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ABSTRACT
Automated verification is a technique for establishing if cer-
tain properties, usually expressed in temporal logic, hold for
a system model. The model can be defined using a high-level
formalism or extracted directly from software using meth-
ods such as abstract interpretation. The verification pro-
ceeds through exhaustive exploration of the state-transition
graph of the model and is therefore more powerful than test-
ing. Quantitative verification is an analogous technique for
establishing quantitative properties of a system model, such
as the probability of battery power dropping below min-
imum, the expected time for message delivery and the ex-
pected number of messages lost before protocol termination.
Models analysed through this method are typically variants
of Markov chains, annotated with costs and rewards that
describe resources and their usage during execution. Prop-
erties are expressed in temporal logic extended with proba-
bilistic and reward operators. Quantitative verification in-
volves a combination of a traversal of the state-transition
graph of the model and numerical computation.

This paper gives a brief overview of current research in
quantitative verification, concentrating on the potential of
the method and outlining future challenges. The modelling
approach is described and the usefulness of the methodology
illustrated with an example of a real-world protocol standard
– Bluetooth device discovery – that has been analysed using
the PRISM model checker (www.prismmodelchecker.org).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—formal methods, model checking, statistical meth-
ods; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs—logics
of programs, mechanical verification
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1. INTRODUCTION
Automated verification techniques have made steady prog-

ress in the past few years, and are now frequently incorpo-
rated into the software engineering process for use in addi-
tion to established methods such as testing. An important
advantage of automated verification is its ability to establish,
through exhaustive traversal of the underlying model, that
the system is error-free, or else produce a diagnostic trace.
As is well known, automated verification via model checking
suffers from the state-space explosion problem, which limits
the size of the models that can be verified. Recent progress
with techniques such as counter-example guided abstraction
refinement has considerably enhanced the applicability of
model checking. Examples of widely-used software tools in-
clude e.g. LTSA and FDR, which analyse labelled transition
system models described in a process algebra notation, and
SLAM and Bandera, which are applied directly to software
in C or Java.

The vast majority of research into model checking has con-
centrated on developing methods for analysing functional,
qualitative properties of system/software models, for exam-
ple, whether the executions never violate a safety property,
or the program eventually terminates. Many programs, how-
ever, contain random assignment and/or real-time delays,
which necessitates quantitative analysis in order to estab-
lish properties such as the probability of termination within
a given time limit. Examples of real-world protocols that
involve such timing delays and randomisation are root con-
tention in IEEE 1394 FireWire and random back-off schemes
in e.g. IEEE 802.11 and Bluetooth. Probability is also used
to quantify unreliable or unpredictable behaviour, for exam-
ple in fault-tolerant systems and computer networks, where
properties such as component failure and packet loss can be
described probabilistically.

Traditionally, quantitative evaluation of systems has been
performed through performance analysis, where a proba-
bilistic model of the system is derived, typically a continuous
time Markov chain, on which analytical, simulation-based or
numerical calculations are performed to obtain the desired
quantitative measures [34]. In AI, a different probabilistic
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model (Markov decision processes) is used for planning and
control problems solvable via Bellmann equations, for ex-
ample through value or policy iteration [7]. In recent years,
a complementary technique of probabilistic model checking,
an automated verification technique for probabilistic models,
has been developed [35, 11, 15, 8, 6, 4, 32]. The models are
similar to those used in performance analysis and planning,
i.e. variants of Markov chains or Markov decision processes,
in the sense that they encode the probability or rate of mak-
ing a transition between states. This induces a probability
space on the system behaviours and enables the calculation
of the likelihood of the occurrence of certain events during
the execution of the system rather than the usual existen-
tial or universal quantification over execution paths. Based
on techniques formulated for qualitative (i.e. with probabil-
ity 1 or 0) temporal logic model checking for Markov chains
[35], a quantitative variant [11, 6] has been developed with
which one can express the following quantitative, probabilis-
tic statements:

• for a system which can suffer failures: “what is the
probability of a critical fault occurring during execu-
tion?”

• for a multimedia protocol: “what is the maximum prob-
ability of delivering a packet in the next 5ms?”

When the models are additionally annotated with costs and
rewards that specify resource usage during execution, the
method also enables more general quantitative expected re-
ward statements:

• for a wireless communication protocol: “what is the
worst case expected time for delivering a data packet?”

• for a battery-powered device: “what is the expected
power consumption during the first 20s of operation?”.

Quantitative verification generalises conventional tempo-
ral logic model checking by the addition of probabilistic and
reward operators to the logic. Its main advantage is that the
analysis is exhaustive. In that, probabilistic model check-
ing draws on conventional model checking, by performing
traversal of the underlying state-transition system graph;
this is achieved through a judicious combination with nu-
merical and other algorithmic techniques often drawn from
performance analysis and planning, for example, uniformisa-
tion and value iteration. Therefore, quantitative verification
offers the full benefit of temporal logic model checking, in
addition to performing quantitative evaluation.

Quantitative and probabilistic verification have been ap-
plied in a multitude of domains: distributed coordination
algorithms, wireless communication protocols, security and
anonymity protocols, nanotechnology designs, power man-
agement and biological modelling; for more information, see
[30, 20, 32, 22, 23]. In this paper we give an overview of
formalisms and techniques employed in quantitative model
checking. We describe the well-known probabilistic model
of discrete time Markov chains and its reward extension,
with examples of how reward structures can be used to de-
scribe resources. Next, we summarise the probabilistic tem-
poral logic PCTL, including the probabilistic and reward
operators, and the corresponding model checking methods.
A brief overview of the features and model checking algo-
rithms of three other model types is also given. The models

and specification formalisms introduced here are supported
by the probabilistic model checker PRISM [30, 16], which
is briefly introduced. We illustrate the capabilities and lim-
itations of the quantitative verification techniques with an
example of a protocol standard analysed with PRISM: the
Bluetooth device discovery [13]. We conclude by outlining
the challenges that remain in the area.

2. THE MODELS
Probabilistic models used in quantitative verification gen-

eralise labelled state-transition systems by the addition of
probabilistic transitions. Probabilistic transitions can re-
place the usual nondeterminism or the latter can be partly
retained in the model to describe aspects such as scheduling,
where probability of taking a transition is not known. To il-
lustrate the methodology, we present in some detail the sim-
ple yet expressive Markov chain model, together with a re-
ward extension. This model admits only probabilistic choice
between transitions. The exposition is illustrated with a run-
ning example to explain how probability and reward struc-
tures are used in quantitative verification. This is followed
by a summary of the main features of three other important
probabilistic models, each loosely based on Markov chains.

2.1 Preliminaries
Let Ω be a sample set, the set of possible outcomes of

an experiment. A subset of Ω is called an event. (Ω,F) is
said to be a sample space if F is a σ-field of subsets, often
built from basic cylinders/cones by closing w.r.t. countable
unions and complement. (Ω,F , µ) is a probability space if µ
is a probability measure, i.e. 0 ≤ µ[A] ≤ 1 for all A ∈ F ;
µ[∅] = 0, µ[Ω] = 1, and µ[

S∞
k=1 Ak] = Σ∞k=1 Pr[Ak], Ak

disjoint.
For a finite set S, a probability distribution on S is a func-

tion µ : S → [0, 1] such that
P

t∈S µ(t) = 1. Let (Ω,F , µ) be
a probability space. A function X : Ω → R≥0 is said to be
a random variable. Given a random variable X : Ω → R≥0

and the probability space (Ω,F , µ) the expectation or av-
erage value with respect to the measure µ is given by the
following integral:

E[X]
def
=

Z
ω∈Ω

X(ω) dµ .

We assume a fixed set AP of atomic propositions.

2.2 Discrete Time Markov Chains
A discrete time Markov chain consists of discrete states,

representing the configurations of the system, and has tran-
sitions governed by a (discrete) probability distribution on
the target states. Formally, a (labelled) discrete time Markov
chain (DTMC) D is a tuple (S, s,P, L) where

• S is a finite set of states

• s is an initial state

• P : S × S → [0, 1] is the transition probability matrix
where

P
s′∈S P(s, s′) = 1 for all s ∈ S, and

• L : S → 2AP is a labelling with atomic propositions
that are true in s.

Each element P(s, s′) of the matrix gives the probability
of taking a transition from s to s′. Each transition is as-
sumed to take a discrete time-step. Terminating states are
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Figure 1: A simple DTMC D

modelled with a self-loop. Note also that there is no notion
of real time, though reasoning about discrete time is possible
through state variables keeping track of time and ‘counting’
transition steps.

The behaviour of a DTMC model is represented as a set of
paths. A path through a DTMC is a non-empty (finite or in-
finite) sequence of states ω = s0 s1 s2 . . . with P(si, si+1) > 0
for all i ≥ 0. The probability matrix P induces a proba-
bility space on the set of infinite paths Paths, which start
in the state s, using the cylinder construction [19] as fol-
lows. An observation of a finite path determines a ba-
sic event (cylinder). Let s = s0. For ω = s0s1 . . . sn,
we define the probability measure Prfin

s for the ω-cylinder
by putting Prfin

s = 1 if ω consists of a single state, and
Prfin

s = P(s0, s1) · P(s1, s2) · . . . · P(sn−1, sn) otherwise.
This extends to a unique measure Prs on the infinite paths
Paths by a well-known theorem.

example 1. Figure 1 shows an example of a DTMC D =
(S, s,P, L) modelling a simple communication protocol where
AP = {try , fail , succ} and s = s0. The transition probability
matrix P is given by:

P =

0BB@
0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

1CCA .

In the state s1, the protocol tries to send a message, and
it either succeeds with probability 0.98, fails with probability
0.01, or, with with probability 0.01, waits another time-step
and restarts. This example DTMC will serve as the running
example throughout this section.

2.2.1 The Logic PCTL
Specifications for DTMC models can be written in PCTL

(Probabilistic Computation Tree Logic) [15], a probabilistic
extension of the temporal logic CTL. The syntax of PCTL
is as follows:

Φ ::= true
˛̨

a
˛̨
¬Φ

˛̨
Φ ∧ Φ

˛̨
P∼p[α]

α ::= X Φ
˛̨

Φ U
≤k Φ

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈
[0, 1] and k ∈ N ∪ {∞}. PCTL formulae are interpreted
over the states of a DTMC. Instead of the existential and
universal quantification of CTL, PCTL has the probabilistic
operator P∼ p[·] where p ∈ [0, 1] is a probability bound or
threshold. Path formulae can occur only within the scope of
the probabilistic operator. Intuitively, a state s of D satisfies
P∼p[α] if the probability of taking a path from s satisfying
α is in the interval specified by ∼p. Formally, the meaning

of the probabilistic operator is:

s |= P∼ p[α] iff Prs{ω ∈ Paths | ω |= α}∼ p.

Two forms of path formulae αareallowed, X Φ and Φ U≤k Ψ,
the next state and bounded until. When k = ∞ we abbre-
viate Φ U≤k Ψ by Φ U Ψ (unbounded until). As is standard
in temporal logic, X Φ is true for a path ω ∈ Paths if Φ
is satisfied in the next state, and Φ U≤k Ψ is true if Ψ is
satisfied within k time-steps and Φ is true up until that
point. The intuition is that the probability measure of the
set of α-paths is calculated and compared to the probabil-
ity bound, yielding true or false respectively (that this set
is measurable was shown in [35]). The qualitative PCTL
fragment are the formulae where p is equal to 0 or 1. Note
that while P>0[Φ1 U Φ2] equates to existential quantification,
P≥1[Φ1 U Φ2] is a weaker analogue of universal quantifica-
tion.

Each PCTL formula evaluates to a Boolean by virtue of
the comparison of the actual probability of the set of α-paths
with the probability bound p. If the outermost operator of
a PCTL formula is P∼p[·], we can omit the bound ∼ p and
simply compute the probability instead. The PCTL model
checking algorithm computes the actual probability anyway,
so no extra cost is incurred. It is also often useful to study
a range of such values by varying one or more parameters,
either of the model or of the property, see the notion of
experiment in Section 4.1.

example 2. Below are examples of PCTL formulae for
the DTMC example in Figure 1:

• P<0.1[true U≤3 fail ] - the probability that failure occurs
within 3 time-steps is strictly less than 0.1;

• P=?[try U succ] - what is the probability of sending a
message successfully without failure?

2.2.2 Model Checking for PCTL over DTMCs
The PCTL model checking algorithm [11, 15, 12] takes

as inputs a labelled DTMC D = (S, s,P, L) and a PCTL
formula Φ. The algorithm proceeds, as for CTL [10], by
bottom-up traversal of the parse tree for Φ, recursively com-
puting the set Sat(Ψ) = {s ∈ S | s |= Ψ} of states satisfying
each subformula Ψ. Therefore, the algorithm will compute
the set of all states satisfying Φ.

All cases except the probabilistic operator P∼p[α] are the
same as for CTL. Here, it is helpful to view the DTMC as
the matrix P and Sat(Φ) as a column vector Φ : S −→ {0, 1}
given by Φs = 1 if s |= Φ and 0 otherwise. We have:

Sat(P∼p[α]) = {s ∈ S | Probs(α)∼p} .

where Probs(α) is the probability of satisfying α in s. Then,
in vector notation, Prob(X Φ) = P · Φ, i.e. a single matrix
by vector multiplication suffices.

Next, we consider bounded until formulae P∼p[Φ U≤k Ψ].
For such formulae we need to determine the probabilities
Probs(Φ U≤k Ψ) for all states s where k ∈ N ∪ {∞}. When
k ∈ N, the corresponding vector Prob(Φ U≤k Ψ) can be ex-
pressed in terms of the transient probabilities of a DTMC
[24]. Firstly, for any DTMC D = (S, s,P, L) and PCTL
formula Φ, let D[Φ] = (S, s,P[Φ], L) be the DTMC D mod-
ified as follows: if s 6|= Φ, then P[Φ](s, s′) = P(s, s′) for all
s′ ∈ S, and if s |= Φ, then P[Φ](s, s) = 1 and P[Φ](s, s′) = 0
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for all s′ 6= s. Intuitively, D[Φ] is obtained from D by mak-
ing all states in Φ absorbing (the only transitions in those
states are self-loops). To obtain the solution for bounded
until, we transform the DTMC to D[¬Φ ∨ Ψ] = D[¬(Φ ∧
Ψ)][Ψ]. States in Sat(¬(Φ ∧ Ψ)) are made absorbing be-
cause Probs(Φ U≤k Ψ) is trivially 0, and likewise for states
in Sat(Ψ) because Probs(Φ U≤k Ψ) is trivially 1. It can be
shown [24] that the vector of probabilities Prob(Φ U≤k Ψ)
can then be computed using the following matrix and vector
multiplications:

Prob(Φ U
≤k Ψ) = (P[¬Φ ∨Ψ])k ·Ψ .

This product is typically computed in an iterative fashion:

P[¬Φ ∨Ψ] · (· · · (P[¬Φ ∨Ψ] ·Ψ) · · · )

which requires k matrix-vector multiplications.

example 3. Consider the DTMC D in Figure 1 and the
PCTL formula P>0.9[true U≤1 succ]. We have Sat(true) =
{s0, s1, s2, s3} and Sat(succ) = {s3}. The matrix P[¬true∨
succ] is identical to P, and we have that:

Prob(Φ U
≤0 Ψ) = [0, 0, 0, 1]

Prob(Φ U
≤1 Ψ) = [0, 0.98, 0, 1] .

Hence, Sat(P>0.9[true U≤1 succ]) = {s1, s3}.

Finally, when k = ∞, i.e. we have the formula Φ U Ψ, the
probabilities Probs(Φ U Ψ) are obtained as the unique solu-
tion of the linear equation system [11] in variables {xs | s ∈
S}:

xs =

8<:
0 if s ∈ Sno

1 if s ∈ SyesP
s′∈S P(s, s′) · xs′ if s ∈ S?

where Sno = Sat(P≤ 0[Φ U Ψ]) and Syes = Sat(P≥ 1[Φ U Ψ])
denote, respectively, the sets of all states that satisfy Φ U Ψ
with probability exactly 0 (resp. 1), and S? = S \ (Sno ∪
Syes). The sets Sno and Syes are precomputed using con-
ventional fixed point computation. Since the values for these
states are known (0 or 1), the solution of the resulting linear
equation system in |S?| variables can be obtained by any di-
rect method (e.g. Gaussian elimination) or iterative method
(e.g. Jacobi, Gauss-Seidel). For qualitative PCTL proper-
ties, it suffices to use these precomputation algorithms alone.
For quantitative properties with an arbitrary bound p, nu-
merical computation is also usually required. Note that the
precomputation algorithms determine the exact probability
in case it is 0 or 1, thus avoiding the problem of round-off
errors that are typical for numerical computation.

example 4. Consider again the DTMC D in Figure 1
and the PCTL formula P=?[try U succ] which queries the
probability of successfully sending a message without failure.
We have Sat(try) = {s1} and Sat(succ) = {s3}. We calcu-
late that Sat(P≤0[try U succ]) = {s0, s2} and Sat(P≥1[try U succ]) =
{s3}. The resulting linear equation system is:

x0 = 0
x1 = 0.01 · x1 + 0.01 · x2 + 0.98 · x3

x2 = 0
x3 = 1 .

This yields the solution (0, 98
99

, 0, 1) and we see that the for-

mula P=?[try U succ] returns 98
99

in state s1.

2.2.3 Extending DTMCs and PCTL with Rewards
In this section we introduce rewards which can be used

to annotate DTMCs with information about resources and
their usage, for example the power consumption or the num-
ber of lost messages. Let D = (S, s,P, L) be a DTMC, which
we endow with a reward structure (ρ, ι). A state reward is
a function ρ : S → R≥0; intuitively, ρ(s) is the reward ac-
quired in state s per time-step. A transition reward is a
function ι : S × S → R≥0. This type of reward is acquired
each time a transition between states s and s′ occurs.

example 5. Consider the DTMC D in Figure 1 endowed
with the reward structure (ρ,0), where ρ(s) = 1 if s = s1

and equals 0 otherwise. This reward counts the number of
time-steps spent in state s1 and can be used to calculate, for
example, energy usage while attempting to send the message.

The logic PCTL is extended to allow for the reward prop-
erties by means of the following state formulae:

R∼r[C
≤k]

˛̨
R∼r[I

=k]
˛̨
R∼r[F Φ]

where ∼∈ {<,≤,≥, >}, r ∈ R≥0, k ∈ N and Φ is a PCTL
state formula.

Intuitively, a state s satisfies R∼r[C
≤k] (cumulative re-

ward) if, from state s, the expected reward cumulated after
k time-steps satisfies ∼r; R∼r[I

=k] (instantaneous) is true if
from state s the expected state reward at time-step k meets
the bound ∼r; and R∼r[F Φ] (reachability) is true if from
state s the expected reward cumulated before a state sat-
isfying Φ is reached meets the bound ∼r. Formally, for a
DTMC D = (S, s,P, L), the semantics of the reward oper-
ator is defined using expectation of an appropriate random
variable:

s |= R∼r[C
≤k] ⇔ Exps(XC≤k ) ∼ r

s |= R∼r[I
=k] ⇔ Exps(XI=k ) ∼ r

s |= R∼r[F Φ] ⇔ Exps(XFΦ) ∼ r

for any s ∈ S, k ∈ N, r ∈ R≥0 and PCTL formula Φ. In
the above, Exps(X) denotes the expectation of the random
variable X : Paths → R≥0 with respect to the probability
measure Prs on the set of paths Paths of D. The random
variables corresponding to the three forms of the reward
operator are defined, for any path ω = s0s1s2 · · · ∈ Paths,
as follows:

XC≤k (ω)
def
=


0 if k = 0Pk−1

i=0 ρ(si) + ι(si, si+1) otherwise

XI=k (ω)
def
= ρ(sk)

XFΦ(ω)
def
=

8>><>>:
0 if s0 |= Φ
∞ if ∀i ∈ N. si 6|= ΦPmin{j|sj |=Φ}−1

i=0 ρ(si) + ι(si, si+1)
otherwise.

Similarly to the probabilistic operator, if the outermost op-
erator of a PCTL formula is R∼r[·], we can omit the bound
∼ r and compute the expected value instead. This also en-
ables a range of such values to be obtained by varying one
or more parameters, either of the model or of the property.

example 6. Below are some examples of reward based
specifications:

• R≤5.5[C
≤100] - the expected power consumption within

the first 100 time-steps of operation is less than or
equal to 5.5;
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• R=?[I
=10] - what is the expected number of messages

still to be delivered after 10 time-steps have passed?

• R≥5[F succ] - the expected number of correctly delivered
messages is at least 5.

2.2.4 Model Checking for DTMCs with Rewards
We now consider model checking of reward formulae. The

input for the algorithm is a DTMCD = (S, s,P, L), together
with a reward structure (ρ, ι), and a PCTL reward formula
Φ. Since the PCTL model checking algorithm proceeds by
bottom-up traversal of the parse tree of the formula, model
checking for the reward operator reduces to the computation
of the expected values for each of the corresponding random
variables every time a reward subformula R∼r[·] is encoun-
tered. Below we consider each type of the reward formula
in turn.

The reward formula R∼r[C
≤k]. In this case the the vector

of expected values can be computed iteratively by means of
the following matrix-vector operations:

Exp(XC≤k ) =


0 if k = 0

ρ + (P • ι)·1 + P·Exp(XC≤k−1) otherwise

with • denoting the Schur or entry-wise multiplication of
matrices and 1 a vector with all entries equal to 1.

example 7. Consider the DTMC D in Figure 1 with the
reward structure of Example 7. The PCTL formula R=?[C

≤k]
queries the expected number of time steps spent in each state
after k time steps. We calculate:

Exp(XC≤0) = [0, 0, 0, 0]

Exp(XC≤1) = [0, 1, 0, 0] + P · [0, 0, 0, 0]

= [0, 1, 0, 0]

Exp(XC≤2) = [0, 1, 0, 0] + P · [0, 1, 0, 0]

= [1, 1.01, 0, 0]

Exp(XC≤3) = · · ·

and hence R=?[C
≤2] returns 1.01 in state s1.

The reward formula R∼r[I
=k]. In this case the the vec-

tor of expected values can be computed by means of the
following matrix-vector operations:

Exp(XI=k ) =


ρ if k = 0

P · Exp(XI=k−1) otherwise.

example 8. For the running example DTMC consider
the PCTL formula R>0[I

=k] which specifies that, at time-
step k, the expectation of being in state s1 is greater than 0.
We have:

Exp(XI=0) = [0, 1, 0, 0]

Exp(XI=1) = P · [0, 1, 0, 0] = [1, 0.01, 0, 0]

Exp(XI=2) = P · [1, 0.01, 0, 0] = [0.01, 0.0001, 1, 0] .

Hence, the states s0, s1 and s2 satisfy the formula R>0[I
=2].

The reward formula R∼r[FΦ]. It can be shown [24] that
the expectations in this case are calculated by solving a sys-
tem of linear equations obtained as follows. Firstly, we iden-
tify the set of states s for which Exps(XFΦ) equals ∞. This

includes the states for which the probability of reaching a Φ
state is less than 1, that is, the set Sat(P<1[true U Φ]). This
set can be computed from the equivalence P<1[true U Φ] ≡
¬P≥1[true U Φ]. Let SΦ = Sat(Φ), S∞ = Sat(P<1[true U Φ]).
One can then compute Exp(s, XFΦ) as the unique solution
of the following linear equation system in variables {xs | s ∈
S}:

xs =

8>><>>:
0 if s ∈ SΦ

∞ if s ∈ S∞

ρ(s) +
P

s′∈S P(s, s′)·
`
ι(s, s′)+xs′)

´
otherwise.

Similarly to probabilistic until formulae, this can be solved
using any standard direct or iterative method.

example 9. Consider again the running example. The
PCTL formula, R<1[F succ], in this case, asserts that the
expected number of times state s1 is entered before reaching
a state satisfying succ is less than 1. We compute:

Sat(succ) = {s3}
Sat(P<1[true U succ]) = Sat(¬P≥1[true U succ])

= S \ Sat(P≥1[true U succ])

= S\{s0, s1, s2, s3} = ∅.

This leads to the linear equation system:

x0 = 0+1.00·( 0+x1)
x1 = 1+0.01·( 0+x1)+0.01·(0+x2)
x2 = 0+1.00·( 0+x0)
x3 = 0

which has the solution
`

100
98

, 100
98

, 100
98

, 0
´
, and hence it follows

that Sat(R<1[F succ]) = {s3}.

2.2.5 Complexity of PCTL Model Checking
The time complexity for PCTL model checking over a

DTMC D = (S, s,P, L) is linear in the size of the formula
|Φ| (number of logical connectives and temporal operators)
and polynomial in |S| [15].

2.3 Other Model Types
The discrete time Markov chain model, sometimes referred

to as fully probabilistic, admits only probabilistic choice be-
tween transitions and does not faithfully model real-time
passage. This limitation is not present in other model types,
each admitting a reward extension: Markov decision pro-
cesses (which feature both nondeterministic as well as proba-
bilistic choice), continuous time Markov chains (which model
continuous time, but no nondeterminism) and probabilis-
tic timed automata (which admit dense time, probabilistic
choice and nondeterminism).

2.3.1 Markov Decision Processes
Markov decision processes (MDPs) [7] (also known as con-

current Markov chains [35]) generalise discrete time Mar-kov
chains by allowing in each state a nondeterministic choice
between a number of probability distributions over target
states. This nondeterminism is a result of scheduling of par-
allel processes or underspecification, where the probabilities
of taking a particular transition are not known. In a Markov
decision process both states and time are discrete. It is as-
sumed that this choice is made by an adversary, also known
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as a policy, which maps a finite execution path to a probabil-
ity distribution. Once an adversary is known, the behaviour
of a Markov decision process is reduced to a Markov chain.
This type of model is particularly well suited to communi-
cation and distributed coordination protocols.

Similarly to DTMCs, MDPs can also be enhanced with
state and transition rewards. The logic PCTL [8], includ-
ing both the probabilistic and reward operators, can also be
defined over Markov decision processes, the only difference
being that the semantics of the probabilistic and reward op-
erator must now include quantification over all adversaries
(or adversaries of a certain type, such as the fair adver-
saries [6]). Model checking for PCTL over MDPs reduces
to the calculation of the minimum or maximum probability
of satisfying the path formula, and likewise for the reward
operator. The model checking algorithm is by induction on
syntax as for DTMCs, except that the probabilistic opera-
tor induces a linear programming problem (a simple case of
a stochastic shortest path problem). The solution can be
obtained using either direct methods such as Simplex, or it-
erative methods such as value or policy iteration [31]. The
complexity for PCTL model checking over a MDP is linear
in the size of the formula and polynomial in |S| [8], which
follows from the existence of polynomial LP solvers. For
more detail see e.g. [21].

2.3.2 Continuous Time Markov Chains
Continuous time Markov chains (CTMCs) are well known

in performance modelling [34] to model systems which have
discrete states, but where time progresses continuously. A
CTMC is represented as a transition rate matrix, where a
positive rate λ between two states s and s′ denotes that
the probability of the transition from s and s′ being trig-
gered after t time units is given by a negative exponential
distribution. CTMCs do not admit nondeterminism, and
instead model scheduling via the race condition. CTMCs
can be unfolded into execution paths, which are alternating
sequences of states and real numbers (amount of time spent
in each state). The probability measure construction over
paths [19] can be generalised to this case. The reward struc-
ture is similar to the DTMC case, except that the reward
can be acquired in proportion to time t spent in a state.
This type of model is well suited to reliability, performance
and dependability modelling.

The logic CSL (Continuous Stochastic Logic) [3, 5] has
been defined over CTMCs. It is based on PCTL and con-
tains the probabilistic and reward operators of PCTL evalu-
ated with respect to path-based probability measure. Addi-
tionally, there is also a steady-state operator. The path for-
mulae of CSL include a time-bounded until, which is similar
to the bounded until of PCTL except that the time bound
can be real-valued, e.g. P=?[true U<4.25 Φ] expresses the
probability that Φ becomes true before 4.25 units of time.
The untimed properties of CSL can be reduced to PCTL
model checking on the embedded DTMC. Model checking
for the time-bounded until operator of CSL has been shown
in [5] to reduce to transient analysis and can be computed on
the uniformised DTMC. The steady-state operator is verified
through identification of bottom strongly connected compo-
nents and solving a linear equation, and the reward opera-
tor is model checked similarly [24]. The complexity of CSL
model checking for CTMCs is linear in the size of the for-
mula, polynomial in the state space, linear in the maximum

time bound in the formula, and linear in the largest number
contained in the generator matrix. For more information see
e.g. [5, 32, 24].

2.3.3 Probabilistic Timed Automata
Continuous time Markov chains do not allow nondeter-

minism which often features in real-world distributed pro-
tocols, for example random back-off schemes. Probabilistic
timed automata (PTAs) [28] extend the timed automata for-
malism [2] with probabilistic choice over transitions. Simi-
larly to timed automata, PTAs contain clocks, positive real-
valued variables which increase uniformly with time, which
can be referred to in its invariants and guards. A proba-
bilistic timed automaton therefore models dense real-time
passage, nondeterminism arising from scheduling and dis-
crete probabilistic choice between transitions. This type of
model frequently arises in randomised distributed coordina-
tion protocols, for example random back-off.

The presence of nondeterminism means that the seman-
tics of a PTA is a Markov decision process, and consequently
the notion of adversary is required. A probability measure
over paths of a given adversary can be defined following [19]
as for Markov decision processes. The logic for expressing
properties of PTAs is PTCTL (Probabilistic Timed CTL)
[28], derived from TCTL and PCTL, with which one can
query the probability of reaching a state within a real-valued
time bound. Model checking for this logic is obtained by
adapting the techniques established for timed automata to
the probabilistic case. Observe that, since clocks are real-
valued, the state space of a probabilistic timed automaton
is infinite but can be partitioned into a finite set of symbolic
states (regions or zones). The methods so far developed for
PTAs include those based on the region graph construction
[28], forward [28] and backward [29] zone graph exploration
and the digital clocks approach [25]. The latter admits an
extension with rewards, for example expected reachability
properties, a generalisation of uniformly priced timed au-
tomata. Model checking for PTAs is very expensive and
experimental results are still limited with the exception of
the digital clocks approach for which MDP techniques are
sufficient. For more detail see [26, 29, 25]. An extension
of probabilistic timed automata with continuous probabil-
ity distributions and spaces are respectively described in [27,
9].

3. TECHNIQUES
As can be seen from the above overview of quantitative

verification, a great variety of analysis techniques are re-
quired, ranging from graph-theoretical analysis of the un-
derlying transition system graph, symbolic techniques for
state-space reduction or to ensure a finite quotient, to ma-
trix algorithms and the numerical solution techniques. Be-
low we describe the main numerical methods used and the
issues that may arise in quantitative verification.

3.0.4 Exact methods
Quantitative model checking typically proceeds by first

constructing a representation of the full probabilistic model,
or its part relevant for the property being verified, and then,
based on the model and the property, formulating a family
of numerical problems which will yield the desired quanti-
ties. For the former, an analysis of the underlying graph
of the probabilistic model suffices, which can e.g. be per-
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formed via conventional fixed point computation. The latter
requires the solution of linear equation or linear optimisa-
tion problem, often integrated with the representation of
the state-transition graph of the model, and can be a bot-
tleneck since the size of the problem is in the worst-case
as large as the state-space. Such problems can be solved
exactly with direct methods (e.g. Gaussian elimination or
Simplex, respectively), but these are usually impractical for
large systems. In suchcases, iterative methods (e.g. Gauss-
Seidel or dynamic programming, respectively) are typically
used. These converge towards the correct solution with each
iteration and are terminated when convergence indicates
that the desired precision has been reached. See e.g. [32]
for more details.

3.0.5 Approximate methods
Instead of constructing the full state-transition graph of

the model, it has been proposed [37] to use a combination of
discrete event simulation and Monte Carlo methods to es-
timate the probability of satisfying a path formula. This is
done by generating random paths of a fixed depth k and ap-
plying statistical analysis of thus obtained paths to compute
the value of a random variable which estimates the proba-
bility that a given formula is satisfied on paths of depth
at most k, for specified confidence and error bounds. This
method avoids the (potentially very costly) construction of
the model and its state space, and results in complexity de-
pendent on e.g. the length of the path and confidence bound,
not the size of the state space. The method is suited to
DTMCs and CTMCs and can be applied to a wider range
of properties, for example LTL. Known approaches based on
this idea include one based on a randomised approximation
scheme [17], statistical model checking [33] and statistical
hypothesis testing [36].

An alternative technique is to invoke directed model check-
ing [14] which performs a partial exploration of the state-
space, extended to the probabilistic case in [1].

4. SOFTWARE TOOLS
A number of probabilistic and quantitative verification

software tools exist. Our main focus is the PRISM model
checker which was used to perform the case study discussed
in the next section.

4.1 The Probabilistic Model Checker PRISM
PRISM [18, 30] accepts probabilistic models described

in a simple, high-level modelling language. Three types
of probabilistic models are supported directly; these are
discrete-time Markov chains, Markov decision processes, and
continuous-time Markov chains. Additionally, probabilistic
timed automata are partially supported, with the subset of
diagonal-free PTAs supported directly via digital clocks [25].
Properties are specified using PCTL for DTMCs and MDPs,
and CSL for CTMCs, extended with the reward operator.

PRISM first builds a symbolic, representation of the reach-
able state-space of the probabilistic model as a multi-terminal
binary decision diagram (MTBDD) [21]. The model check-
ing proceeds as for CTL, by induction over syntax. PRISM
handles both the probability/reward bound properties, re-
porting true/false outcomes when the probability is above
or below the threshold, as well as the quantitative outcomes,
reporting, for example, the actual probability of a certain
event or the expectation for a reward formula. In addition

to the numerical solution, PRISM also supports sampling-
based, approximate quantitative verification based on Monte
Carlo simulation [16]. Further, PRISM supports the notion
of experiments, which is a way of automating multiple in-
stances of model checking. This allows the user to plot the
outcome of one or more properties as functions of model and
property parameters.

The model size capacity of PRISM is approx. 107 – 108 for
CTMCs and higher for other types of models. The underly-
ing computation in PRISM involves a combination of graph-
theoretical algorithms, for reachability analysis, conventional
temporal logic model checking and qualitative probabilis-
tic formulae; and numerical computation, for quantitative
probabilistic model checking, e.g. solution of linear equa-
tion systems. Graph-theoretical algorithms are performed
in PRISM using BDDs. For numerical computation, PRISM
supports three numerical engines and uses iterative methods:
Jacobi, Gauss-Seidel and SOR for the solution of linear equa-
tion systems, and value iteration for linear programming
problems. Finally, for transient analysis of CTMCs, PRISM
incorporates another iterative numerical method known as
uniformisation.

PRISM is a free, open source application. It presently op-
erates on Linux, Unix, Windows and Macintosh operating
systems. The reader is invited to consult [22, 23] and the
‘Case Studies’ section of the PRISM website [30] for many
examples of quantitative verification applied to several do-
mains, including communication and security protocols, re-
liability, dependability, performance and biological systems.

4.1.1 Other Tools
Several tools support quantitative modelling, see e.g. Mo-

bius and PEPA. Probabilistic model checkers for MDPs in-
clude RAPTURE and ProbMela/LiQuor for LTL properties,
and those tailored to DTMCs and CTMCs are MRMC and
SMART. Approximate model checking tools include APMC,
Ymer and VESTA. Links and references can be found at [30].

5. CASE STUDY: DEVICE DISCOVERY IN
BLUETOOTH

We illustrate the quantitative verification methodology by
briefly describing the outcome of a modelling case study of
the Bluetooth device discovery protocol standard performed
with PRISM [18]. The model simultaneously serves as an il-
lustration of the potential as well as the current limitations
of the techniques described in this paper: the model de-
rived is a DTMC and the analysis involved both timing and
resource specifications. On the positive side, the model is
extremely large and we were able to calculate, for the first
time, the worst case expected time to receive a message.
On the negative side, the complexity of the protocol is so
great that the largest configuration we studied included two
devices and two messages only.

5.1 Modelling Bluetooth Device Discovery
Bluetooth is a short-range, low-power, open standard for

implementing wireless personal area networks which uses a
frequency hopping scheme, where devices alternate rapidly
among the 79 available frequencies in a pseudo-random fash-
ion, to avoid interference from other devices, such as mi-
crowave ovens and other phones, operating in the same fre-
quency band.
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Figure 2: Expected time for the sender to hear one or two replies from the receiver

In order to communicate, Bluetooth devices organise them-
selves into small networks called piconets, comprising one
master and up to 7 slave devices, in which the frequency
hopping sequences are synchronised and controlled by the
master. Our study focused on the issue of piconet creation,
and specifically the inquiry process, and its effect on perfor-
mance and power consumption.

Each Bluetooth device has a 28 bit free-running clock,
which ticks every 312.5µs. An inquiring device attempts
to detect potential slaves by broadcasting inquiry packets
on a previously agreed sequence of 32 of the 79 available
frequencies for two consecutive time slots and scanning for
replies on the next two slots.

Bluetooth devices that want to be discovered periodically
scan for inquiry packets on the same 32 frequencies that
the inquiring device is transmitting on. To ensure that the
frequencies used eventually coincide and that messages are
successfully received, the hopping rate of scanning devices is
much slower than that of the inquiring device, i.e. changes
every 1.28s alternating between a sleep and a scan phase.

If the scanning device successfully hears a message, by lis-
tening on the right frequency at the right time (when the
inquiring device is transmitting a packet), it will enter a re-
ply phase, in which it waits 2 time slots (i.e. 625µs) and then
sends a reply on the same frequency. A contention problem
arises when two devices in inquiry scan try to reply to the
same inquiry packet, thus potentially leading to collision and
loss of the replies. To avoid repetition of such a problem,
after sending a reply, a device invokes a random back-off by
drawing a random number N ∈ [0, . . . , 127] and waiting for
2·N time slots before going back to its alternation between
sleep and scan states.

We derived a PRISM model of the above process by con-
sidering a single inquiring device and a single scanning de-
vice, referred to as the sender and receiver , respectively.
Note that, despite the limitations of this scenario, the ran-
domised back-off procedure must be executed. The clocks of
both devices are digital, whose time is incremented in dis-
crete steps, corresponding to 312.5µs slots, and whose drift
can be assumed to be negligible during the relative short
inquiry process. This is consistent with the constraints im-
posed upon possible clock drift in the Bluetooth specifica-
tion.

From the assumptions of digital clocks and additional sim-
plifying assumptions to reduce the state space, we obtain a
discrete-time Markov chain model as the synchronised par-
allel composition of the sender and receiver components. In
our model the resources we measure are time and power con-
sumption. For example, in the case of time, we assign a cost
of 1 to all time-step transitions and 0 to all others. As an
indication of the model size and complexity, the number of
possible initial states is 17, 179, 869, 184, with the full state
space much larger. The model description can be found at
[30] and the approach taken to reduce the model complexity
is described in [13].

5.2 Experimental Results
We perform an exhaustive quantitative verification of the

resulting DTMC model, extended with rewards, using PRISM.
Since we are primarily interested in performance and power
consumption of the Bluetooth inquiry process, we compute
the expected time for the inquiry process to receive a speci-
fied number of replies. We also compute the corresponding
expected power consumption. In view of the prohibitive size
of the state space, we partition the verification into 32 sets
of 536, 870, 912 states each, thus reducing the problem to
32 separate instances of model checking, each of which is
now feasible on a standard workstation. This still results in
models with extremely large state spaces, which is a direct
consequence of the complexity of the interaction between
the Bluetooth devices attempting to discover each other.
Thanks to a degree of regularity in the model, we were able
to build and analyse the 32 models using MTBDDs. With
an approach based on explicit data structures (e.g. sparse
matrices) this would not be feasible.

We computed the expected time to send one (and later
also two) message for all possible initial configurations, ex-
pressible as a reachability reward formula R=? [ F Φ ] which
corresponds to the expected cumulated cost (in this case,
time) of the system until condition Φ is satisfied. The con-
dition Φ identifies states of the model where a sufficient num-
ber of replies (in this case, one) have been received. Using
PRISM, we were able to extract, for the first time, informa-
tion about the best- and worst-case scenarios over all initial
states of the model. This would not have been possible with
simulation. We can also use PRISM to identify precisely
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Figure 3: Expected power consumed before the sender hears one or two replies from the receiver

the way in which this maximum time arises by automati-
cally generating a path. The 32 models we constructed each
contained approximately 3.4× 109 states, required less than
a minute to construct, and took 1–2 seconds to analyse.

Our results show that the minimum time for a single re-
ply is 625µs (2 slots), while the maximum time is 2.5716s
(8,229 slots) and is achieved in 860,160 of the possible ini-
tial states. In Figure 2(a) we have plotted the time until
the sender hears a reply against the number of initial states
that result in this time. The discontinuities in the graph are
to be expected in view of the sleep periods. The inset in
Figure 2(a) illustrates one of these peaks more clearly. The
width of each peak is 11.25ms (36 slots).

We also analysed the scenario where the sender waits un-
til two replies have been received. In this case, the 32 con-
structed models each have approximately 5.6×1010 states
and took roughly 80 minutes to build and 165 minutes to
model check. The minimum expected time, over all possi-
ble initial configurations, for the sender to hear two replies is
0.0456s (146.0 slots). The maximum is 5.177 seconds (16,565
slots) and 518 of the possible initial states result in this.

Finally, we performed an analysis of the expected power
consumption of the Bluetooth device discovery process. To
do so, we need only change the costs associated with tran-
sitions of the model from the elapsed time to the power
consumed. Taking 100mW for active mode in Inquiry-Scan
and 50mW for standby, values which are consistent with
the standard, the results obtained are presented in Figure 3.
These are very similar to the expected time results, with
smaller gaps between two peaks (as less power is consumed
during sleep).

6. CONCLUSIONS
In this paper we presented an overview of quantitative

model checking for models which are variants of Markov
chains. Algorithms were given for verifying these models
against probabilistic temporal logic PCTL and its extension
with the reward operator. Finally, a real-world protocol
analysed with the probabilistic model checker PRISM was
described.

There are many related topics covered in the literature
which we have not been able to cover in this paper: more
case studies, more expressive specification formalisms, state-
space reduction techniques such as symmetry reduction, par-

tial order reduction and bisimulation quotient, probabilistic
verification for mobility, counter-examples and generation
of models from design notations such as UML. See [30] for
some pointers to these topics.

Finally, we mention some future challenges for quantita-
tive verification: automated extraction of quantitative mod-
els from source code, compositional quantitative reasoning,
approaches for general probability distributions and efficient
parallelisation techniques.
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