
TIPMerge: Recommending Experts for
Integrating Changes across Branches

Catarina Costa1,2, Jair Figueiredo1 Leonardo Murta2 Anita Sarma3
1Federal University of Acre

Rio Branco - AC, Brazil
{catarina,jjcfigueiredo}@ufac.br

2Fluminense Federal University
Niteroi – RJ, Brazil
leomurta@ic.uff.br

3Oregon State University
Corvallis, USA

anita.sarma@oregonstate.edu

ABSTRACT

Parallel development in branches is a common software practice.
However, past work has found that integration of changes across
branches is not easy, and often leads to failures. Thus far, there
has been little work to recommend developers who have the right
expertise to perform a branch integration. We propose TIPMerge,

a novel tool that recommends developers who are best suited to
perform merges, by taking into consideration developers’ past
experience in the project, their changes in the branches, and de-
pendencies among modified files in the branches. We evaluated
TIPMerge on 28 projects, which included up to 15,584 merges
with at least two developers, and potentially conflicting changes.
On average, 85% of the top-3 recommendations by TIPMerge
correctly included the developer who performed the merge. Best

(accuracy) results of recommendations were at 98%. Our inter-
views with developers of two projects reveal that in cases where
the TIPMerge recommendation did not match the actual merge
developer, the recommended developer had the expertise to per-
form the merge, or was involved in a collaborative merge session.

CCS Concepts

Software and its engineering → Software configuration manage-
ment and version control systems.

Keywords

Version Control, Branch Merge, Expertise Recommendation.

1. INTRODUCTION
Parallel development is a common practice to manage time to

market, isolate new features from bug fixes, segregate develop-
ment teams, implement customizations, etc. Branching is the most
commonly adopted mechanism to support parallel development

for code under version control [4, 29].
Changes made in branches need to be reintegrated periodical-

ly through a merge operation. This operation combines two inde-
pendent, and usually long sequences of commits, which can po-
tentially hold numerous contributions from different developers.
For instance, in previous work [8, 9] we observed a merge in the
Rails project (https://goo.gl/7fP3fv) that included commits made
by 47 developers in one branch and 52 developers in the other. In
fact, our data from 28 projects show that on an average 29.14%

(median 29.67%) of such merges involved changes from at least

three developers. And such merges occurred frequently, around
every 2 days (median).

Moreover, integrating changes across branches is not easy. In
a Stack Overflow discussion (http://goo.gl/uMvZHk), a developer
laments: “when trying to merge the changes on the trunk with a
branch, there are conflicts on 10 different files, which are au-
thored and maintained by 3 different developers.”

Merging branches is difficult because: First, conflicts can
arise, especially in long-living branches [3]. Shihab et al. [29]

found that the adoption of branches cause integration failures due
to conflicts or unseen dependencies. Second, when conflicts do
occur, it is not always clear which changes to keep and which to
reject. The developer performing a merge might not fully under-
stand the changed code or the rationale behind the change, or may
not have the expertise to determine the impact of the change since
they do not fully understand the dependencies in the project [8].

Unfortunately, existing support for integrating branches is ru-

dimentary. Most tools usually detect only direct (i.e., textual)
conflicts, and transfer the responsibility of resolving conflicts to
the developer in charge. In complex merge situations, developers
may not have the knowledge to make the right decision. For in-
stance, a survey with 164 developers [8] showed that when per-
forming a merge, people frequently made decisions with which
they were uncomfortable. This is likely a reason for developers
performing collaborative merge sessions [17, 18, 23].

However, identifying the appropriate developers to perform a
merge is nontrivial too. Inviting all involved developers to a
merge session is infeasible due to cost, physical space, and devel-
oper availability. Whereas, inviting a few developers to the merge
session requires enough knowledge about the project to prioritize
among developers, who are aware of the project history, the de-
pendencies in the project, and the changes in the branches.

Recent work has investigated developer recommendations to

analyze pull request [15, 19, 33, 34]. However, these approaches
fall short for branch integration. While pull requests refer to re-
mote lines of development that need to be merged, these “branch-
es” usually contain few commits by a single developer [12]. Fur-
ther, the author of the pull request usually syncs their forked
branch in advance to ease reintegration, making the process more
like a workspace commit. In the case of (long living) branch inte-
gration, we need to differentiate changes within and across
branches, and from history. Moreover, multiple files change in

parallel, and multiple developers edit in a branch, thus accruing
varying expertise among artifacts and their dependencies. We
need to accommodate these differences in the knowledge of de-
velopers and their contributions, which has not been done before.

In this paper, we propose TIPMerge, a novel tool that identi-
fies the most appropriate developers to merge branches. For a
given pair of branches, TIPMerge first identifies “key” files and
the developers who have made changes to them in each branch.

Key files are files that are changed in parallel across the branches
(which can lead to direct conflicts), or files that have changed in
one branch, but have dependencies with other changed files in the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be hon-

ored. Abstracting with credit is permitted. To copy otherwise, or repub-

lish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permis-

sions@acm.org.

FSE’16, November 13–19, 2016, Seattle, WA, USA.

© 2016 ACM. ISBN 978-1-4503-4218-6/16/11…$15.00

DOI: http://dx.doi.org/10.1145/2950290.2950339

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950339

523

mailto:leomurta@ic.uff.br

other branch (which can cause indirect conflicts). TIPMerge then
identifies overall experience of developers with the key files
based on the project and branch history. After analyzing this in-
formation, TIPMerge recommends a ranked list of developers
who are best suited to integrate a pair of branch.

To empirically evaluate our approach, we measure the accura-
cy of the recommendations. We use top-1 and top-3 accuracy as
the likelihood that the correct developer is in the first k (1 or 3)
recommendations. We also measure the normalized accuracy
improvement over the majority class – the developers who have
done most of the merges. We analyzed 28 software projects,
which included 15,584 merges with at least 2 unique developers
and potentially conflicting changes. On average, 85% of the top-3

recommendations by TIPMerge correctly included the developer
who performed the merge. The best accuracy (98%) was obtained
in the Diploma project. Moreover, in 82% of the merges, TIP-
Merge obtained higher accuracy than selecting the developer who
performed most of the previous merges (i.e., the majority class).

To better understand the cases were TIPMerge made incorrect
recommendations, we interviewed developers from two of the
projects. In several of these cases, the developers agreed that the

TIPMerge recommendation was also valid. In some cases, the
developers ceded that TIPMerge recommendation was more ap-
propriate. In other situations, we found that the recommended
developer had, in fact, participated in a collaborative merge.

This paper makes the following contributions:

 Approach. We present a novel approach that analyzes change

history in branches, file dependencies, and the past history to
recommend expert developers to merge branches.

 Implementation. We implemented our approach in a tool that

uses a medal-based ranking system to recommend developers.

 Empirical Evaluation. We quantitatively evaluated 28 real-

world projects to show that TIPMerge has high normalized
accuracy improvements over the majority class: top-1 recom-
mendation in Lantern (49.70%) and top-3 recommendations in
Diploma (82.39%). Our qualitative data, interview analysis,
show that different factors (e.g., development role, skills, past

collaboration) affect who actually performs the merge.

2. TIPMERGE
The primary goal of TIPMerge is to recommend developers

with the expertise to merge changes across two branches by lever-
aging the project history. Our approach has the following steps:

1. Extract data from the repository until the branch tips – the two
most recent commits of the two branches that will be merged.

2. Detect dependencies among files by identifying files that were
frequently co-committed (logical coupling). We calculate de-
pendencies from the data before the branch creation.

3. Identify developers who edited key files – files that were edit-
ed in both branches or had dependencies across branches (see
Section 2.4). We collect this information for changes in

branches, as well as previous history.
4. Recommend a ranked list of suitable candidates to perform the

merge based on a medal count system (see Section 2.5).

2.1 Scenario
Before describing our approach, we present an intentionally

simple scenario to illustrate the use of branches. Let us consider a

hypothetical project Calculator, which employs a feature branch
in parallel to the master branch to implement advanced operations.
Figure 1 presents a commit history that includes these two
branches, and four developers: Alice, Peter, Bob, and Tom. Let us
assume that Bob creates a feature branch from the master (C50)
and performs three commits (C51, C54, and C56). Tom also

commits to this branch (C57). Alice and Peter continue to work in
the master branch in parallel. Alice performs two commits (C52
and C53), followed by two commits from Peter (C55 and C58).
Let us further assume that Alice and Bob change the same files,
QuadraticEquation and Subtraction, across the branches (see

Table 1 and Table 2). Peter changed files Multiplication and Divi-
sion in the master branch. Tom changed only file IEquation in the
feature branch. However, there is a logical dependency: file Quad-
raticEquation depends on file IEquation.

Figure 1. Example of Merging Branches

In our example, developers are unaware of changes made in
another branch. Therefore, Alice does not know about the parallel
changes made by Bob to QuadraticEquation and Subtraction in
the feature branch. A merge of the branches will generate a merge
error due to direct conflicts. Further, Tom changed IEquation in
the feature branch, on which QuadraticEquation depends, and is

changed by Alice in the master branch. A merge of these branches
can generate build or test failure due to indirect conflicts.

Additionally, Table 3 shows (a hypothetical) edit history of
the project files before the branching. Alex had edited all the five
files and Anna four of the five files.

Table 1. Commits in the master branch

File Name Alice Peter

QuadraticEquation 2 (C52, C53) 0

Subtraction 1 (C53) 0

Multiplication 0 2 (C55, C58)

Division 0 2 (C55, C58)

Table 2. Commits in the feature branch

File Name Bob Tom

QuadraticEquation 2 (C51, C56) 0

Subtraction 3 (C51, C54, C56) 0

IEquation 0 1 (C57)

Table 3. Contributions in history before branching

File Name Alice Bob Tom Alex Anna

QuadraticEquation 3 0 0 11 4

Subtraction 0 2 0 3 0

Multiplication 0 0 0 4 2

Division 0 0 0 1 3

IEquation 0 0 4 6 2

We analyze information about changes across branches as
well as the previous history because both are relevant for merging
branches. Developers who have made changes in the branches
know about recent changes that need to be integrated. Developers
who have modified files in the past may know about the history
and goals of the implementation.

2.2 Data Extraction
The first step in our approach is extracting the data about

branches from the projects. Formally, we can define a project 𝑝 as

a tuple (𝐹, 𝐷, 𝐶), where F is a set of files, D is a set of developers,

and C is a set of commits. Each commit 𝑐𝑖 ∈ 𝐶 is a tuple
(𝐹𝑖 , 𝑎𝑖 , 𝑃𝑖), where 𝐹𝑖 ⊆ 𝐹 is the set of files changed (add, remove,

or edit) by 𝑐𝑖; 𝑎𝑖 ∈ 𝐷 is the author of 𝑐𝑖; and 𝑃𝑖 ⊂ 𝐶 is the set of

parent commits of 𝑐𝑖 (Figure 2).

524

Figure 2: Simple versioning metamodel

Commits are organized in a directed acyclic graph (e.g., Fig-

ure 1), where the first commit of the project has no parent (e.g.,
commit C0 in Figure 1), revision commits have only one parent
(e.g., commit C53 in Figure 1), and merge commits have two
parents (e.g., commit C59 in Figure 1). All reachable commits
from 𝑐𝑖 form its history, including 𝑐𝑖 itself and the transitive clo-

sure over its parents. In Figure 1, {C0, …, C51, C54, C56, C57}
is the history of commit C57. The history of 𝑐𝑖 ∈ 𝐶 is defined as:

𝐻𝑖 = {𝑐 ∈ 𝐶|𝑐 = 𝑐𝑖 ∨ ∃𝑝𝑗 : (𝑝𝑗 ∈ 𝑃𝑖 ∧ 𝑐 ∈ 𝐻𝑗)}

Two commits 𝑐𝑖 , 𝑐𝑗 ∈ 𝐶 that do not reach each other (i.e., 𝑐𝑖 ∉

𝐻𝑗 ∧ 𝑐𝑗 ∉ 𝐻𝑖) are called variants (e.g., commits C57 and C58 in

Figure 1). Variants may have a common history, which comprises
all commits that exist in both histories. In Figure 1, {C0, …, C50}
is the common history of commits C57 and C58. The common

history of 𝑐𝑖 , 𝑐𝑗 ∈ 𝐶 is defined as:

𝐶𝐻𝑖,𝑗 = 𝐻𝑖 ∩ 𝐻𝑗

The history of each variant also comprises commits that do
not belong to the common history, forming an independent line of
development called branch history. For example, {C51, C54, C56,
C57} is the branch history of C57 when merging with C58; and
{C52, C53, C55, C58} is the branch history of C58 when merging

with C57 (Figure 1). As branches can be created from other
branches, the branch history may vary depending on the opposing
branch, as a consequence of different common histories. The

branch history of 𝑐𝑖 ∈ 𝐶 when merging with 𝑐𝑗 ∈ 𝐶 is defined as:
𝐵𝐻𝑖,𝑗 = 𝐻𝑖\𝐻𝑗

Each branch history comprises a set of files changed by its

commits. The files changed in the branch history of 𝑐𝑖 ∈ 𝐶 when

merging with 𝑐𝑗 ∈ 𝐶 is defined as:

𝐹𝑖,𝑗 = ⋃ 𝐹𝑘
𝑐𝑘∈𝐵𝐻𝑖,𝑗

In addition, file edited in the common history (i.e.,

⋃ 𝐹𝑘𝑐𝑘∈𝐶𝐻𝑖,𝑗
) is extracted to determine expertise over the key files.

Currently, we collect data of all past commits, but the approach
can be easily modified to only consider changes in a given time
frame (e.g., past release) to accommodate decay in expertise [30].

2.3 Dependency Detection
Next, we identify dependencies among files that are edited

across branches. This is vital, since parallel changes to dependent

files can cause indirect conflicts when the branches are integrated.
There are two different ways to identify dependencies ([24,

30, 35, 36]): using program analysis or logical coupling. Depend-
encies detected via program analysis typically identify structural
or syntactic dependencies. However, such analysis techniques are
language dependent. Logical coupling, on the other hand, detect
evolutionary dependencies by identifying files (or code) that are
frequently changed together [24], and is language agnostic. A

majority of open source projects involve different languages and
often times use a combination of different programming lan-
guages. Therefore, we use logical dependencies in our approach.

We use the edit history of the project (before the branching
occurred) to determine dependencies between pairs of files. Of

course, it is possible that these dependencies might change based
on edits in the branches themselves. However, the past history
provides us a baseline of these dependencies. In future work, we
will investigate how dependencies change from the baseline be-
cause of change in branches and their effect on recommendations.

We only consider the impact of changes to dependent files
across branches as we need to identify the expertise for branch
merging. We assume that all commits within the same branch
have already been integrated: in our scenario, since Peter and
Alice are working on the same (master) branch, we assume that
Peter has integrated changes by Alice prior to his commits.

To understand how we compute the logical dependencies
across files, let’s assume that each file 𝑓𝑙 ∈ 𝐹 has a set of depend-

encies 𝐷𝑒𝑝𝑙 ⊂ 𝐹 that are obtained by using an association rule

mining technique. An association rule is a pair (𝑋, 𝑌) of two dis-

joint entity sets 𝑋, 𝑌 ⊂ 𝐹. In the notation 𝑋 → 𝑌, 𝑋 is called ante-

cedent and 𝑌 is called consequent [1]. It means that, when 𝑋 oc-

curs, 𝑌 also occurs, even if they are not structurally related [24].

However, its probabilistic interpretation is based on the amount of
evidence in the transactions [36], which is determined by two
metrics: (1) support – the joint probability of having both anteced-

ent and consequent, and (2) confidence – the conditional probabil-
ity of having the consequent when the antecedent is present [1].

The confidence value can range from 0 to 1, where 1 means
that every time that the antecedent is changed, the consequent is
also changed. In this case, the use of a threshold is necessary be-
cause low confidence implies low probability that changing a file
causes impact in the dependent file. Therefore, the use of confi-
dence (instead of support) allows us to define direction in the

dependencies. Development teams have the freedom to decide the
threshold above which a dependency becomes relevant. Our ap-
proach parameterizes the threshold, and uses the value set by the
user. Here, after some empirical tests, we have chosen a confi-
dence threshold of 0.6 to determine dependency.

In our scenario, we have dependencies between the files
QuadraticEquation and IEquation. IEquation was changed in 12
commits. Let us assume that of these 12 commits, 8 also included

changes to QuadraticEquation (Table 3). The confidence of the
association rule (IEquation →QuadraticEquation) is 8/12 = 0.66.

Based on a threshold of 0.6, we say that QuadraticEquation de-
pends on IEquation. As confidence is not symmetric, the confi-
dence value of the rule QuadraticEquation →IEquation can be

different. In our scenario, QuadraticEquation was changed in 18
commits, and of these 18 commits, 8 also included changes to
IEquation. The confidence of this rule is 8/18 = 0.44. Therefore,
IEquation does not depend on QuadraticEquation.

2.4 Key File Author Identification
The next step in our approach is to identify the developers

who have modified files that are relevant to the merging of the
branches. We term these files as key files, which are defined as:

𝐾𝐹𝑖,𝑗 =

{

𝑓𝑘 ∈ 𝐹

|

|

(𝑓𝑘 ∈ 𝐹𝑖 ,𝑗 ∩ 𝐹𝑗,𝑖) ∨

(𝑓𝑘 ∈ 𝐹𝑖 ,𝑗 ∧ 𝐷𝑒𝑝𝑘 ∩ 𝐹𝑗,𝑖 ≠ ∅) ∨

(𝑓𝑘 ∈ 𝐹𝑗,𝑖 ∧ 𝐷𝑒𝑝𝑘 ∩ 𝐹𝑖 ,𝑗 ≠ ∅) ∨

(𝑓𝑘 ∈ 𝐷𝑒𝑝𝑙 ∩ 𝐹𝑖,𝑗 ∧ 𝑓𝑙 ∈ 𝐹𝑗,𝑖) ∨

(𝑓𝑘 ∈ 𝐷𝑒𝑝𝑙 ∩ 𝐹𝑗,𝑖 ∧ 𝑓𝑙 ∈ 𝐹𝑖,𝑗) }

Key files are files changed in parallel in both branches (e.g.,
Subtraction and QuadraticEquation) or files that were changed in
one branch (e.g., IEquation), but have a dependency with files that

were changed in the other branch (e.g., QuadraticEquation) –
both the dependent and the file causing the dependency are con-
sidered as key files. Changes to the former class of files can cause
a merge failure (direct conflicts), whereas changes to the latter

525

class can potentially lead to test or build failures (indirect con-
flicts). Only key files are relevant for us, as all other files can be
automatically merged safely. Files that were unchanged in either
branch are irrelevant for the merge.

Once we have identified the key files, we identify the devel-

opers who have changed these files: (1) in a branch, which signals
expertise in the change, or (2) in the previous history, which sig-
nals expertise in the file.

In our scenario, the key files are QuadraticEquation, Subtrac-
tion, and IEquation. Alice changed QuadraticEquation twice and
Subtraction once in the master branch. Bob changed the same
files in the feature branch: two and three times, respectively.
Moreover, Tom changed IEquation once in the feature branch

(Table 1 and Table 2). In previous history (Table 3), Alice changed
QuadraticEquation, Bob changed Subtraction, and Tom changed
IEquation. Further, Alex changed all the key files and Anna
changed two of them (QuadraticEquation and IEquation).

2.5 Developer Recommendation
Next, we use an algorithm that counts the number and type of

contribution – changed in a branch or in the previous history – to
recommend a ranking of suitable candidates who can perform the
merge. We use a medal system to rank developers in the recom-
mendation. This is analogous to how countries are ranked in the
Olympic Games based on medal counts. The following rules de-
fine when developers receive gold, silver, and bronze medals.

A gold medal is awarded when a developer changes a key file

in a branch. The rationale is that the developer who changed a key
file is the most knowledgeable about the change and its implica-
tions. They probably are also well versed with the file in general,
and therefore, likely to be able to perform additional edits during a
merge if necessary. Gold medals are defined as:

𝐺𝑖,𝑗(𝑑) = | ⋃ 𝐹𝑘 ∩ 𝐾𝐹𝑖,𝑗
𝑐𝑘∈𝐵𝐻𝑖,𝑗∧𝑎𝑘=𝑑

| + | ⋃ 𝐹𝑘 ∩ 𝐾𝐹𝑖,𝑗
𝑐𝑘∈𝐵𝐻𝑗,𝑖∧𝑎𝑘=𝑑

|

A silver medal is awarded when a developer has changed a
key file in the past. Developers who created or edited files in the

past likely possess knowledge about the goals and requirements of
these files, which can be helpful. Silver medals are defined as:

𝑆𝑖,𝑗(𝑑) = | ⋃ 𝐹𝑘 ∩ 𝐾𝐹𝑖 ,𝑗
𝑐𝑘∈𝐶𝐻𝑖,𝑗∧𝑎𝑘=𝑑

|

A bronze medal is awarded when a developer changes a file
that depends on another file. We assume that developers who have
changed a dependent file, may have learned about the API (or
methods) of the file that they are using. Consequently, they may
know the goals and expectations of such a file, which may help in
determining the impact of a change. Bronze medals are defined as:

𝐵𝑖,𝑗(𝑑) = | ⋃ ⋃ 𝐷𝑒𝑝𝑙 ∩ 𝐹𝑗,𝑖
𝑓𝑙∈𝐹𝑘𝑐𝑘∈𝐵𝐻𝑖,𝑗∧𝑎𝑘=𝑑

| + | ⋃ ⋃ 𝐷𝑒𝑝𝑙 ∩ 𝐹𝑖 ,𝑗
𝑓𝑙∈𝐹𝑘𝑐𝑘∈𝐵𝐻𝑗,𝑖∧𝑎𝑘=𝑑

|

We assign a medal for each file edited, irrespective of the
number of commits made. In our scenario, Alice and Bob each get
one gold medal for Subtraction, even though Alice committed the
file once in the master branch, and Bob committed it three times
in the feature branch. Similarly, Bob and Alex each get one silver
medal for Subtraction, because of their past changes (before
branching). In our approach, we assume that when a developer

edits a file, that developer has knowledge about the entire file.
While our approach can support a finer-grained expertise calcula-
tion at the method level, we leave it for future work.

Our algorithm prioritizes developers with gold medals since:
(1) they are the expert on the change, and (2) they have the most
recent knowledge about the changed file. In the case of a tie in the

number of gold medals, we use the number of silver medals to
break the tie. This is because, everything being equal, a developer
who has more experience overall is likely to be more suitable in
merging changes. Finally, when there is a tie in the number of
silver medals, we consider bronze medals. The notion is that if

two developers have equal number of changes that they have
made and equal knowledge of the project history, a developer who
has additional knowledge about another file is more suitable for
the merge. This medal ranking is formally defined as:

𝑅𝑖,𝑗 =

(

𝑑𝑟 ∈ 𝐷

|

|

𝐺𝑖,𝑗(𝑑𝑟) + 𝑆𝑖,𝑗(𝑑𝑟) + 𝐵𝑖,𝑗(𝑑𝑟) > 0 ∧

(

𝐺𝑖,𝑗(𝑑𝑟) > 𝐺𝑖,𝑗(𝑑𝑟+1) ∨

(

𝐺𝑖,𝑗(𝑑𝑟) = 𝐺𝑖,𝑗(𝑑𝑟+1) ∧

(

𝑆𝑖,𝑗(𝑑𝑟) > 𝑆𝑖,𝑗(𝑑𝑟+1) ∨

(
𝑆𝑖,𝑗(𝑑𝑟) = 𝑆𝑖,𝑗(𝑑𝑟+1) ∧

𝐵𝑖,𝑗(𝑑𝑟) > 𝐵𝑖,𝑗(𝑑𝑟+1)
)
)

)

)

)

Table 4 shows that Alice and Bob changed QuadraticEqua-
tion in the master and feature branches, respectively – earning
them gold medals. Alice, Alex, and Anna also changed it in the
previous history, each receiving a silver medal. Subtraction was
changed by Alice and Bob in the branches, earning them a gold
medal each. Bob and Alex get silver medals for editing Subtrac-
tion file in the previous history. Only Tom modified file IEqua-

tion in the feature branch (earning a gold medal), and Tom, Alex,
and Anna changed this file in the previous history (earning silver
medals). Alice receives a bronze medal for IEquation, because she
edited QuadraticEquation. Remember, file IEquation is a key file
because QuadraticEquation depends on it, and our assumption is
that to be able to understand and edit the dependent file (Quadrat-
icEquation), the developer must have some knowledge about the
API (of in this case the interface IEquation).

Table 4. Medals (Gold | Silver | Bronze)

File Alice Bob Tom Alex Anna

QuadraticEquation 1 | 1 | 0 1 | 0 | 0 0 | 0 | 0 0 | 1 | 0 0 | 1 | 0

Subtraction 1 | 0 | 0 1 | 1 | 0 0 | 0 | 0 0 | 1 | 0 0 | 0 | 0

IEquation 0 | 0 | 1 0 | 0 | 0 1 | 1 | 0 0 | 1 | 0 0 | 1 | 0

By counting the medals and tie-breaking when necessary, we
generate a developer ranking. In our scenario (Table 5), Alice has
the same number of gold and silver medals as Bob, but she has a

bronze medal, which places her in the first position. Here, the first
three candidates (Alice, Bob, Tom) all have gold medals. This
implies that they each know about equal “amounts” of recent
changes performed in the branches, and the tie breakers involving
dependency information or past changes differentiate them.

Table 5. Ranking of Candidates

Developer Gold Medal Silver Medal Bronze Medal

1st Alice 2 1 1

2nd Bob 2 1 0

3rd Tom 1 1 0

4th Alex 0 3 0

5th Anna 0 2 0

3. IMPLEMENTATION
TIPMerge1 is implemented in Java [10] and is able to analyze

projects versioned on Git, independently of their programming
language2. We adapted Dominoes [30, 31] to identify logical de-
pendencies among files across branches. Dominoes organizes data

extracted from software repositories into matrices to denote rela-
tionships among software entities. For example, [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]

1 https://github.com/gems-uff/tipmerge
2TIPMerge is language agnostic when analyzing expertise at the file-level.

At the method-level, currently it only analyzes Java projects.

526

denotes the files that were changed by commits in the project.
These matrices are combined to depict higher-order relationships,
such as logical dependencies among files: [𝑓𝑖𝑙𝑒|𝑓𝑖𝑙𝑒] =
[𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]𝑇×[𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒].

Figure 3. Information about changes and dependencies

To get the recommendation of developers to merge a pair of
branches, the user first selects two branches to merge (Figure
3(a)) and triggers our recommendation analysis by clicking on the
Run button (Figure 3(b)). Once TIPMerge analyzes the project

information, it shows for each developer the files that they have
edited and the edit frequency in terms of commits (Figure 3(c)).
This information is provided for each branch, both branches, and
previous history. The user can also check the logical dependencies
(Figure 3(d)) by clicking at the See Logical Dependency button.

Figure 4. File dependencies and ranking

In the Dependencies Analysis window (Figure 4), the user can
configure the confidence threshold to determine logical depend-
encies among files (Figure 4(a)). Developer recommendation is
obtained by clicking in the Get Ranking button (Figure 4(b)).

Figure 5. Recommendation ranks for the project Calculator

Finally, TIPMerge generates a ranked list of developers (Fig-

ure 5). For each developer (and each file), it lists the number of
gold, silver, and bronze medals. It also shows the branch in which

the change was made. Further information can be obtained
through a tool tip, by hovering over the medal count. Figure 5(a)
shows that Alice received a bronze medal for file IEquation be-
cause she changed QuadraticEquation in the opposite branch.

4. QUANTITATIVE EVALUATION
To evaluate the recommendation provided by TIPMerge, we

calculate the accuracy of its top-k recommendation, where k = 1
and 3. We select accuracy as the measurement metric, since our
oracle includes just one element – the developer who actually
performed the merge (henceforth, called merge developer).

Assuming who actually performed the merge as an oracle has
limitations. As with any history-based recommender systems, we
face the challenge of finding the “gold standard”. Past data only
reflects what has occurred, and not necessarily what should have
occurred. However, performing developer interviews to get the
gold standard relies on developers’ often “fuzzy” memory, and is
time-intensive, making it infeasible for a large scale evaluation. It
is also possible that our best recommendation is as good as that of

an experienced developer. However, by automating the expert
identification process, we free valuable time of experts.

To evaluate the usefulness of our approach, we compare the
accuracy of TIPMerge’s top-k recommendation with the accuracy
of choosing the top-k developers who performed the most merges
in the past – the majority class (as commonly referred to in Ma-
chine Learning). The intuition is that we evaluate by how much
our approach outperforms or underperforms as compared to a

heuristic that picks the merge developer based on the total
amounts of merges that a developer has previously performed.

4.1 Materials and Methods
We selected the first 1000 unique projects from

https://api.github.com/repositories using the "since" parameter for

pagination. From this set, we randomly selected 100 projects for
analysis. For each project, we check: (1) whether the project in-
cludes merges, and (2) whether it comprises a sole developer per-
forming a majority of the merges (>50%). The first criterion is
self-explanatory. The second criterion is used to filter out those
projects that either employ an integration manager or a small sub-
set of developers who are responsible for performing the merge.
For instance, the Git project has one developer who performed
9,385 out of 9,699 merges (96.76%). Such projects do not need a

recommendation system, and are filtered out from the dataset.
After applying these criteria, we were left with 27 projects

(see Table 6). In addition to these projects, we included another
project – Diploma. Although this project has a developer who has
performed 64% of the merges, we keep this project as we had
access to the development team, which was useful for the qualita-
tive analysis. Therefore, our final dataset comprised of 28 pro-

jects. The median percentage of merges performed by the majori-

ty class in these projects was 29%.
Next, we identify the merges that would require a merge de-

veloper recommendation. That is, the merge is not simple: (1) it
includes two or more developers, and (2) it includes changes to
key files. Merges with key files can lead to direct or indirect con-
flicts, and therefore, may require higher expertise from the merge
developer. For example, in Voldemort project, 231 of 526 merges
(43.92%) included key files, and of these merges 64 faced direct

conflicts. Based on these two criteria, we select 15,584 merges
from a set of 34,916 total merges (about 45%).

Next, we identify the merge developer for each of the
(15,584) merges in our dataset. We then evaluate the prediction of
TIPMerge to see whether the merge developer featured in the
recommendation ranking. We specifically check 1st, 2nd, and 3rd

527

position matches; we also keep tabs of higher order rankings (e.g.,
top-10 recommendation), or if the prediction completely missed
the merge developer.

Table 6. Selected Projects

Project Language Developers Branches
Majority

Class

Active Merchant Ruby 402 26 20.34%

Akka Scala 201 88 20.14%

Amarok Ruby 196 2 20.71%

Angular TypeScript 155 58 13.33%

Astropy Python 142 11 25.94%

Cassandra Java 103 8 24.04%

Comm-central JavaScript 300 27 28.83%

Diploma Java 5 13 64.00%

Errbit Ruby 202 5 19.36%

Eureka Java 36 5 40.00%

Falcor JavaScript 21 16 44.74%

Firefox for iOS C 40 286 21.69%

jQuery JavaScript 227 4 45.20%

Katello Ruby 61 16 13.16%

Khmer Python 56 93 33.58%

Lantern Go 48 67 22.83%

Maven Java 45 23 47.06%

MCT Java 13 5 44.80%

Nomad Go 18 2 34.82%

Perl5 Perl 373 285 29.30%

Phoenix Java 30 14 46.32%

PIConGPU C++ 12 3 39.52%

Priam Java 27 14 44.04%

Sapos Ruby 10 4 31.65%

Spree Ruby 638 15 29.51%

Sympy Python 385 4 28.76%

TYPO3 PHP 304 19 21.90%

Voldemort Java 55 166 25.10%

Table 7. Selected Merges

Project
All

Merges

Selected

Merges
Percentage

Active Merchant 413 132 31.96%

Akka 5481 2189 39.94%

Amarok 396 198 50.00%

Angular 30 17 56.67%

Astropy 2386 855 35.83%

Cassandra 5762 4766 82.71%

Comm-central 111 30 27.03%

Diploma 250 156 62.40%

Errbit 532 125 23.50%

Eureka 620 108 17.42%

Falcor 342 100 29.24%

Firefox for iOS 779 205 26.32%

jQuery 250 132 52.80%

Katello 6890 2755 39.99%

Khmer 1087 473 43.51%

Lantern 1038 213 20.52%

Maven 34 13 38.24%

MCT 221 68 30.77%

Nomad 112 32 28.57%

Perl5 1826 733 40.14%

Phoenix 95 62 65.26%

PIConGPU 749 221 29.51%

Priam 302 97 32.12%

Sapos 139 85 61.15%

Spree 688 303 44.04%

Sympy 3647 1235 33.86%

TYPO3 210 50 23.81%

Voldemort 526 231 43.92%

We then calculate the accuracy of TIPMerge recommenda-
tions for top-1 and top-3 recommendations. We recommend more

than one developer since the most appropriate developer may not

always be available (vacation, extensive backlog, etc.) or the
merge developers may want to perform a collaborative merge
session. We restrict ourselves to top-3 positions since we do not
want to overwhelm the user with too many recommendations.
Note, this makes our results conservative.

We then compare the TIPMerge top-k recommendations with
the majority class based heuristic. That is, we compare the accura-
cy of top-1 recommendation of TIPMerge with the accuracy of
using the top-1 majority class (the developer who performed the
most merges). Similarly, we compare accuracies of TIPMerge
top-3 recommendations with the top-3 in the majority class (the 3
most prolific merge developers). We use majority class as a base-
line because we are not aware of other approaches for recom-

mending developers for merging branches. Moreover, without any
additional information, a natural choice is to select someone who
did a similar task (merges in our case) in the past.

Directly comparing accuracies by their difference or direct
proportion may lead to inflated results (>100% improvement),
therefore, we use a measure for normalized improvement in accu-
racy. Figure 3 shows two scenarios where the accuracy difference
between TIP (TIPMerge) and MC (majority class) is 10%. In the

first scenario (Figure 3(a)), TIP is 100% more accurate than MC
(20% vs. 10%). In the second scenario (Figure 3(b)), TIP is just
12% more accurate than MC (90% vs. 80%). If we simply calcu-
late the difference in accuracies, it would indicate that both sce-
narios are equivalent. On the other hand, if we perform propor-
tional comparison of accuracies, it would indicate a much higher
increase in the first scenario (100% vs. 12%). Intuitively, it is
clear that creating an algorithm that improves an already high

majority class result by 10%, is much more difficult (and useful)
than improving on a low majority class result by the same amount.
For instance, the room for improving over MC in the first scenario
is 90% (from 10% to 100%) and TIP only reached 11% (10% ÷
90%) of this potential. On the other hand, the room for improving
over MC in the second scenario is only 20% (from 80% to 100%),
but TIP achieved 50% (10% ÷ 20%) of this gain.

Figure 3. Examples of improvement in accuracy

We thus normalize the percentage of improvement in accura-

cy by considering “the room for improvement” by using 𝑓𝑝 [25]:

𝑓𝑝 =

{

𝑇𝐼𝑃𝑝 −𝑀𝐶𝑝

1 − 𝑀𝐶𝑝
 , 𝑖𝑓 𝑇𝐼𝑃𝑝 > 𝑀𝐶𝑝

𝑇𝐼𝑃𝑝 −𝑀𝐶𝑝

𝑀𝐶𝑝
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (Eq. 1)

Where 𝑇𝐼𝑃𝑝 represents the accuracy obtained by TIPMerge

(top-1 or top-3) over project 𝑝, and 𝑀𝐶𝑝 represents the accuracy

of the majority class (top-1 or top-3) of project 𝑝.

4.2 Results and Discussion
TIPMerge has been designed for situations where there is no

integration manager or integration team, and the team would re-
quire recommendation about who should merge ranches. There-
fore, we classify the results of our study into three categories:
Category I (No integrators: Projects with majority classes (top-3)
< 50%). this shows that different developers perform the merge
tasks. This is the context our approach was mainly designed for,
as any developer is a potential candidate to merge branches.

10%

MC
0% 100%

20%

TIP

80%

MC
0% 100%

90%

TIP

(a)

(b)

528

Category II (Integration team: Projects with majority classes
(top-3) ≥ 50% and majority class (top-1) < 50%.) These projects
don’t have a single integrator (top-1<50%), but they have a group
who perform the majority of merges. While not the primary audi-
ence of our approach, these teams might benefit since we can
prioritize the most appropriate developers for the merge team.

Category III (Integration manage: Projects with majority class

(top-1) ≥ 50%.) These projects have a developer performing a
majority of the merges. We can help by enabling the lead integra-
tor find developers for collaborative merge or help in integration.

To be conservative in our approach, we recalculate the majori-
ty class for the 15,584 merges in our dataset, and the percentage
of merges performed by the majority class. Table 8 lists the accu-
racy of the top-1 recommendation by TIPMerge and the accuracy
of the top-1 majority class. We also list the normalized accuracy
improvement (Eq. 1) by TIPMerge. Table 9 provides similar data,
but for top-3 rankings. These tables also color-code the improve-
ment in accuracy for easier comprehension.

Category I: TIPMerge has very good accuracy for projects in
Category I for top-1 and top-3 recommendations, except the An-
gular project. The project with the best improvement is Lantern.
Here, TIPMerge improves accuracy by 49.7%, and 76.6% over
selecting the Majority Class. Note that the top-3 majority class
performs 47.98% of the merges, which leaves about 52% of other
developers who perform merges. Even in such cases, TIPMerge
outperforms predictions using the majority class. Accuracy im-
provements (median) for the top-1 and top-3 recommendations

(excluding the Angular project, discussed next) are at 28% and
47.7% respectively. This attests to the usefulness of TIPMerge in
projects where there is diversity among merge developers.

In the Angular project, TIPMerge did worse than the predic-
tion using the majority class (top-1 at -66.7%, top-3 at -12.5%).
Indeed, TIPMerge correctly recommended only 1 and 7 merge
cases (out of 17 total merges) for the top-1 and top-3 recommen-
dations, respectively. On further investigation we find that in 9 of

the incorrect recommendations, TIPMerge recommended the
merge developer in other positions (i.e., we get an accuracy of
94% if we consider top-9 positions). To better understand the
project dynamics, we investigate the merge developers forming
the majority class. The top merge developer (alexeagle) had Con-
tinuous Integration (CI) experience; the second most prolific
merge developer (alexwolfe) was the head of UX, and the third
(yjbanov) was a Google employee who had been part of the pro-

ject since the beginning. Therefore, in this case it is likely that
alexeagle did most of the merges because of his CI background;
alexwolfe and yjbanov, probably because of their knowledge of the
project history, and for being part of the core team.

Category II: TIPMerge has high accuracy. In 16 of 18 pro-
jects, we get a higher accuracy than the majority class for top-1
recommendation, with median improvement of 30.7%. For top-3
recommendations, we have an improvement in 17 out of 18 pro-

jects; median improvement is at 59.1%. We perform the best in
the Cassandra project, with accuracy improvements at top-1, and
top-3 recommendations at 49% and 58.1%, respectively.

Next, we investigate the two cases where TIPMerge had low
accuracy: Firefox for iOS and jQuery. In the former case we get a
low accuracy (39.02%) for the top-1 recommendation. However,
we only have a decay of -1.2% from the majority class as we get
the correct merge developer in 80 out of 205 merge cases; the
majority class performed 81 of the total merges in the project.

When considering the top-3 recommendations, we have an accu-
racy of 85.9% (and an improvement of 51.6%).

Table 8. Accuracies for the top-1 recommendation

Project
Majority

Class
TIPMerge

Normalized

Improv. Accuracy

Category I
 Lantern 20.66% 60.09% 49.70%

Katello 16.81% 50.60% 40.62%

Voldemort 23.38% 49.35% 33.89%

TYPO3 18.00% 36.00% 21.95%

Symply 21.70% 35.63% 17.79%

Active Merchant 21.21% 31.82% 13.47%

Angular 17.65% 5.88% -66.69%

Category II
 Cassandra 24.63% 61.54% 48.97%

Eureka 36.11% 62.04% 40.59%

Akka 21.70% 48.79% 34.60%

Falcor 39.00% 60.00% 34.43%

Perl5 31.38% 54.71% 34.00%

Sapos 31.76% 54.12% 32.77%

Phoenix 40.32% 59.68% 32.44%

MCT 42.65% 60.29% 30.76%

Khmer 35.31% 55.18% 30.72%

Nomad 37.50% 53.13% 25.01%

Priam 30.93% 49.48% 26.86%

Errbit 21.60% 40.80% 24.49%

Spree 33.33% 48.51% 22.77%

Amarok 23.23% 39.90% 21.71%

Astropy 25.50% 35.79% 13.81%

Comm-central 46.67% 50.00% 6.24%

Firefox for iOS 39.51% 39.02% -1.24%

jQuery 49.24% 30.30% -38.46%

Category III
 Diploma 52.56% 58.33% 12.16%

Maven 84.62% 30.77% -63.64%

PIConGPU 50.23% 16.74% -66.67%

Table 9. Accuracies for the top-3 recommendations

Project
Majority

Classes
TIPMerge

Normalized

 Improv. Accuracy

Category I

 Lantern 47.89% 87.79% 76.57%

Katello 41.52% 86.28% 76.54%

Voldemort 49.35% 83.55% 67.52%

TYPO3 44.00% 58.00% 25.00%

Symply 49.23% 62.11% 25.37%

Active Merchant 45.45% 60.61% 27.79%

Angular 47.06% 41.18% -12.49%

Category II

 Cassandra 52.20% 79.98% 58.12%

Eureka 72.22% 94.44% 79.99%

Akka 55.55% 87.94% 72.87%

Falcor 90.00% 93.00% 30.00%

Perl5 69.30% 87.45% 59.12%

Sapos 68.24% 91.76% 74.06%

Phoenix 87.10% 87.10% 0.00%

MCT 73.53% 94.12% 77.79%

Khmer 64.90% 92.81% 79.52%

Nomad 75.00% 90.63% 62.52%

Priam 70.10% 91.75% 72.41%

Errbit 60.00% 70.40% 26.00%

Spree 61.39% 80.53% 49.57%

Amarok 51.01% 69.70% 38.15%

Astropy 63.27% 65.85% 7.02%

Comm-central 70.00% 90.00% 66.67%

Firefox for iOS 70.73% 85.85% 51.66%

jQuery 74.24% 69.70% -6.12%

Category III
 Diploma 89.10% 98.08% 82.39%

Maven 100.00% 76.92% -23.08%

PIConGPU 89.59% 75.57% -15.65%

529

We investigate further into the project to determine why we
missed one of the top-1 recommendation. We see that the top-3
merge developers (majority classes) in the project are st3fan, wesj,
thebnich, and they are all Mozilla employees. Further, st3fan is the
most senior core developer in the team. Therefore, it is likely that

he possessed past project knowledge and had an idea about the
project’s future directions. This might be the reason for his per-
forming most of the merges, which might not be reflected in our
expertise calculation that weighs recent (branch) changes higher.

In jQuery, at the top-1 recommendation, we get an accuracy
of 30.3% (-38.5% decay). As with “Firefox for iOS”, we perform
much better in the top-3 recommendations results (69.7% accura-
cy; a -6.1% decay). To better understand why majority class fares

better, we investigate the team’s contribution structure. The top-1
merge developer is jeresig, who was the founder, and until recent-
ly had been the major contributor of the project. Therefore, it is
likely that he was responsible for a large portion of the merges.
The other two developers in the majority class are: (1) dmethvin,
who is the president, a member of the board of directors, and a
long-term contributor to the project, and (2) jaubourg, who is part
of the core/standards team. Therefore, it is likely that dmethvin

knew about the direction and goals of the project, and was respon-
sible for many of the merges; whereas jaubourg was responsible
for merges because of his role in the standards (quality) team.

Category III: We did not expect good results from projects in
Category III, since they have a clear integrator. TIPMerge accura-
cies (top-3) for Maven and PIConGPU were at 76.92% and
75.7%, respectively. While such accuracy results are good by
themselves, they are do not improve over the majority class pre-

dictions, which are very high. Maven clearly has three developers
responsible for merges with key files (responsible for 100% of the
selected merges). PIConGPU has one developer responsible for
most of the merges (50.23%), and three developers responsible for
almost all merges (89.59%). These results confirm our assump-
tions that TIPMerge is not as useful when there are integrators.

Diploma, differed in this category; we have improvement in
accuracy over the majority class (12.2% and 82.4% for top-1 and
top-3 recommendations). This project had a small development

team (five), and the developers could physically meet with each,
which might have led to the positive results.

In summary, our assessment indicates that TIPMerge provides
very promising results for projects in Category I (no integrators)
and Category II (integration team). When considering the top-3
recommendations, our approach has normalized improvements
(median of 59.12%) in accuracy over the majority classes in 24
out of the 28 projects.

We calculated Spearman's rho between accuracy (top-1 and
top-3), and the number of commits, number of unique developers
(per branch), and number of developer. We found strong correla-
tion between each factor, but weak correlation of these factors
with accuracy. We found negative correlation (~0.30) for number
of unique developers in branch-1, this is likely because the higher
the number of developers in a branch, the harder it is to make a
recommendation. All other correlations were 0.20 or less.

5. QUALITATIVE EVALUATION
To understand better why TIPMerge recommendations di-

verged, we performed a qualitative evaluation with two projects:
one open-source (Sapos) and one proprietary (Diploma). We iden-
tified a set of previous merges where TIPMerge recommended a

different developer than the person who performed the merge. We
interviewed a few team members from each project to understand
whether our recommendation was incorrect or if other circum-
stances affected the “merge developer” choice.

5.1 Materials and Methods
We selected Sapos and Diploma as our projects, since we had

access to at least one team member who was extensively involved
in branch merges. Diploma and Sapos (https://goo.gl/YKBnPw)
had a team of 5 and 10 developers, respectively.

When considering merges with key files, Diploma and Sapos
contained 156 and 85 merges, respectively. From this set, we
selected for further analyses a set of merges which were complex
and would cause a direct conflict. We selected a set of merges
where: (1) TIPMerge provided an incorrect recommendation (the

merge developer was not in the top-1 position), and (2) TIPMerge
recommendation was in the correct position. This gave us 5 and 6
merge cases from Diploma and Sapos, respectively.

For each of these merges, we asked the interviewee to pri-
marily: (1) reflect whether the merge developer was the most
appropriate person in the project for the merge, and (2) evaluate
the TIPMerge recommendation – top-1, as well as the top-3.

5.2 Results and Discussion
We interviewed one expert from Diploma and two experts

from Sapos. These experts were the developers who performed
the most merges (the majority class) in each project.

Diploma is a proprietary project developed by a government
company in Brazil. It started in 2014 and comprises 5 developers:

the project manager, who is also the technical lead and developer
(D1); the business analyst, who is also a developer (D2), and three
other developers (D3, D4, and D5). All team members work in the
same building, but have different (physical) offices.

We interviewed the developer who did the most merges (D1),
and asked him why their project uses branches, and why he per-
formed >50% of the merges. The project used branches to main-
tain system integrity. Four branches were specified: development,

staging (acceptance tests), production, and hotfix. Additional
branches were used to implement new requirements or test new
technology. Regarding the merges that he performed, D1 said: “I
am the technical lead, I have more working hours, and I take care
of approval and production. I have to maintain the integrity of this
structure. I have to help the team”. He added that, in case of con-
flicts where there is no clear merge decision, he contacts the de-
veloper who made the change and performs a collaborative merge.
Besides that, when another developer has difficulties in merging,

D1 is always available to pair and provide support.
We presented to the developer TIPMerge recommendations:

(a) two cases where the merge developer is in the 3rd position, (b)
two cases where the merge developer is in the 2nd position, and (c)
one case where the merge developer in the 1st position (Table 10).

Table 10. TIPMerge ranking and the developer who merged
(in bold)

TIPMerge Position Diploma Sapos

3rd
D1, D5, D4 D4, D5, D3

D4, D2, D1 D4, D5, D3

2rd

D3, D2 D1, D2

D1, D3 D1, D2

- D4, D1

- D4, D1

1st D1 -

In the first merge case, D4 performed the merge (in bold in

Table 10), but our approach placed D1 in the 1st and D4 in the 3rd
position. We asked D1 whether he could have performed the
merge. He said: “It makes sense... I help him in the merge... D4
must have been the one to do the merge ultimately because he was

the last to commit.” In the second case, D1 performed the merge,

530

whereas our approach suggested D4 in the 1st, and D1 in the 3rd
position. He (D1) said: “D4 had changed two tasks, but there is a
piece of code in the merge that only I know, so [I did the merge]…
but D4 would also have been able to perform it.”

Next, we investigate instances where TIPMerge recommended

the developer who performed the merge in the 2nd place. In one of
the cases, D2 performed the merge, but our approach had him in
the 2nd place. Our interviewee (D1) said: “They (D2 and D3)
were…in parallel…they had the same knowledge. Maybe I would
have chosen D2 because he had made some of these changes with
me…any of them would have been able to perform this merge”. In
the fourth case, D3 performed the merge, whom we ranked in the
2nd place. D1 said: “I would still have helped him in this merge.

While D3 could have perform [the merge], I would have followed
it closely.” Note, we ranked D1 in the 1st place.

In the last merge instance, we selected a merge with a conflict
that D1 performed, and for which our approach recommended him
in the 1st position. We asked him to check whether he was in fact
the only one who could have performed this merge. He answered:
“Yeah, as there were some parts of a legacy system, and only I
know this part, I should indeed have done this merge”.

In summary, in cases where TIPMerge recommendations were
not in the top positions, the merge decision could have been based
on: (1) the person who had made the last commit and not neces-
sarily with the most expertise, (2) special knowledge about a cer-
tain piece of code or parts of a legacy system, and (3) personal
preference because of having collaborated with someone in the
past. In some cases, while the top-1 recommendation by TIP-
Merge was not officially the merge developer, they were, in fact,

involved in a collaborative merge. In none of the cases, did the
interviewee say that the top-1 recommended developer would
have been unable to perform the merge. Finally, the interviewee
suggested that he would consider using TIPMerge in his project.

Sapos is an open-source project targeted at the management
of information related to graduate programs. Ten developers (D1,
…, D10) worked on the project at different time periods. We in-
terviewed the two developers who did most merges: D1 and D3.

In Sapos, we selected 34 merge cases that had direct conflicts.

In 9 of these merges, our top-1 recommendation was not the
merge developer. We randomly selected 6 out of these 9 cases for
further analysis (Table 10). In the first two cases, the merge de-
veloper was ranked in the 3rd position, and in the remaining cases
in the 2nd position.

D3 performed the merges in the first two cases; we ranked
him in the 3rd position. We interviewed D3 and asked him, wheth-
er D4 (top-1 recommendation) would have been appropriate in

both merges. He replied that D4 was actually the main author of
these merges and they had worked collaboratively, but using D3’s
computer: “We did these merges together in my office”.

We interviewed D1 about the next four cases. D2 performed
the first of these two merges, whereas we ranked him in the 2nd
position. According to D1, both of them (D1 and D2) had worked
together (pair-programed) extensively in the past, and thus they
had equivalent knowledge of the project. Therefore, both were

qualified to perform these merges. D1 performed the other two
merges, and we ranked him in the 2nd position. According to D1,
in both cases a merge conflict occurred in the database schema
file. He was responsible for the merge because he added a data-
base migration file to the branch. However, he said that D4 would
be able to do the merge by analyzing the database migration file:
“He would need only to see the added and removed fields in each
branch”.

In summary, in 66% of the cases Sapos developers have
worked together in pairs (33% during the merge and 33% in the

past). It seems that collaborative practices like pair programming
can effectively propagate knowledge among developers, provid-
ing direct benefits for knowledge-intensive tasks like merge.

6. THREATS TO VALIDITY
As in any study, our study has limitations. First, in our evalua-

tions we used the developer who had performed the past merge as
our oracle (the most appropriate developer). This has been a
common approach in work on expert identification [16, 19, 22].
However, it is possible that that developer was not the most ap-
propriate developer. We ameliorated this issue by interviewing

three developers from two projects to determine the appropriate-
ness of our recommendation. Second, our approach uses the
committers’ git ID to identify developers. It is possible that devel-
opers use multiple aliases. We manually verified the TIPMerge
ranking with the merge developer to fix possible mistakes by con-
sidering their ID similarity. Although this suffices in most cases,
we may have missed some cases when the aliases are lexically
different. However, note that if we did miss some aliases, they

would in fact decrease the accuracy of TIPMerge results.
In our study, we checked for merges with at least two unique

developers to avoid cases where a single developer was making
parallel changes. However, our dataset still contains merges with
only two unique developers. In these cases, the merge of the two
branches is akin to a workspace merge, which is a simpler scenar-
io than branches with a large number of contributors. In the fu-
ture, we plan to perform a sensitivity analysis to determine the

effects of the number of developers in a branch, and in a merge on
the TIPMerge recommendations.

Although TIPMerge was intentionally designed to support
projects that do not have an integrator, we could observe positive
results even in this category. Moreover, it is worth noting that of
the 1,000 pre-selected projects, only 26% have an integrator re-
sponsible for more than 50% of the merges (Category III). 58% of
them have an integration team responsible for more than 50% of
the merges (Category II), and 16% of them have neither an inte-

grator, nor an integration team (Category I).
In terms of generalizability of our results, we had five projects

in Category I and we spoke to experts from two projects. In the
future, we plan to replicate our results on a larger corpus and
speak to more developers across different projects.

In projects with few merges, our accuracy is not high. We cal-
culated Spearman's rho between accuracy and the # (complex)
merges. We get positive correlations (0.37/0.21) between #com-

plex merges and top-1/top-3 accuracy. This is likely because
higher number of training instances improve predictions.

7. RELATED WORK
To the best of our knowledge, there is no work that addresses

recommendation of developers to merge branches. The more

closely related works either provide awareness to developers dur-
ing parallel work to reduce the complexity of merges, or support
the identification of experts in software projects.

7.1 Workspace Awareness
Research on workspace awareness aims to notify developers

about parallel ongoing work and emerging potential conflicts that
developers will face when they synchronize their work with the
main development. Approaches such as CASI [26], CloudStudio
[11], CoDesign [2], Crystal [5], Palantír [27], SafeCommit [32],
Syde [14], and WeCode [13] try to avoid conflicts by notifying
the developers and prodding them to self-coordinate. One of the
most recognized approach on awareness is Palantír. It tracks
workspace edits to identify potential conflicts and notifies devel-

531

opers of these conflicts as soon as possible. Similarly, Crystal
integrates ongoing parallel changes, extracted from local commits
(in git), into a shadow master repository to identify potential con-
flicts. CloudStudio allows a developer to select the type of infor-
mation about parallel changes that they want to be notified about.

This helps with interruption management. SafeCommit identifies
changes at different levels of safety (will pass tests, will pass
merge, etc.), thereby allowing developers the flexibility to choose
which change sets can be safely integrated with the trunk.

Even though these approaches play an important role in min-
imizing the incidence of conflicts, they do not guarantee conflict-
free merges. Different factors may still lead to difficult merges
even when these approaches are in place, such as: developers

working on project forks that eventually need to be reintegrated;
(2) the nature of some parallel changes (e.g., bug-fix and new
features over the same component); and (3) offline changes. In
these cases, the integration process would impose challenges to
the developers in charge and our approach would be useful.

7.2 Identification of Experts
Some approaches, such as Dominoes [30, 31], Emergent Ex-

pertise Locator [20], Expertise Browser [21], and Usage Expertise
[28], aim to identify experts in software projects. Some of these
approaches (Dominoes and Emergent Expertise Locator) are
based on the approach by Cataldo et al. [6, 7], who developed a
technique to measure task dependencies among people. They use
matrices to represent various dependency relationships. From this,

they aim to answer who must coordinate with whom to get the
work done. Dominoes allows different kinds of explorations over
matrices, and it can be used to identify experts for a given project
or software artifact. Dominoes is capable of using GPU for pro-
cessing operations, which enables the analysis of large-scale data.
Emergent Expertise Locator produces a ranked list of the most
likely emergent team members with whom to communicate, given
a set of files currently deemed to be of interest. Expertise Browser
identifies experts over regions of the code, such as modules or

even subsystems by using the concept of: (1) Experience Atoms
(EAs), which are basic units of experience in change management
systems, and (2) the atomic change (delta) made to the source
code or to the project’s documentation. Finally, the concept of
Usage Expertise is introduced to recommend experts for files,
where the developer accumulates expertise not only by editing
methods, but also by calling (using) them.

All these approaches extract information from the Version

Control Systems and Issue Tracking Systems. Some of these sys-
tems are similar to TIPMerge, and are based on changes per-
formed via commits; others check for different kinds of infor-
mation, such as a method calls, opened and closed issues, etc.
While these approaches all identify experts, they only take into
consideration previous history, and do not discern changes in
branches. As a result, equal weights are assigned to all files. How-
ever, in our situation we know that changes across branches and

their dependencies might have a bigger impact on the merge deci-
sion than prior changes alone.

Other studies on identification of experts have focused on pull
request assignment [15, 19, 33, 34]. Yu et al. [33, 34] proposed an
approach that combines information retrieval with social network
analysis to help project managers find a suitable reviewer for each
pull request. Jiang et al. [15] proposed CoreDevRec to recom-
mend core members for contribution evaluation in GitHub. Core-

DevRec uses support vector machines to analyze different kinds of

features, including file paths of modified codes, relationships be-
tween contributors and core members, and activeness of core

members. De Lima Júnior et al. [19] proposed the use data mining

to identify the most appropriate developers to analyze a pull re-
quest. They use a set of attributes and classification strategies to
suggest developers to analyze pull requests.

These works are closely related to the recommendation of de-
velopers for branch merging, as they aim to recommend develop-

ers to verify the actual contribution and possibly merge it with the
rest of the project. Nevertheless, in general, pull requests contain
commits of a single developer and are small [12]. Moreover, the
author of the pull request usually syncs their forked branch in
advance to ease reintegration, making the process more like a
workspace commit. In the more general case of merging branches,
the number of developers, the syncing interval, and the number of
commits per branch is variable and can be high in some situations.

8. CONCLUSIONS
This work, to the best of our knowledge, is the first to make

developer recommendations for integrating branches. Our ap-
proach, implemented in TIPMerge, leverages historical infor-
mation about changes in the branches as well as past history, and

the dependency among files. We found that we perform the best in
projects that either have no integrators (Category I), or have an
integration team (Category II). We obtain the best accuracy at
62% for the top-1 recommendation (project Eureka) and a best
accuracy at 98% for the top-3 recommendations (project Diplo-
ma). When we compare our results (top-3 recommendations) with
the majority class, we get an improvement in predictions in most
cases (24 out of 28 projects). Among the projects where we out-

perform the majority class, we have a normalized accuracy im-
provement of 30.7% (median) for the top-1 recommendation and a
normalized accuracy improvement of 60.8% (median) for the top-
3 recommendations. We further investigated the team contribution
structures in the cases where TIPMerge had a decay (i.e., was
worse than the majority class). Our exploratory analysis suggests
that the role of developers (i.e., core team member, lead, QA,
founder), as well as their skills (e.g., continuous integration) can
affect who becomes responsible for the merge.

We performed interviews with three expert developers from
two projects in our corpus. From our interviews, we found that
factors like: (1) person performing the most recent change, (2)
knowledge about specific parts of the code base, and (3) personal
preference, had an effect on who was eventually responsible for
the merge. In several cases where the top recommendation was
incorrect, that developer had, in fact, participated in a collabora-
tive merge or supported the merge developer in some fashion.

Our results suggest that TIPMerge can be further extended to
incorporate the above factors into the analysis algorithm. We also
plan to run the analysis at a finer grain (method level), as this will
provide a detailed understanding of file dependencies and devel-
oper knowledge about specific parts of the code base. Further, we
will extend the dependency calculation to also consider new de-
pendencies added by changes in the branches. Finally, we intend
to replicate this analysis over a larger corpus of projects.

In conclusion, our results suggest that TIPMerge can be useful
in not only predicting the most appropriate developer to perform
the merge when there is no integrator in the team, but also in rec-
ommending other developers who can support the integrator.

9. ACKNOWLEDGMENTS
This work is partially supported by CAPES (10614-14-1),

CNPq, FAPERJ, and NSF CCF-1253786 and IIS-1314365. We
also would like to thank STI/UFF for giving us access to their
projects during evaluation and José Ricardo da Silva Junior for
helping us using Dominoes library.

532

10. REFERENCES
[1] Agrawal, R. and Srikant, R. 1994. Fast Algorithms for Min-

ing Association Rules in Large Databases. Proceedings of
the 20th International Conference on Very Large Data Ba-
ses (San Francisco, CA, USA, 1994), 487–499.

[2] Bang, J. young, Popescu, D., Edwards, G., Medvidovic, N.,
Kulkarni, N., Rama, G.M. and Padmanabhuni, S. 2010.
CoDesign: a highly extensible collaborative software mod-
eling framework. (May 2010), 243 –246.

[3] Bird, C. and Zimmermann, T. 2012. Assessing the Value of
Branches with What-if Analysis. ACM SIGSOFT Int’l Symp.
Foundations of Software Eng (FSE) (New York, NY, USA,
2012), 45:1–45:11.

[4] Bird, C., Zimmermann, T. and Teterev, A. 2011. A theory
of branches as goals and virtual teams. 4th International
Workshop on Cooperative and Human Aspects of Software
Engineering (New York, NY, USA, 2011), 53–56.

[5] Brun, Y., Holmes, R., Ernst, M.D. and Notkin, D. 2011.
Proactive detection of collaboration conflicts. ACM SIG-
SOFT Int’l Symp. Foundations of Software Eng. (FSE)
(2011), 168–178.

[6] Cataldo, M., Herbsleb, J.D. and Carley, K.M. 2008. Socio-
technical Congruence: A Framework for Assessing the Im-
pact of Technical and Work Dependencies on Software De-

velopment Productivity. Proceedings of the Second ACM-
IEEE International Symposium on Empirical Software En-
gineering and Measurement (New York, NY, USA, 2008),
2–11.

[7] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D. and Carley,
K.M. 2006. Identification of coordination requirements: im-
plications for the Design of collaboration and awareness
tools. 20th anniversary conference on Computer supported
cooperative work (CSCW) (2006), 353–362.

[8] Costa, C., Figueiredo, J.J.C., Ghiotto, G. and Murta, L.
2014. Characterizing the Problem of Developers’ Assign-
ment for Merging Branches. International Journal of Soft-
ware Engineering and Knowledge Engineering (IJSEKE).
24, 10 (2014), 1489–1508.

[9] Costa, C., Figueirêdo, J.J.C. and Murta, L. 2014. Collabora-
tive Merge in Distributed Software Development: Who

Should Participate? The International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE)
(Vancouver, Canada, 2014), 268–273.

[10] Costa, C., Figueiredo, J.J.C., Murta, L. and Sarma, A. 2016.
TIPMerge: Recommending Developers for Merging
Branches. ACM SIGSOFT Int’l Symp. Foundations of Soft-
ware Eng. (FSE) Tool Demonstration Paper. (Seattle, WA,
USA, 2016).

[11] Estler, H.C., Nordio, M., Furia, C.A. and Meyer, B. 2013.
Unifying Configuration Management with Merge Conflict
Detection and Awareness Systems. 2nd Australian Software
Engineering Conference (ASWEC) (Washington, DC, USA,
2013), 201–210.

[12] Gousios, G., Pinzger, M. and Deursen, A. van 2014. An
Exploratory Study of the Pull-based Software Development
Model. International Conference on Software Engineering
(ICSE) (Hyderabad, India, 2014), 345–355.

[13] Guimarães, M.L. and Silva, A.R. 2012. Improving early
detection of software merge conflicts. 34th International

Conference on Software Engineering (ICSE) (Piscataway,
NJ, USA, 2012), 342–352.

[14] Hattori, L. and Lanza, M. 2010. Syde: a tool for collabora-
tive software development. 2010 ACM/IEEE 32nd Interna-
tional Conference on Software Engineering (May 2010),
235 –238.

[15] Jiang, J., He, J.-H. and Chen, X.-Y. 2015. CoreDevRec:
Automatic Core Member Recommendation for Contribution
Evaluation. Journal of Computer Science and Technology.
30, 5 (Sep. 2015), 998–1016.

[16] Kagdi, H., Gethers, M., Poshyvanyk, D. and Hammad, M.
2012. Assigning change requests to software developers.
Journal of Software: Evolution and Process. 24, 1 (2012),
3–33.

[17] Koegel, M., Naughton, H., Helming, J. and Herrmannsdoer-
fer, M. 2010. Collaborative model merging. ACM interna-

tional conference companion on Object oriented program-
ming systems languages and applications companion (New
York, NY, USA, 2010), 27–34.

[18] Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikko-
nen, T. and Englund, M. 2012. CoRED: browser-based Col-
laborative Real-time Editor for Java web applications. ACM
2012 conference on Computer Supported Cooperative Work
(New York, NY, USA, 2012), 1307–1316.

[19] De Lima Júnior, M.L., Soares, D.M., Plastino, A. and
Murta, L. 2015. Developers Assignment for Analyzing Pull
Requests. Proceedings of the 30th Annual ACM Symposium
on Applied Computing (New York, NY, USA, 2015), 1567–
1572.

[20] Minto, S. and Murphy, G.C. 2007. Recommending Emer-
gent Teams. Fourth International Workshop on Mining
Software Repositories (MSR) (Washington, DC, USA,
2007), 5–.

[21] Mockus, A. and Herbsleb, J.D. 2002. Expertise Browser: A
Quantitative Approach to Identifying Expertise. 24th Inter-

national Conference on Software Engineering (ICSE) (New
York, NY, USA, 2002), 503–512.

[22] Murphy, G. and Cubranic, D. 2004. Automatic bug triage

using text categorization. Proceedings of the Sixteenth In-
ternational Conference on Software Engineering &
Knowledge Engineering (2004).

[23] Nieminen, A. 2012. Real-time collaborative resolving of
merge conflicts. 2012 8th International Conference on Col-
laborative Computing: Networking, Applications and Work-
sharing (CollaborateCom) (2012), 540–543.

[24] Oliva, G.A. and Gerosa, M.A. 2011. On the Interplay be-
tween Structural and Logical Dependencies in Open-Source
Software. 2011 25th Brazilian Symposium on Software En-
gineering (SBES) (Sep. 2011), 144–153.

[25] Pappa, G.L. and Freitas, A.A. 2006. Automatically evolving
rule induction algorithms. Machine Learning: ECML 2006.
Springer. 341–352.

[26] Portillo-Rodriguez, J., Vizcaino, A., Ebert, C. and Piattini,
M. 2010. Tools to Support Global Software Development
Processes: A Survey. 5th IEEE International Conference on
Global Software Engineering (ICGSE) (2010), 13–22.

[27] Sarma, A., Redmiles, D. and van der Hoek, A. 2012. Palan-
tir: Early Detection of Development Conflicts Arising from

533

Parallel Code Changes. IEEE Trans. Softw. Eng. 38, 4 (Jul.
2012), 889–908.

[28] Schuler, D. and Zimmermann, T. 2008. Mining Usage Ex-
pertise from Version Archives. International working con-
ference on Mining software repositories (MSR) (New York,
NY, USA, 2008), 121–124.

[29] Shihab, E., Bird, C. and Zimmermann, T. 2012. The Effect
of Branching Strategies on Software Quality. ACM-IEEE in-
ternational symposium on Empirical software engineering
and measurement (ESEM) (New York, NY, USA, 2012),
301–310.

[30] Da Silva, J.R., Clua, E., Murta, L. and Sarma, A. 2015.
Niche vs. breadth: Calculating expertise over time through a

fine-grained analysis. 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution and Reengineering
(SANER) (2015), 409–418.

[31] Da Silva Junior, J.R., Clua, E., Murta, L. and Sarma, A.
2014. Exploratory Data Analysis of Software Repositories
via GPU Processing. The International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE)
(Vancouver, Canada, 2014), 495–500.

[32] Wloka, J., Ryder, B., Tip, F. and Ren, X. 2009. Safe-commit
Analysis to Facilitate Team Software Development. 31st In-

ternational Conference on Software Engineering (ICSE)
(Washington, DC, USA, 2009), 507–517.

[33] Yu, Y., Wang, H., Yin, G. and Ling, C.X. 2015. Reviewer
Recommender of Pull-Requests in GitHub. IEEE Interna-
tional Conference on Software Maintenance and Evolution
(Victoria, BC, 2015), 609–612.

[34] Yu, Y., Wang, H., Yin, G. and Ling, C.X. 2014. Who
Should Review this Pull-Request: Reviewer Recommenda-
tion to Expedite Crowd Collaboration. Software Engineer-
ing Conference (APSEC), 2014 21st Asia-Pacific (Jeju,
2014), 335–342.

[35] Zimmermann, T., Dallmeier, V., Halachev, K. and Zeller,
A. 2005. eROSE: guiding programmers in eclipse. Compan-

ion to the 20th annual ACM SIGPLAN conference on Ob-
ject-oriented programming, systems, languages, and appli-
cations (2005), 186–187.

[36] Zimmermann, T., Weisgerber, P., Diehl, S. and Zeller, A.
2004. Mining Version Histories to Guide Software Changes.
Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE) (Washington, DC, USA, 2004),
563–572.

534

