, the recommender
aggregates all recommendations to a single one by computing the

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

atmoic change operations that are common to all generated recom-
mendations.

We evaluated this prototype with a data set from Hermannsdor-
fer et al. [7, 8]. Our main results were that recommendations can
be generated based on a model’s change history with a precision
between 0.43 and 0.82, but further work is required in order to
rank the recommendations based on relevance and to aggregate
many similar recommendations into a single actionable one. Note
that the above precision values are from a simple prototype and
that we expect to further improve them by adding more complex
techniques.

Another result was that it is possible to reuse historical changes
as recommendations by adapting them to the current changes made
by a user. Although such an adaptation cannot always be done
automatically and some user input is required.

For example, our recommender infers for our test data set that
most of the time when a new node is added to an Ecore meta model
it should also have a reference to a super class. However it is difficult
in the general case to determine to which class this reference should
point.

There are techniques for source code recommenders that im-
prove the relevance of their recommendations, e.g. [5].We plan to
adapt these in order to rank and aggregate model recommendations.
Furthermore, we can combine them with our results from A6 and
A7, leading to an improved version of our prototype recommender
system (AS8).

This new recommender system will be evaluated with data from
our research partners (A3) and from industry contacts (A4). We
will then publish the results in order to gain further feedback (A9).

We plan to integrate our recommender system into a common
modeling IDE like Eclipse (A10), in order to evaluate it with users
in a case study (A11).

Synthesis: Our final step will be to integrate the results from the
evaluation (A9 and A11) and to further develop the recommender
system (A8) and its user interface (A10) into a final version (A11).

4 SUMMARY

We have presented a vision for a recommender system for model
driven software development. The recommender system combines
state of the art approaches from model driven software development
(e.g. model repair, model refactorings, learning of model transfor-
mations) with approaches from source code recommender systems
(e.g. type based auto completions, refactorings, quick fixes). It can
be used to speed up modeling by automating repetitive tasks and
to ensure correctness by warning users when they violate consis-
tency constraints (both intra- and inter-model) or when they make
atypical changes to a model.

In order to develop and evaluate the recommender, high quality
data sets of models, their evolutions, and their related artifacts will
be created and made available to other researchers. Common model
transformations and evolution patterns will be learned from these
data sets and will also be made available.

ACKNOWLEDGMENTS

This work was partially supported by the DFG (German Research
Foundation) (grant numbers TI 803/2-2 and TI 803/4-1).

1029

Stefan Kogel

REFERENCES

[1] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. 2010. Henshin: advanced concepts and tools for in-place EMF model
transformations. In International Conference on Model Driven Engineering Lan-
guages and Systems. Springer, 121-135.

Enrico Biermann, Karsten Ehrig, Christian Kohler, Giinter Kuhns, Gabriele
Taentzer, and Eduard Weiss. 2006. EMF Model Refactoring based on Graph
Transformation Concepts. ECEASST 3 (2006). http://journal.ub.tu-berlin.de/
index.php/eceasst/article/view/34

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-driven software
engineering in practice. Synthesis Lectures on Software Engineering 1, 1 (2012),
1-182.

Petra Brosch, Martina Seidl, and Gerti Kappel. 2010. A recommender for conflict
resolution support in optimistic model versioning. In Companion to the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, SPLASH/OOPSLA. 43-50. DOI : http://dx.doi.org/10.
1145/1869542.1869549

Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from examples
to improve code completion systems. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. ACM, 213-222.

Sinem Getir, Michaela Rindt, and Timo Kehrer. 2014. A generic framework for
analyzing model co-evolution. In Model Evolution, International Conference on
Model Driven Engineering Languages and Systems.

Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. 2009. COPE-
automating coupled evolution of metamodels and models. In European Conference
on Object-Oriented Programming. Springer, 52-76.

Markus Herrmannsdoerfer, Daniel Ratiu, and Guido Wachsmuth. 2009. Language
evolution in practice: The history of GMF. In International Conference on Software
Language Engineering. Springer, 3-22.

Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and
Manuel Wimmer. 2012. Model Transformation By-Example: A Survey of the
First Wave. In Conceptual Modelling and Its Theoretical Foundations - Essays
Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday. 197-215.
DOI:http://dx.doi.org/10.1007/978-3-642-28279-9_15

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2011. A rule-based approach
to the semantic lifting of model differences in the context of model versioning.
In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 163-172.

Stefan Kogel, Raffaela Groner, and Matthias Tichy. 2016. Automatic Change
Recommendation of Models and Meta Models Based on Change Histories. In
Proceedings of the 10th Workshop on Models and Evolution (ME2016), Saint-Malo,
France, October 2, 2016. 14-19. http://ceur-ws.org/Vol-1706/paper3.pdf

Stefan Kogel and Matthias Tichy. 2017. Mining GIT Repositories for ECORE
Models and their Version Histories. under submission.

Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmannsdorfer, Martina
Seidl, Konrad Wieland, and Gerti Kappel. 2013. A posteriori operation detection in
evolving software models. Journal of Systems and Software 86, 2 (2013), 551-566.
Christoph Legat, Jens Folmer, and Birgit Vogel-Heuser. 2013. Evolution in Indus-
trial Plant Automation: A Case Study. In Annual Conference of the IEEE Industrial
Electronics Society (IECON). Wien, AUsterreich. ;

Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-
mender systems handbook. Springer.

Martin P Robillard, Walid Maalej, Robert] Walker, and Thomas Zimmermann.
2014. Recommendation systems in software engineering. Springer Science &
Business.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case study
research in software engineering: Guidelines and examples. John Wiley & Sons.
Sagar Sen, Benoit Baudry, and Hans Vangheluwe. 2010. Towards domain-specific
model editors with automatic model completion. Simulation 86, 2 (2010), 109-126.
Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

Daniel Striitber. 2017. Generating Efficient Mutation Operators for Search-Based
Model-Driven Engineering. In International Conference on Theory and Practice of
Model Transformations (ICMT). https://rgse.uni-koblenz.de/web/pages/research/
papers/Str17.pdf

Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo, and Adrian Rutle. 2017.
Change-Preserving Model Repair. In International Conference on Fundamental
Approaches to Software Engineering. Springer, 283-299.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Andreas H Zins, Ulrike Bauernfeind, Fabio Del Missier, Adriano Venturini, and
Hildegard Rumetshofer. 2004. An experimental usability test for different destina-
tion recommender systems. na.

[4

[5

=

(10]

[11

=
)

(13

[14

[15

[16]

[21

[22

[23

http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/34
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/34
http://dx.doi.org/10.1145/1869542.1869549
http://dx.doi.org/10.1145/1869542.1869549
http://dx.doi.org/10.1007/978-3-642-28279-9_15
http://ceur-ws.org/Vol-1706/paper3.pdf
https://rgse.uni-koblenz.de/web/pages/research/papers/Str17.pdf
https://rgse.uni-koblenz.de/web/pages/research/papers/Str17.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Summary
	References

