
Reaching the Masses:
A New Subdiscipline of App Programmer Education

Charles Weir

Security Lancaster
Lancaster University, UK

+44-7876-027350

c.weir1@lancaster.ac.uk

Awais Rashid

Security Lancaster
Lancaster University, UK

+44-1524-510316

a.rashid@lancaster.ac.uk

James Noble

Victoria University
Wellington, NZ
+64-4-4635233

kjx@ecs.vuw.ac.nz

ABSTRACT

Programmers’ lack of knowledge and interest in secure develop-

ment threatens everyone who uses mobile apps. The rise of apps

has engaged millions of independent app developers, who rarely

encounter any but low level security techniques. But what if

software security were presented as a game, or a story, or a

discussion? What if learning app security techniques could be fun

as well as empowering? Only by introducing the powerful

motivating techniques developed for other disciplines can we

hope to upskill independent app developers, and achieve the

security that we’ll need in 2025 to safeguard our identities and our

data.

CCS Concepts

• Social and professional topics~Software engineering educa-

tion • Security and privacy~Software security

engineering • Security and privacy~Human and societal aspects

of security and privacy

Keywords

app developer, app development, app programmer, app security,

application security, continued learning, mobile app, programmer

education, secure app, secure app development, security tech-

nique, software development, software security, whole system

security

1. INTRODUCTION
Mobile apps are increasingly becoming the lynch pins of our

lives. We use apps to communicate, apps to plan, apps to manage

our finances, apps to do our shopping, and apps to remember all

our security information.

Creating our apps are more than 2.9 million app developers, of

whom only some 25% are professionals developing apps for

companies [12]. In those apps, cloud-based connectivity and

social networking functionality are making trust and security

issues fundamentally important. So security expertise – and hence

effective security practices – in those developing such apps is

vital.

Yet there is considerable evidence that such expertise is lacking.

Analysis of the top five payment apps by Bluebox, a security

solution provider, found significant security failures in each [3];

analysis of a range of Android apps by Enck et al found privacy

problems in most of them [6]. Both analyses highlighted that it

was the choices that the app programmers had made that were

causing the problems; given the same environment and cloud

services they could have chosen problem-free implementations.

And indeed a recent IBM-driven survey of opinions about app

security in American companies [9] revealed that more than 70%

percent believed that the developer inexperience was a major

threat to their business.

2. EXPLORING THE PROBLEM
To address this problem, the authors instigated open-ended

interviews with a dozen experts in app security. Table 1 lists the

participants along with the organization each worked with most; it

shows an indication of the organization size and a subjective

estimate of the organization’s position in on a ‘secure software

capability maturity model’. Throughout this paper we’ve quoted

from interviewees, giving their identifiers.

Table 1: Interviewees and their organizations

Identi-
fier

Organisation type Org.
size

Est.
CMM

P1, P12 Bespoke app developer Solo Low

P2, P7 Mobile phone manufacturer Med. High

P3, P11 Operating system supplier Large High

P4 Smart card specialists Small Med.

P5 Security-related software-as-
service supplier

Med. High

P6 Promoting industry Gov’t Low

P8 Telecoms service provider Large Med.

P9 Bank Large Med.

P10 Secure app technology
provider

Small Med.

The conclusions were daunting. Most of the interviewees, natural-

ly, were working in areas where there was considerable effort put

into security. But they saw little interest or activity related to app

security in other companies and areas.

“Very very few developers are actually interested in security…

You can see that from the Apps World [exhibition] where there’s

no mention of security at all.” (P1)

And where app programmers are learning about security, the

experts saw them as typically concentrating on low-level, check-

list based, approaches to getting app code secure, and ignoring the

wider picture. Our interviewees were clear that in order to get

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983981

936

effective app privacy and security, programmers would need to

have some awareness of the wider issues of security.

“Businesses need to take a realistic approach – it's a business

decision on their part – 'I understand what my assets are and I

understand what things I need to protect and I understand how

much I am willing to pay for that – and understand how much risk

I am going to take.' None of these things do you need to know

what a buffer overflow is for!

But nevertheless that is what lots of people, including PCI as it

happens, seem to think computer security is about – and it really

shouldn't be.” (P6)

2.1 Difficulty of Learning Security
Developers in the large, security-aware, companies are already

well catered for with on-the-job training in app security.

“The internal training, and tools and technologies for [software

privacy] are good. Mostly through internal training, I guess,

nowadays.” (P3)

Our experts indicated, however, that app developers in other

contexts are not generally learning what they need to know. They

have no colleagues to learn from; training is expensive and not

felt necessary.

“I’m probably not unusual in terms of software people in that you

don’t really take courses”. (P12).

Most security writing has a further problem, highlighted by

Conradi and Dyba [4]: programmers resist learning from the

output of process improvers, and particularly from formal written

routines. Yet much of the existing security literature is of this

kind.

Furthermore many undergraduate university courses do not cover

app security well, so even those trained there are not being well

catered for.

“So for the majority of people who are currently going through

various computer science degrees, security doesn't really come

into it at all, in any real context”. (P10)

2.2 Relationship to Other Learning
Let’s consider the typical approaches that app programmers do

have for learning. As Enes [7] found, most professional learning is

on-the-job. Our interviewees confirmed this.

 “We use external consultancies but we haven't really done any

formalized training” (P2)

So the main sources of information are those normally available to

app programmers. These are:

 Web searches, typically leading to developer sites such

as Stack Overflow.

 Popular guides such as the O’Reilly series

 Occasional shows and industry events

 Blogs on app development

 Operating system websites

Guide books for app programmers do exist, such as Application

Security for the Android Platform [10] or Learning iOS Security

[1]; however since few app programmers are interested in securi-

ty, they’re not well motivated to buy them – and both books are

restricted to exploring the security features of their respective

platforms. Similarly operating system manufacturers’ websites

and blogs on app development aren’t helpful unless programmers

actively seek them out.

Unfortunately, as a learning resource, Stack Overflow and similar

bulletin boards have a significant flaw: they are poor for gaining

an overview to a topic, and actively discourage questions that

don’t have focused answers. A detailed analysis of the topics on

the Stack Overflow site [2] found little in the way of overview

discussions.

Thus sites like Stack Overflow are valuable in helping program-

mers sort out problems they know they have, but don’t help

programmers with problems they don’t know they may have;

most security problems are likely to be of this second type.

3. WHAT DO PROGRAMMERS NEED TO

LEARN?
From the interviews we have identified a set of key security

techniques that app developers need to know. These fall naturally

under five categories: analysis, communication, dialectic, feed-

back and upgrading. The following sections explore each in turn.

3.1 Analysis
Security analysis is thinking outside the simple scope of pro-

gramming. In particular it is the need to make security-aware

choices of programming environment, tools and components. It is

the need to review the system from the point of view of an

attacker, and to identify likely exploits. It is understanding and

thinking through the motivations of possible attackers, in order to

understand how best and most cheaply to deter them.

“I think the things that are the most challenging around security

really are trying to understand the threat landscape and trying to

understand how threats are realized.” (P2)

3.2 Communication
The primary communication the experts identified is the discus-

sion with project stakeholders about security. Our experts were

clear that there is no such thing as perfect security, and that the

trade-offs between the various costs of security (such as develop-

ment time, usability issues, tool costs and expertise costs) require

discussion with stakeholders. There are particular skills in repre-

senting security decisions in terms that non-programmers will

understand.

“It goes from there: how secure do you want it to be. You have to

show that there’s a problem first I think, that’s how it’s phrased”.

(P1)

A second place where communication is important in the context

of security is the discussion with other teams about responsibili-

ties and the impact of different exploits.

“[In a project with successful security] everybody who was close

to the project, lived through the project life cycle to delivery, was

very comfortable picking the phone up to anybody else and

discussing any aspect, and everyone reported back quite openly

what they were seeing, and when we came together”. (P8)

3.3 Dialectic
Dialectic is a word from Greek that means learning by interrogat-

ing. Many of the best and most often mentioned security

techniques are dialectic and involve critiquing what the program-

mer has produced: penetration testing, code reviews, code analysis

tools, and even automated testing tools. Obviously the choice of

approach depends on the programmer’s situation; penetration

testing can be expensive. But free code analysis tools ensure that

every app programmer has access to at least one of these.

“We do code reviews as much as possible”. (P7).

937

“[Security] tends to get handed off, in most companies I've

worked with, to a white-hat hacking team.” (P8).

“And so [when] the tools do the code inspection review for you,

for free, constantly, all the time, so you can't skip it, then yes,

that’s a huge win”.(P3)

3.4 Feedback
Many interviewees stressed the importance of gathering infor-

mation from the deployed apps to detect and evaluate security

issues. This is much more difficult with mobile apps than servers,

since apps don’t have continuous connections and are on devices

under the control of other people. But there are a range of tools

available, and so programmers need to be aware of the possible

need for feedback mechanisms.

“I think one of the problems with remote devices is that these

devices are intended to be robust against all attackers if you lose

your device. So the builds that we produce – we're trying to look

at them and see what is happening on them, [but they are built] by

design such that [you] can't get raw access to those devices”

(P11)

3.5 Upgrading
Many apps are released with a “fire and forget” mentality. This

does not work well with security issues, where the security

landscape is changing continuously and the nature of threats

changes too. So app developers need to consider mechanisms to

ensure upgrading. There are practical issues: though the ‘App

Stores’ support upgrading, this feature is often not actioned by

users. And there are commercial issues: once a project has ended

who will implement upgrades? So app developers need to consid-

er ways to support and enforce upgrading.

“And the patches and updates are basically what modern security

is about – mistakes will be made and when the mistakes are found

– how do you get the updates out?” (P3)

4. REACHING THE MASSES
Thus there is a vast population of isolated developers who are not

being reached by the existing resources and information about app

security: both developers on their own, and those developing apps

within organizations that don’t currently see security as an issue.

We’ve identified five key points we need to teach to these isolated

app developers: analysis, communication, dialectic, feedback and

upgrading – each in the context of app development security.

And we’ve uncovered three important roadblocks hindering the

learning of app security: first, programmers don’t learn well from

process-improvement styles of literature; second, the main

programmer sources of knowledge (‘Googling Stack Exchange’)

won’t give programmers the information they most need to know;

and finally, most app developers don’t appreciate that they may

need to learn about the subject.

To improve the situation we need to reach out to a group of

individuals, without having direct access to them. It’s a different

problem from teaching other aspects of software development,

such as internationalization or DevOps, since app developers

won’t necessarily access good resources or training even if these

are available. We need a new paradigm; we need a new way to

reach these people.

4.1 A Different Approach
Different programmers learn in different ways and are interested

in different things, so we believe a single form of intervention,

however effective, is unlikely to reach all of our target audience.

Also, since we are in effect teaching new attitudes, few of the

traditional mechanisms such as books are likely to work.

We propose instead ‘engaging’ interventions likely to appeal to

programmers for their own sake. We anticipate that these will be

publicized via the web: expert blogs, and security OS websites.

The following sections explore some possibilities for these

interventions.

4.2 Games that Teach
One popular approach is games. A great deal of work has been

done on gamification, with books such as Kapp’s [8] explaining

the techniques involved. Tillman et al’s game Code Hunt [11]

teaches vast numbers of programmers through an online game.

Code Hunt’s approach is to provide a unit test that the program-

mer’s code must pass; this certainly demonstrates the dialectic

aspect, but will not be very good for teaching the other security

techniques. Other researchers, including the authors, have had

success with group games to teach aspects of software security,

such as Denning et al’s Control-Alt-Hack game [5]. These work

very well in a classroom or conference context, but do not natural-

ly extend to reach to an online audience.

Picture Angry Birds meeting Stack Overflow! Create an online

game where players implement security aspects to defend against

attacks? Perhaps crowd source both attacks and defenses, where

each player gets to both take the role of attacker on other players’

code, and defender on their own? It’s an enchanting possibility;

even if it risks taking too much time to engage the typical target

solo programmer.

4.3 Story Telling
A different approach is story-telling. The British radio soap opera,

The Archers, has been running for 65 years, and has over 5

million regular listeners; its main purpose, at which it is highly

successful, is to teach farming knowledge to a community that is

unreachable by any other form of education. Taking a similar

approach here would suggest a podcast (and blog) narrating a plot

that would cover and teach each of these aspects.

More ambitious would be a storyline in an appropriate existing

series (‘Mr. Robot’, and the UK’s ‘IT Crowd’ come to mind), to

be created if the opportunity arose.

4.4 Adapting Business as Usual Approaches
More conventional is to tailor direct teaching and group learning

approaches to the distributed nature of the target audience. This

suggests implementing a massively open online course (MOOC)

on app security using audio, written text, and video along with

interactive discussion groups. Organizations such as edX and

Futurelearn provide frameworks to make this straightforward.

Another possibility is a short video along the lines of – or indeed

actually – a TED talk by a suitable expert;

Both possibilities leverage the ‘professional skills gaining’

motivation present in programmers, which suggests promoting

them via professional organizations too.

5. RESEARCH AGENDA
Whilst each of these interventions has promise, we don’t know

which are likely to be effective, nor which techniques and variants

of each will have the most impact. This leads us to a set of

research questions, as follows.

938

RQ1 How best to design and implement the interventions to

convey the security techniques discussed in Section 3?

This is a complex problem, involving amongst other aspects

elements of design, gamification, and measurement of im-

pact.

RQ2 Which interventions – and dissemination techniques –

are most effective at conveying each technique to the

largest population of programmers? Implementing all the

interventions at scale will be costly; we’ll need to evaluate

which ones offer the most value.

RQ3 Which interventions provoke a wider interest in the

programmers reached? To achieve a lasting effect we do

not just need to engage programmers initially, but need also

to encourage further interest in the subject so they learn also

from existing sources of security education.

This approach is very different from others in the field of pro-

grammer education, making this an entirely new subdiscipline.

The research will require a multi-disciplinary team, with varied

skills including at least the following:

Programming: To implement code based interventions such as

games.

Psychology: To achieve the ‘attractiveness’ of the content; to

structure measurement of the results; to use psy-

chological techniques to ‘nudge’ programmers

towards more effective security practices.

Creative writing: For the storyline.

Narration: For an engaging verbal version of the storyline.

Marketing: To establish and develop the channels to bring

the content to the target audience.

6. EVALUATING TECHNIQUES
The research will require objective measurement. In particular we

can identify four aspects to measure:

Success using the interventions with a sample group of

students or similar, and evaluating their learning

based on the intervention (RQ1).

Reach the number of downloads, accesses, or to the

resource (RQ2)

Engagement the number of accesses of later parts of the

resource. (RQ2)

Coverage attending exhibitions such as Apps World

frequented by the target solo programmer

audience and asking via a simple questionnaire

of delegates which if any of the interventions

they have encountered and their impact (RQ2

RQ3).

Ideally we’ll want to extend our research to measure outcomes as

well as these outputs. Whilst we can argue that the combination of

‘success’ with ‘engagement’ and ‘coverage’ implies a positive

impact, better still would be evidence of an improvement in the

code produced by programmers in the target group.

To achieve that, we might collect app identifiers, where possible,

from participants for a ‘before and after’ anonymous evaluation of

their released apps’ security along the lines of that by Enck et al.

[6]. Other possibilities would include extending the questionnaires

in the ‘coverage’ evaluation to estimate interviewees’ awareness

of app security or access to other learning resources, and correlat-

ing that with exposure to the interventions.

7. CONCLUSION
In this paper we explored the need to improve the security skills

of isolated app developers. We explored the resources currently

available and concluded that they were insufficient for the job of

both learning and motivation.

To address these issues we propose a research agenda for a new

subdiscipline: research into ways to motivate and teach app

security for the isolated developer. We propose a set of research

questions, a multi-disciplinary team, several ways to reach the

developers in question, three approaches to teaching, and four

aspects we can measure to evaluate the success of each approach.

It’s important that our future app security is not left to chance; we

believe this new subdiscipline will make a substantial contribu-

tion.

8. REFERENCES
[1] Banks, A. and Edge, C.S. Learning iOS Security. Packt

Publishing, Birmingham, UK, 2015.

[2] Barua, A., Thomas, S.W., and Hassan, A.E. What are

developers talking about? An analysis of topics and

trends in Stack Overflow. 2012.

[3] Bluebox Security. ’Tis the Season to Risk Mobile App

Payments - An Evaluation of Top Payment Apps. 2015.

[4] Conradi, R. and Dybå, T. An empirical study on the

utility of formal routines to transfer knowledge and

experience. ACM SIGSOFT Software Engineering Notes

26, 5 (2001), 268–276.

[5] Denning, T., Lerner, A., Shostack, A., and Kohno, T.

Control-Alt-Hack: the design and evaluation of a card

game for computer security awareness and education.

CCS ’13: Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security,

(2013), 915–928.

[6] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A

Study of Android Application Security. Proceedings of

the 20th USENIX conference on Security, (2011).

[7] Enes, P. and Conradi, R. Acquiring and Sharing Expert

Knowledge. 2005.

http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-

2005/aanes-fordyp05.pdf.

[8] Kapp, K.M. The gamification of learning and

instruction: game-based methods and strategies for

training and education. John Wiley & Sons, San

Francisco, 2012.

[9] Ponemon Institute. The State of Mobile Application

Insecurity. 2015.

[10] Six, J. Application Security for the Android Platform.

O’Reilly, Sebastapol, CA, 2011.

[11] Tillmann, N., de Halleux, J., Xie, T., and Bishop, J. Code

Hunt: Gamifying teaching and learning of computer

science at scale. Proceedings of the first ACM conference

on Learning@ scale conference, ACM (2014), 221–222.

[12] Vision Mobile. Developer Economics Q3 2014: State of

the Developer Nation. London, 2014.

939

	1. INTRODUCTION
	2. Exploring the problem
	2.1 Difficulty of Learning Security
	2.2 Relationship to Other Learning

	3. What do programmers need to learn?
	3.1 Analysis
	3.2 Communication
	3.3 Dialectic
	3.4 Feedback
	3.5 Upgrading

	4. reaching the Masses
	4.1 A Different Approach
	4.2 Games that Teach
	4.3 Story Telling
	4.4 Adapting Business as Usual Approaches

	5. Research Agenda
	6. Evaluating techniques
	7. Conclusion
	8. References

