
Modeling and Verification of Evolving Cyber-Physical Spaces
Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

ABSTRACT
We increasingly live in cyber-physical spaces – spaces that are both
physical and digital, and where the two aspects are intertwined.
Such spaces are highly dynamic and typically undergo continuous
change. Software engineering can have a profound impact in this
domain, by defining suitable modeling and specification notations
as well as supporting design-time formal verification. In this pa-
per, we present a methodology and a technical framework which
support modeling of evolving cyber-physical spaces and reason-
ing about their spatio-temporal properties. We utilize a discrete,
graph-based formalism for modeling cyber-physical spaces as well
as primitives of change, giving rise to a reactive system consisting
of rewriting rules with both local and global application conditions.
Formal reasoning facilities are implemented adopting logic-based
specification of properties and according model checking proce-
dures, in both spatial and temporal fragments. We evaluate our
approach using a case study of a disaster scenario in a smart city.

CCS CONCEPTS
• Software and its engineering→ Software systemmodels;Model-
driven software engineering; Abstraction, modeling and modularity;
Formal methods; Model checking; Requirements analysis;

KEYWORDS
Cyber-Physical Spaces; Dependable Systems; Safety and Reliability;
Modelling and Specification; Formal Verification

ACM Reference Format:
Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. 2017. Modeling and
Verification of Evolving Cyber-Physical Spaces. In Proceedings of 2017 11th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106299

1 INTRODUCTION
Computing and communication capabilities are increasingly embed-
ded into physical spaces thus blurring the boundary between com-
putational and physical worlds; typically, this is the case in modern
cyber-physical systems, like smart buildings or smart cities, here-
after called space-dependent systems. Conceptually, we consider
such a composite environment as a cyber-physical space (CPSp),
which consists of interrelated computational and physical entities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106299

Like any other software-intensive system, a CPSp is not a static
construct. Dynamic actions (e.g. performed by agents) generate con-
tinuous change, leading to the notion of an evolving cyber-physical
space. Thus an evolving CPSp must face the manifold challenges of
dynamism – change may affect e.g. safety, security, or reliability
requirements [50, 51] of the overall space-dependent system.

Formally modeling space and its change as well as reasoning
about various properties of evolving space are crucial prerequisites
for engineering dependable evolving CPSp. Our approach targets
the critical system requirements phase, where a way to obtain
formal assurances about the system is highly sought. This phase
enables verifying requirements in the early stages of design, be-
fore implementing the actual system. Additionally, such high-level
reasoning can aid in analysis of system behavior after deployment,
or used for bootstrapping adaptation at runtime. Elementary prop-
erties of an evolving spatial environment of a software-intensive
system can be roughly classified into three kinds:

(spatial; local): Most properties of space are locally bounded,
i.e. they refer to direct, elementary relationships between
entities or sets of entities forming a pre-defined structural
pattern or anti-pattern.

(spatial; global): In more advanced cases, we have to predicate
about spatial properties which are non-local in the sense
that the entities of interest may be arbitrarily distributed in
space. Proximity and reachability, for instance, are two kinds
of spatial relationships which play an important role in an
evolving CPSp.

(temporal): Concerning the temporal dimension, we typically
quantify over system states along one or several execution
paths; i.e. we are interested in behavioral characteristics of
certain events or system properties.

A plethora of approaches are actively investigated by the re-
search community to support reasoning about properties of one of
these kinds. For example, graphs and graph pattern matching [16]
provide suitable methods to deal with local spatial properties, while
model checking based on various forms of spatial [46] and tempo-
ral logics [14] provides a rigorous approach for the verification of
global spatial and temporal system properties, respectively. How-
ever, there is a considerable lack of approaches covering all of
the above listed kinds of properties at the same time. This is a
significant deficiency concerning the engineering of dependable
space-and-time-dependent systems, since the properties of interest
are often complex spatio-temporal properties. Informally speaking,
a complex spatio-temporal property refers to behavioral character-
istics (temporal) of spatial relationships (spatial; global) of complex
structures (spatial; local).

In this paper, we argue that software engineering (SE) can have
a profound impact in engineering of space-and-time-dependent
systems, by defining suitable modeling and specification notations
as well as supporting design-time formal verification. The typi-
cal SE approach –provide a suitable model amenable for analysis

38

https://doi.org/10.1145/3106237.3106299
https://doi.org/10.1145/3106237.3106299

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

and use it to validate a design– is applied to the domain of CPSp.
Thus, we present a methodology and a technical framework which
support modeling of evolving CPSp and reasoning about complex
spatio-temporal properties of the overall systems. We contextify
our approach within cyber-physical systems where the space –
computational or physical– they operate in can be abstracted as
a discrete and relational structure. This viewpoint is complemen-
tary to other approaches which target continuous aspects. Our
modeling approach grounds on Bigraphs and Bigraphical Reactive
Systems [37], a modeling formalism proposed by Robin Milner as a
fundamental theory for structures in ubiquitous computing. The
idea of bigraphs is based on two fundamental concepts of discrete
spaces: locality and connectivity. Locality is expressed in terms of a
tree-based containment hierarchy, while connectivity is expressed
by a hypergraph orthogonal to the containment structure. Possible
local reconfigurations are expressed as rewriting rules called reac-
tion rules, yielding a Bigraphical Reactive System (BRS). As a first
contribution, we extend bigraphical rewriting such that reaction
rules can be equipped with non-local application conditions.

The main contribution of this paper is a technical framework for
integrating several fundamental techniques to support reasoning
about complex spatio-temporal properties of a BRS-based model
of evolving space. Reasoning facilities are implemented adopting
logic-based specification of properties and according model check-
ing procedures. Locally bounded spatial properties are expressed as
bigraphical patterns which may be composed through logical for-
mulae, and bigraphical matching is used as a fundamental technique
to locate the points in space where such formulae hold. Concerning
checking of global spatial properties, we interpret a bigraphical
model as a so-called closure space [26], paving the way for adopting
a spatial logic for closure spaces alongwith the functionality of a cor-
responding model checker [11]. Similarly, concerning checking of
temporal properties, state transition models can be obtained from a
BRS, serving as the underlying evaluationmodel for model checking
based on a temporal logic. We restrict the combination of the above
components to be suited for engineering dependable systems such
that complexity of spatio-temporal reasoning in evolving spaces is
manageable and expressiveness is not compromised. We demon-
strate the applicability of our approach using a disaster scenario in a
smart city environment as a case study, and evaluate the scalability
of verification procedures for typical spatio-temporal properties in
experiments using city environments of varying model sizes.

The rest of the paper is structured as follows. Section 2 intro-
duces a smart office environment as a motivating scenario serving
as a running example throughout the paper. Section 3 presents
our approach to modeling space using bigraphs as the underlying
modeling formalism. Section 4 is dedicated to the adaptation of
spatial logics for closure spaces to bigraphs. In Sec. 5, modeling
of evolutionary dynamics of a space is illustrated, while in Sec. 6,
we integrate the spatial and temporal dimension, introducing our
framework for reasoning about complex spatio-temporal properties.
Section 7 evaluates our approach using a case study; related work
is considered in Sec. 8, and Sec. 9 concludes the paper.

2 MOTIVATING EXAMPLE
In this section, we introduce a smart office environment as a mo-
tivating scenario and serving as running example of an evolving

CPSp throughout the paper. It is inspired by the context-aware
printing system originally described in [21] and later used in differ-
ent variations in [31]. We begin with a brief description of the static
structure of the cyber-physical space and then consider its dynam-
ics, i.e. possible ways in which the system may change over time.
Finally, we introduce a spatio-temporal property which represents
a possible requirement that should be verified on the design. The
example is presented in an informal manner; a concrete instance as
well as its formalization will be presented in the following sections.

The cyber-physical space consists of an office environmentwhich
contains rooms; rooms may be connected through doors, which are
either locked or unlocked. Rooms may contain computers, printers,
and users. A printer may print only one job at a time; all other
jobs submitted to a printer are queued in the printer’s spool. The
following possible changes in the cyber-physical space constitute
the dynamics of our example:

(jobToSpool): A user may submit a print job to a print spool
through a computer which is connected to the same network
as the respective printer; this may occur through arbitrary
hops over networked computers.

(jobToPrinter): Jobs may be transferred from the print spool to
its associated printer if there is currently no other job being
processed.

Please note that other possible changes such as locking/unlocking
doors or users moving in the physical space may be part of the
example domain, but not part of our system model. Besides the
static structure and dynamics presented, the following requirement
needs to be fulfilled by the design of a concrete office environment:

Users must always be able to print jobs, and the room where
the respective printer is located must be reachable through
unlocked doors to collect printouts.

The requirement is an example of a spatio-temporal property of
the system; it contains elementary predicates of different kinds.
It has the temporal feature of “always”, implying assurance of a
predicate over time. It also includes spatial features with a both
locally bounded and global scope. The predicate “the room the
respective printer is located”, is a locally bounded spatial predicate;
it refers to a relation between a room and a printer. The requirement
also contains a globally scoped predicate of “reachability” of a room
by a user in specific circumstances, i.e. “through unlocked doors”.

3 MODELING SPACE
In themetaphysical relational theory of space [1], space is composed
of relations between entities, and space cannot exist in the absence
of matter. This fundamentally gives rise to a graph structure that
represents a topology; entities are represented by nodes, while
relations between entities are represented by edges. In the following,
a space will arise from two kinds of relations between entities:
containment, signifying that an entity is located within another,
and linking, signifying that two entities are connected in some way.

3.1 Modeling Space with Bigraphs
Bigraphs [37] are a formalism for structures in ubiquitous comput-
ing, which deals with both containment and linking among entities.
A bigraph consists of two graphs. A place graph is a forest, a set
of trees defined over a set of nodes. A link graph is a hypergraph

39

Modeling and Verification of Evolving Cyber-Physical Spaces ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

over the same set of nodes and a set of edges, each linking an ar-
bitrary number of nodes. Connections of an edge with its nodes
are called ports. Place and link graphs are orthogonal, and edges
between nodes can cross locality boundaries. Nodes are typed; the
node types are called controls in bigraphical terminology. Bigraphs
provide a concise and yet very expressive way to model relations in
space and they are depicted graphically in an intuitive way. The bi-
graphs presented here are pure (non binding) and concrete; placing
and linking are independent structures, and nodes and edges have
discrete identifiers [36]. To simplify the notation, we ignore arities
of controls and details related to bigraph composition, i.e. inner
and outer interfaces of bigraphs. What follows is a rather informal
presentation as used in the scope of this paper; the interested reader
may refer to the work of Milner [37] for complete definitions and
proofs of the bigraphical theory.

P.Q Nestinд (P contains Q) (1a)
P | Q Juxtaposit ion of nodes (1b)
−i Site numbered i (1c)
Kw Node with control K havinд por ts w (1d)
W ∥ R Juxtaposit ion of biдraphs (1e)

Bigraphs can be described in algebraic terms (Formulae 1a-1e)
or with an equivalent rigorous graphical representation. P, Q , and
K are controls of bigraph nodes; controls are names that define a
node’s type. Nodes can be structured hierarchically through the
containment relationship, expressed in Formula 1a. Two nodes may
be placed at the same hierarchical structure level, as shown in
Formula 1b. Additionally, bigraphs can contain sites, a special kind
of node (Formula 1c) that denotes a placeholder; sites can be used to
indicate presence of unspecified nodes. Each node can be associated
with a number of named ports. If a single node of a given type exists
in the bigraph, the control uniquely identifies that node. Otherwise,
we use a port name as a way to uniquely identify it. In Formula 1d
the node identified by control K has port names w. Equally named
ports in a formula are connected forming a hyper-edge, called link
in the sequel. Moreover, we will use the wildcard ? to denote any
port name(s). Bigraphs form rooted hierarchies; in Formula 1e,W
and R indicate different roots.

erato

Room

User

0

Job

Room

PC

0

Spool

1

Printer

Room
PC

a

Room

2

cleo

PC
lan

lan User
Job

sp

PC

wifi

3

Unlocked

Door

b
eLocked

Door

f

d
Door

c Unlocked

Figure 1: Bigraphical instance of a smart office environment.

Figure 1 shows a graphical representation of a bigraph modeling
the space of a concrete instance of a smart office environment as
introduced in Sec. 2. Room and User are examples of node controls
signifying a node type. Containment is represented graphically by
nesting a node inside another;User contains a Job. Sites, graphically
represented as shaded boxes, denote the presence of unspecified
nodes, as e.g. in the case of Spool which may contain an arbitrary
number of Job nodes. Ports, graphically represented as black bullets,
indicate linking of a node to a name – forming the link graph. They
may be used to identify nodes of a certain type, e.g., cleo as a User.
Ports can also be linked together to form named edges; for example,
edge wifi between two PC nodes represents wireless connectivity
between them. Finally, the dotted outer box graphically represents
a root. Using the algebraic notation, the same bigraph of Fig. 1 can
be partially represented as in Formula 2.

Rooma .(PClan | Printerlan,sp | −0) | Spoolsp .(−1) | (2)
Doora,b .(Unlocked) | Roomf .(Usercleo .(Jobcleo) | −2) | −3 .

More formally, a bigraph arises from two superimposed relations:
nesting and linking. Let VB be a set of nodes and K the set of types
of nodes, called controls. Let ctrlB : VB → K be a typing function,
called control map. A place graph is a tuple:

BP = (VB, ctr lB, prntB, K)

where prntB : VB → VB is an acyclic parent mapping modeling
nesting. A link graph is a tuple:

BL = (VB, EB, ctr lB, l inkB, K)

where EB is a finite set of edges and linkB : EB → 2VB is a
link mapping assigning each edge the set of nodes which are con-
nected by that edge. Finally, a bigraph B consists of BP and BL :
B = (VB ,EB , ctrlB ,prntB , linkB ,K).

4 REASONING ON SPACE
In this section, we present our approach to reasoning about spatial
properties of (finite) bigraphical models of space, covering both
locally bounded and global spatial properties. The approach is based
on SLCS [11], an extension of the topological semantics of modal
logics to closure spaces, a closure space being a generalization of a
standard topological space [26]. In Sec. 4.1, we provide a context for
evaluating spatial predicates, i.e. an evaluation model whereupon
truth values of relations in the space described by a bigraph can be
verified. In Sec. 4.2, we introduce syntax and semantics of our form
of SLCS serving as a spatial logic for bigraphical models of space.

4.1 Evaluation Model of Space
As a prerequisite to reasoning about spatial properties, we step-
wise develop an evaluation model throughout the remainder of this
section. Since we ground our approach on SLCS, a spatial logic for
closure spaces, we first recall basic definitions of closure spaces
before we show how to automatically derive closure spaces over
bigraphs. Thereupon, we define our notion of a bigraphical closure
model, which is a bigraphical closure space equipped with a valua-
tion function associating each point in the closure space with a set
of atomic propositions that hold for that point.

40

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

4.1.1 Closure Spaces over Bigraphs. A closure space is a notion
originating from the field of mathematical topology, built upon
what can be informally referred as the “least possible enlargement”
of a set. Formally, a closure space is a pair (X ,C) where X is a set,
and the closure operator C : 2X → 2X assigns to each subset A of
X its closure, such that for all A,B ⊆ X :

C(∅) = ∅; A ⊆ C(A) and C(A ∪ B) = C(A) ∪ C(B).(3)

The elements of X are called the points of the closure space
(X ,C). For any subset A ⊆ X , we define the complement of A in
X as A = X \ A. For each A ⊆ X , the interior I(A) of A is the
set C(A). Moreover, the boundary of a set informally refers to the
set of elements which can be approached both from inside it and
from outside of it. Formally, the boundary of A ⊆ X is defined as
B(A) = C(A) \ I(A). Two more variants of boundary exist, the
interior boundary B−(A) = A \ I(A), and the closure boundary
B+(A) = C(A) \A.

As shown in [11, 26], every graph forwhich the set of edges forms
a binary relation induces a closure space, called a quasi-discrete
closure space, by interpreting closure as the adjacency of nodes.
Thus, the idea of obtaining a closure space from a bigraph, in the
following referred to as a bigraphical closure space, is to transform a
bigraph into a simple graph. Basically, this transformation follows
the approach presented in [31]. Bigraphical nodes (excluding sites)
are mapped to simple graph nodes, and the hyperlink structure
is flattened such that every bigraphical link is represented by a
dedicated node of the simple graph, this node being adjacent to the
simple graph nodes corresponding to the bigraphical nodes which
are connected by the link. In contrast to [31], which uses graphs
with containment to represent node hierarchies, bigraphical nesting
relationships are also represented by nodes in a simple graph to
treat containment and linking in a uniform way.

Figure 2 shows an example of a simple graph obtained from the
bigraph of Fig. 1, where nodes representing bigraphical nesting
relationships are unlabelled. This simple graph may be interpreted
as a bigraphical closure space, its nodes representing the points
of the closure space. Closure, interior and boundary of a set of
points can be intuitively obtained based on adjacency relationships.
For example, if A = {lan}, we have I(A) = ∅, B−(A) = {lan}
C(A) = {Printer , PC, PC, lan} and B+(A) = {Printer , PC, PC}.

Formally, let B = (VB ,EB , ctrlB ,prntB , linkB ,K) be a bigraph,
and B′ with V ′

B ⊆ VB , E ′B ⊆ EB , prnt ′B ⊆ prntB and link ′B ⊆ linkB
its corresponding bigraph excluding sites, expressed by a mapping
exclB : B → B′. The transformation of B into a corresponding
simple undirected graphG = (V ,E), whereV is its set of nodes and
E ⊆

{
{x ,y} | x ,y ∈ V

}
is its set of edges, is defined for B′, yielding

a bijective mapping:

τ ′ : V ′
B ∪ E ′B ∪ prnt ′B → V (4)

for which the following two conditions hold:
• The nesting of places in B′ coincides with the adjacency
structure in G: ∀ (v ′1,v

′
2) ∈ prnt ′B there are v,v1,v2 ∈ V

with v = τ ′
(
(v ′1,v

′
2)
)
, v1 = τ ′(v ′1), v2 = τ

′(v ′2) and we have
{v,v1}, {v,v2} ∈ E.

• The linking structure in B′ coincides with the adjacency
structure in G: ∀ e ′ ∈ E ′B and (e ′,v ′1), (e

′,v ′2), ..., (e
′,v ′n) ∈

Figure 2: Bigraphical closure space obtained from the bi-
graph of Fig. 1, with occurrences of pattern User?.(Job?).

link ′B , there are v,v1,v2, ..., vn ∈ V with v = τ ′(e ′),v1 =
τ ′
(
(e ′,v ′1)

)
, v2 = τ ′

(
(e ′,v ′2)

)
, ..., vn = τ ′

(
(e ′,v ′n)

)
and we

have {v,v1}, {v,v2}, ..., {v,vn } ∈ E.
Given a simple graph G = (V ,E) obtained from B, i.e. G = τ (B)

with τ
def
= τ ′ ◦ exclB , a closure space (V ,C) may be derived from

G where the closure operator C is obtained from E as in Formula 5.

C(A) = A ∪ {x ∈ V | ∃ a ∈ A : {a,x} ∈ E} (5)

4.1.2 Bigraphical Closure Model. Now that we have defined
how to obtain closure spaces over bigraphs, a second prerequisite
for defining a spatial logic is to associate each point x ∈ V of a
bigraphical closure space (V ,C) with a set of atomic propositions
that hold for that point. A conventional approach, similar to the one
taken in [11], would be to use labels of nodes in the simple graph
G = (V ,E) as atomic propositions. Instead, we lift the specification
of atomic propositions to the bigraphical level. The idea is that
the developer specifies bigraphical patterns representing locally
bounded spatial structures of interest, typically complex entities
such as a User holding a print Job. Occurrences of such a pattern
may be found in a bigraph B using bigraph matching [4, 28], and
can be mapped to the bigraphical closure space induced by B. The
set of atomic propositions that hold for a particular point x ∈ V
is finally defined as the set of pattern occurrences of which x is
a part of. For example, for the bigraphical closure space of Fig. 2
obtained from the bigraph of Fig. 1, occurrences of the pattern
p1 = User? .(Job?) in the bigraphical closure space are identified by
dotted rectangles. Thus, p1 holds for every point being part of an
occurrence of this pattern.

More formally, let P be the overall set of bigraph patterns speci-
fied by the developer. Moreover, given a pattern p ∈ P , let O(B,p)
be the set of all occurrences of this pattern in a bigraph B. For each
occurrence o ∈ O(B,p), there is a corresponding subgraph τ (o) ⊆ G
in the simple graphG = τ (B) yielding the bigraphical closure space
over B. We finally define a bigraphical closure model:

M =
(
(V , C), v

)
(6)

as a pair consisting of a bigraphical closure space (V ,C) induced
by a graph G = τ (B) obtained from a bigraph B, and a valuation
function v : P → 2V assigning to each bigraphical pattern p ∈ P
the set of points in V which are part of an occurrence of p in B

41

Modeling and Verification of Evolving Cyber-Physical Spaces ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

mapped to G, i.e. for every p ∈ P :

v(p) =
{
x ∈ V | x ∈

⋃
o∈O (B,p)

τ (o)
}
.(7)

4.2 Verification in Space
Building upon the previously defined fundamental operators of
closure and boundary, we proceed to briefly outline the syntax and
semantics of SLCS [11], a spatial logic for closure spaces. The logic
will be evaluated upon bigraphical closure models M, described
previously. Essentially, a formula consists of propositions repre-
senting bigraphical patterns along with SLCS operators. The SLCS
logic features boolean operators, a “one step” modality turning
closure into a logical operator, and a surrounds operator. Given that
p is drawn from a set of bigraph patterns P , the syntax of SLCS is
defined by the following grammar:

ϕ ::= p | ⊤ | ¬ϕ | ϕ ∧ψ | C ϕ | ϕ S ψ . (8)

In Formula 8, ⊤ denotes true, ¬ is negation, ∧ is conjunction,
C is the closure operator, and S is the spatial surrounds operator.
Satisfaction M,x |= ϕ of formula ϕ at point x in model M =

((V ,C),v) is defined by induction on those terms:

M, x |= p ⇔ x ∈ v(p);
M, x |= ⊤ ⇔ true ;
M, x |= ¬ϕ ⇔ not M, x |= ϕ ;
M, x |= ϕ ∧ψ ⇔ M, x |= ϕ and M, x |= ψ ;
M, x |= C ϕ ⇔ x ∈ C(y ∈ V | M, y |= ϕ);
M, x |= ϕ S ψ ⇔ ∃A ⊆ X : x ∈ A ∧

∀y ∈ A : M, y |= ϕ ∧ ∀z ∈ B+(A) : M, z |= ψ .

(9a)
(9b)
(9c)
(9d)
(9e)
(9f)

More complex logical operators can be defined based on the
fundamental operators of closure and surrounds. In the following,
we illustrate those being useful in the context of this paper and
later used for the evaluation of our approach in Sec. 7. First, we
introduce a notion of nearness, i.e. two nodes in a bigraph which are
either linked or in a nesting relationship. The corresponding points
of such nodes in the bigraphical closure space can be found two
steps away from another since linking and nesting relationships are
represented by dedicated points (see Sec. 4.1). Since our aim is to
specify spatial properties on the bigraph level, we define nearness
by nesting applications of the closure operator:

N ϕ
def
= C(Cϕ).(10)

Formula 11a is satisfied for the PC connected to the Printer in the
upper left part of Fig. 1 since these nodes are linked to each other
(due to the link graph). Similarly, Formula 11b is satisfied for the
Printer since it is located in the printer Room (due to the place graph).

PC? ∧ N Printer? . (11a)
Printer? ∧ N Room? . (11b)

Operator N can be applied arbitrarily often to predicate about bi-
graph nodes being in a defined proximity from each other. Moreover,
N can be also utilized to predicate about the nearness or proximity
of complex entities specified as bigraphical patterns. We further

consider operators being defined based on the spatial surrounds
operator [11]; weak reachability (R) and strong reachability (T):

ϕ R ψ
def
= ¬

(
(¬ψ) S (¬ϕ)

)
,

ϕ T ψ
def
= ϕ ∧

(
(ϕ ∨ψ) R ψ

)
.

(12)

(13)

A point x satisfies ϕ R ψ if either ψ is satisfied by x or there
exists a sequence of points starting from x , all satisfying ϕ, leading
to a point satisfying both ϕ and ψ . Utilizing the notion of weak
reachability, we can define a strong reachability operator T , where
ϕ Tψ is satisfied for a point x if it satisfies ϕ and we can reach a
point satisfyingψ while passing only by points satisfying ϕ. Please
note that ϕ andψ are again specified on the bigraph level, i.e. using
bigraph patterns. For example, consider Formula 14 which specifies
a Spool being reachable from a Room in which a Printer is located. It
is satisfied for the Room in the upper left corner of Fig. 1.

Room?(Printer? | −0)) R Spool?. (14)
Building upon these operators, we can further define a more

complex “reach through” operatorℜ (Formula 15). It is satisfied for
a point x if x satisfies ϕ and there is a sequence of points starting
from x , all satisfyingψ , reaching a target point satisfying ζ .

ϕ ℜ(ψ) ζ def
= ϕ T

(
(ψ T ζ) ∧ (ψ T ϕ)

)
. (15)

For an example illustrating the use of the derived ℜ operator, con-
sider Formula 16; it specifies that from the room in which User cleo
is located, a room in which a Printer is located can be reached by
traversing Rooms or unlocked Doors. Note that there is no point
satisfying Formula 16 in the bigraphical closure model of Fig. 2,
since the room in which User cleo is located has a locked door to
another Room.

Room? .(Usercleo . −0 | −1) ℜ (16)(
Door? .(Unlocked) ∨ Room? .(−2)

)
Room? .(Printersp | −3).

So far, we have considered the satisfaction of an SLCS predicate
at a particular point of a bigraphical closure model. In our model
checking procedure, SLCS formulae are evaluated over the whole
space represented by the bigraphical closure model obtained from a
bigraph. Initially, following the model checking approach presented
in [10], such an evaluation yields the set of points of the bigraphical
closure space where the formula is true. We finally return a truth
value which indicates the existence of points in the bigraphical
closure model for which the evaluated formula is true, i.e. if the set
obtained in the initial step is non-empty. Thus, model checking of
Formulae 11a, 11b and 14 on our example evaluates to true, while
Formula 16 evaluates to false.

5 MODELING DYNAMICS OF SPACE
Space is rarely static, thus a formalism for modeling evolving spatial
systems should also capture system dynamics to enable reasoning
about the effects of changes in space.

Bigraphical Reactive Systems (BRS) [37] extend bigraphs with
well defined semantics of dynamic behavior expressed as a set
of rules. BRS essentially allow describing possible ways in which
the structure of the space can evolve through the application of
transformation rules which selectively rewrite parts of a bigraph;
they are called reaction rules. Reaction rules have the general form

42

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

of R → R′, where R is called the redex and R′ is called the reactum;
both the redex and reactum are bigraphs. If an occurrence of a
redex can be found in the host bigraph, it may be replaced by
the reactum, in a fashion similar to graph rewriting [17]. Redex
and reactum can be considered as patterns, and the mechanism for
finding occurrences of a redex is the same as the one outlined in
the previous section for identifying parts of a bigraph that match a
pattern. Intuitively, given an initial configuration of space specified
by a bigraph and a set of reaction rules, new configurations may
be generated by repeatedly applying reactions.

For example, the action jobToPrinter of our example smart office
may be specified as in Formula 17. Utilizing the parameter matching
facilities of the formalism through sites, the Job linked to name n is
moved from the Spool to the respective Printer, while other entities
found in the spool are not modified, as they are matched to the
respective sites. By omitting specification of a site in the redex’s
Printer node, we would allow matching only when the printer does
not contain other jobs. Moreover, by juxtaposing two bigraphs, we
indicate that the Spool may reside in a different hierarchy; indeed,
it is found outside a Room in Fig. 1.

Printersp ∥ Spoolsp .(Jobn | −0) → (17)
Printersp .(Jobn) ∥ Spoolsp .(−0).

Observe that a reaction rule’s redex specifies spatial, local ap-
plication conditions only. However, we also need an extension of
the bigraphical rewriting approach such that reaction rules can
be equipped with additional non-local application conditions. To
understand this requirement better, consider the change inherent
in jobToSpool of our smart office example, where a user may submit
a print job to a print spool through a computer which is connected
to the same network as the respective printer. Here, connectivity
of a computer to a printer may be established over multiple net-
work hops. To specify such a redex in a conventional manner, one
would have to enumerate every possible way in which a computer
and printer are connected through an arbitrary number of nodes;
something infeasible. To that end, we take advantage of the expres-
sive power of SLCS predicates on space to specify spatial, global
application conditions. Reaction rules are now permitted to take the
form [condition] R → R′, where condition is a spatial predicate
(Formula 8). If the pattern identified by the redex R is matched
and the (global) application condition condition is satisfied, the
redex is rewritten by the reactum. Note that there is no syntactic
constraint on the specification of non-local application conditions
of a reaction.

In Formula 18, such a global application condition is specified
preceding the redex. Using the “reach through” operator previously
defined, we can encode the change primitive jobToSpool as follows:[

PClan ℜ(lan | wifi | PClan) Printersp
]

(18)
PClan ∥ Printersp ∥ Spoolsp .(−0) ∥ Usern .(Jobn) →

PClan ∥ Printersp ∥ Spoolsp .(Jobn | −0) ∥ Usern .

6 REASONING ON EVOLVING
SPATIAL CONFIGURATIONS

Since spatial configurations may change over time as discussed
above, a formal model is needed to systematically treat change and

enable reasoning on the changing system’s behavior. In Sec. 6.1,
we illustrate state transition models that can be obtained from a
BRS, serving as the underlying evaluation model for reasoning on
evolving configurations with a temporal logic, discussed in Sec. 6.2.
Finally, we discuss complexity considerations in Sec. 6.3.

6.1 Evolving Spatial Configurations
Let us assume that a CPSp is specified by a BRS, which describes an
initial configuration and a set of reaction rules describing its pos-
sible evolution. To enable automated reasoning, we transform the
specification into an equivalent transition system generally known
as a Kripke Structure (KS [14]) – a tuple K = (S, T, I,BP, L) where:

• S is a set of states describing configurations of space,
• R ⊆ S × S is a set of transitions between states,
• I ⊆ S is a set of initial states,
• BP is a set of atomic propositions,
• L : S → 2BP is a function that labels each state with the set
of propositions that are true in that state.

States of K describe bigraphical configurations of space, while
transitions describe how the configuration of the system can change
bymoving from one state to its successors. Starting from a BRS spec-
ification, interpreting it over a KS means describing its evolution
based on the application of reaction rules. The set of propositions
that label a state can be systematically generated by declaratively
encoding the corresponding bigraph configuration. Starting from
an initial state (i ∈ I) of the system representing an initial config-
uration, the BRS-based specification is interpreted by generating
states according to the reactions. At each step, a set of successor
states is produced yielding the branching Kripke Structure, where
transitions reflect the changes of a bigraphical configuration over
time. Each of these configurations representing a snapshot of space
are encoded in states (through BP propositions). Since in each state
generically more than one reaction can be applicable, K is non-
deterministic. In practice, computation of L and R corresponds to
the matching problem [4] and can be automated by configuring
existing frameworks (e.g. [43],[40]). We further consider that tran-
sitions of K are non-blocking, i.e. ∀s ∈ S,∃s ′ ∈ S : (s, s ′) ∈ R.

Usercleo.(Jobcleo)
Usererato.(Joberato)
Spoolsp.(-1) ...

a Usercleo ...
Usererato.(Joberato)
Spoolsp.(Jobcleo | -1)

b Usercleo ...
Printersp.(Joberato)
Spoolsp.(Jobcleo | -1)

c

...

...

Figure 3: KS fragment showing a violating sequence.

Figure 3 shows a fragment of a KS corresponding to the evolution
of the example. Propositions on states encode bigraphical configu-
rations; state a represents the initial configuration of Fig. 1, where
Users have print jobs. In state b, a user’s Job has been moved to the
Spool due to the execution of a jobToSpool reaction. In state c , that
Job is still in the Spool, and another user’s Job is in the Printer, indi-
cating some previous execution of a jobToPrinter reaction. Having
obtained a KS representing the evolution of a configuration through
the application of reaction rules, properties can be expressed in a
temporal logic and formally verified.

43

Modeling and Verification of Evolving Cyber-Physical Spaces ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

6.2 Reasoning on Evolving Configurations
In the following, we describe how to predicate over the behavior of
spatial properties of a bigraphical space over time. To that end, we
discuss an integration of our approach to spatial reasoning with
Linear Temporal Logic (LTL [14]), a logic with modalities referring
to time. Please note that this integration is not binding; other tem-
poral logics may also be used, and the approach as presented in the
following is generically applicable. Let LTL ◦SLCS over bigraphs be
the spatio-temporal language according to the following definition:

τ ::= p | ⊤ | ¬τ | τ ∧ τ | C τ | τ S τ (19a)
ϕ ::= τ | ¬ϕ | ϕ ∨ ϕ | ⃝ ϕ | ϕ U ϕ . (19b)

Formulae 19a-19b describe the structure of terms and property
formulae of the language. The language consists of temporal and
spatial fragments; the spatial fragment corresponds to SLCS as in-
troduced in Sec. 4, and the temporal fragment to LTL. Evaluation
models are structures K as previously illustrated. In the combined
logic, spatial predicates are terms, and formulae are constructed
by intermixing them with temporal operators. Spatial predicates
express spatial relations of bigraphs and are interpreted over states
of K, while LTL properties express temporal properties and are in-
terpreted over sequences of K and verified through model checking.

The semantics of a formula ϕ is defined over an infinite sequence
σ of truth assignments to spatial propositions π resulting from
spatial terms of Formulae 19a. We denote the set of propositions
that are true at position i of the sequence by σ (i) . We recursively
define whether sequence σ satisfies formula ϕ at position i (denoted
σ , i |= ϕ) as:

σ , i |= π , ⇔ π ∈ σ (i);
σ , i |= ¬ϕ, ⇔ σ , i¬ |= ϕ ;
σ , i |= ϕ1 ∨ ϕ2, ⇔ σ , i |= ϕ1 or σ , i |= ϕ2;
σ , i |= ϕ, ⇔ σ , i + 1 |= ϕ ;
σ , i |= ϕ1 U ϕ2, ⇔ ∃k ≥ i : σ , k |= ϕ2 ∧ ∀i ≤ j < k : σ , j |= ϕ1 .
Intuitively, the formula ⃝ϕ expresses that ϕ is true in the the

next position in the sequence, and the formula ϕ1 U ϕ2 expresses
the property that ϕ1 is true until ϕ2 becomes true. The sequence
σ satisfies formula ϕ if σ , 0 |= ϕ. Given fundamental temporal op-
erators ⃝ ("next") and U ("until"), we can derive additional ones
such as ⋄ϕ = true U ϕ ("eventually") and □ϕ = ¬ ⋄ ¬ϕ ("always").
Finally, we can encode an LTL property corresponding to the re-
quirement of the example. The property specifies the fact that it
should always be the case that should anUser named u exist in the
space, eventually she is able to reach the printer (which contains
her printout) through unlocked doors (or rooms):

□
(
Useru → ⋄Useru ℜ(Room? ∨ Door? .(Unlocked) Printer? .(Jobu)

)
.

The property specification is finally verified against the KS K
describing the evolution of the system over time, discovering pos-
sible states that represent violations using standard explicit-state
verification techniques, for which on-the-fly checking is also pos-
sible [27]. For the evaluation of state predicates of LTL formulae,
the spatial fragment of our approach is invoked. Note that we can
specify as usual any kind of an LTL property, where spatial predi-
cates are terms. The sequence of states shown in Fig. 3 violates the
property stated for user cleo, as the spatial term after the eventually
operator (for u : cleo) is never true in the execution; intuitively, the

Room she is located in Fig. 1 has a locked door, and thus she cannot
reach the printer where her Job is located (state c of Fig.3).

6.3 Reasoning Complexity
When reasoning on evolving space-dependent systems as presented
in this paper, certain considerations on complexity of the proce-
dures involved must be taken into account. Specifically, one has
to consider the size of the bigraphical model, the spatial predica-
tion over the bigraphical closure model, the rewriting component
interpreting the BRS over a KS as well as temporal verification.
For engineering realistic-sized systems, one can configure the con-
stituents of our approach to obtain manageable complexity bounds.

Regarding the spatial fragment, the matching problem of bi-
graphs is related to the sub-graph isomorphism problem. Specifi-
cally, matching of place graphs can be reduced to sub-forest isomor-
phism; subsequently, a complete match can be computed by intro-
ducing extra constraints expressing matching of link graphs [43].
Both the sub-graph and sub-forest isomorphism problems are NP-
hard [45]. However, note that when bigraphs involved have a single
root, thematching problem can be reduced to an instance of sub-tree
isomorphism, solvable in polynomial time. In practice, this means
absence of juxtaposition of bigraphs in reaction rules (operator ∥ of
Formula 1e). Note that the reactions jobToSpool and jobToPrinter pre-
sented utilize multiple roots, since the Spool resides in a different
hierarchy, the position of which may not be known. An alternative
modeling strategy could put the spool inside its respective Printer,
thus avoiding specification of a bigraph juxtaposition in a reaction
rule. Regarding evaluation of spatial predicates, the complexity of
SLCS evaluation is linear in the product of the number of nodes and
edges of the closure model and size of the spatial formula [10, 11].

Several combinations of a spatial logic (such as SLCS) with a
temporal logic are possible, with quite different properties of the
resulting combination regarding expressiveness, decidability and
complexity [24]. In the context of this paper, we focus on a combi-
nation where temporal operators can be applied to spatial terms,
but not the other way round [23] i.e., spatial operators cannot be
applied to temporal terms. The rationale behind this constrained
interaction between spatial and temporal aspects is twofold. Firstly,
it represents the elementary step in adding a temporal dimension
to a spatial logic, and more complex interactions with varying
properties can be considered further. Secondly, by such a compo-
sition satisfiability of the logic as presented in Formulae 19a-19b
is PSPACE-complete [34]. Overall, this interaction has been cho-
sen since it proved in our experiments to be sufficiently powerful
to express requirements and it supports practical verification.

7 EVALUATION
To provide tool support and a proof-of-concept implementation
of our approach to modeling and reasoning about evolving cyber-
physical systems, we realized a prototypical toolchain integrating
bigraphical matching and rewriting, the SLCS topochecker [11]
and LTL model checking. Thereupon, we evaluate our approach
using a scenario concerning UAV emergency response in a smart
city as a case study (Sec. 7.1). Our evaluation goals are twofold:
First, we focus on the applicability of our approach, modeling the
smart city’s space as well as its dynamics in Sec. 7.2, and demon-
strating the reasoning facilities of our approach for two analysis

44

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

scenarios exposing typical design challenges in Sec. 7.3. Second, we
demonstrate the scalability of our reasoning framework and present
experimental results obtained from the case study in Sec. 7.4. We
conclude with a critical discussion in Sec. 7.5.

7.1 Case Study:
UAV Emergency Response in a Smart City

Unmanned Airborne Vehicles (UAVs) can be used as radio relay plat-
forms in environments characterized by poor connectivity. These
environments can be regions where no global connectivity exists,
e.g. due to a disaster or even absence of line of sight between
ground transmitters and receivers. We consider a setting of UAV-
carried communication infrastructure [53] in a disaster scenario for
smart city applications such as emergency response. The setting
we present, including the model and its dynamics is a generalized
case [18] which can be concretized for a variety of urban warfare,
search and rescue, homeland security or surveillance scenarios
where autonomous UAVs operate in a space-dependent environ-
ment and global system properties need to be formally verified.

Communication is disabled in a city due to a disaster; search
and rescue must be performed. Parts of the city may be unsafe, and
victims may be stranded in various locations. Autonomous UAVs
are dispatched to locate and provide communication infrastructure
to victims, leading them to safety. This scenario fits our reasoning
approach particularly well. This is because UAVs move in the city
environment in specific ways, utilizing global knowledge of the city
map and local knowledge (limited by e.g. line of sight) of positions of
neighbouring UAVs and victims. UAVs carry short-range antennae,
and victims are able to connect when they are in the vicinity. If
a UAV is close to a victim, it can lead her to a safe zone. A safe
zone is some part of the city which can lead to a hospital. To utilize
our approach, the designer specifies the model, the ways UAVs
can move and desired properties of the system, specification steps
illustrated in the following.

7.2 Modeling Space and its Dynamics
We obtain a bigraphical model of space for our smart city case
study in two steps. To obtain the basic topological structure of
a city, we automatically extract a bigraph from city models de-
scribed in CityGML [29], a widely used XML-based standard for
the exchange of city models. Subsequently, further entities of in-
terest such as UAVs and disaster victims are placed in that model.
A conceptual representation of the topological structure extracted
from a CityGML model with 20 buildings is illustrated in Fig. 4.
A 2D projection of the roads and buildings is shown in light grey
in the background, while the conceptual bigraphical structure is
shown in the foreground. The bigraph exposes the following plac-
ing structure: A City node serves as root of the extracted bigraph.
It contains nodes of type Road which in turn contain nodes of type
RoadSegment and Crossroad, a road segment representing the part
of a road between two crossroads. Moreover, a City node contains
nodes of type Block, a block representing the area surrounded by
road segments. Blocks may contain an arbitrary number of Building
nodes, each one representing a building. Auxiliary nodes (e.g. for
City and Road) are not shown in Fig. 4 for sake of readability.
Likewise, we abstain from presenting conceptual node attributes,
notably the function of a building (e.g. hospital, airport, residential,

etc.). As for the linking structure of the extracted bigraph, each
building is connected to the building next to it (represented by blue
links in Fig. 4), and to a block’s surrounding road segment if it is
located in the respective block boundary (represented by green
links). Moreover, road segments are linked to the crossroads being
connected by that road segment (represented by red links).

Crossroad Crossroad Crossroad

C
ro
ssro

a
d

CrossroadCrossroadCrossroad

C
ro
ss
ro
a
d

Crossroad

Building
Building

Building Building Building

Building

Building

BuildingBuilding

Building

Building

Building

Building

Building

Building Building

Building

BuildingBuilding
Building

RoadSegment RoadSegment

R
o
a
d
S
e
g
m
e
n
t

R
o
a
d
S
e
g
m
e
n
t

RoadSegment RoadSegment

R
o
a
d
S
e
g
m
e
n
t

R
o
a
d
S
e
g
m
e
n
t

RoadSegment

RoadSegment RoadSegment

Block

Block

Block

Block

Figure 4: Bigraphical structure representation extracted
from a city model with 20 buildings.

Subsequently, we model the changes inherent in the scenario.
Movements of UAVs in the city environment must take into account
key safety requirements, such as collision avoidance and boundary
control [18]. UAV’s may not fly over certain buildings (e.g. hospitals)
and actively avoid collisions by avoiding to enter an area (e.g. a
street) where another UAV is located. Specifically, UAVs generally
move in accordance to the following rules; (i) from building to
building, (ii) from building to road segment, (iii) from road segment
(or crossroad) to another road segment (or crossroad) and (iv) from
road segment to building. Conditions of movements include city
no-fly zones and collision avoidance guards; no two UAVs should
be over the same building, road segment or crossroad. Victims
located by UAVs move with them until a safe zone is reached. Such
changes are parametrically encoded in a BRS augmentedwith global
application conditions.

7.3 Analysis Scenarios and Verification
In this section, we demonstrate the applicability of our reasoning
facilities by considering two analysis scenarios of our case study, (A)
verification of system requirements in early stages of design, and
(B) analysis of simulation or historical output using trace checking.

7.3.1 Scenario A: Verification of System Requirements. Normally,
UAVs follow some path planning strategy [42]; from all possible
movements of a UAV at any point, a strategy selects the optimal,
based on the strategy and local environmental conditions. More-
over, interesting problems arise with target search and surveillance
scenarios, which can lead to complex controller algorithms [18]. We

45

Modeling and Verification of Evolving Cyber-Physical Spaces ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

are not concerned with the design of a controller here, but with ver-
ifying properties of the system which concern any spatio-temporal
decisions that the system of UAVs may take, operating in a city
environment. Behaviors that may violate a global property of the
system must be investigated, so every possible system behavior
must be verified, possibly with an overall goal of using violating
sequences to learn (or debug) a controller strategy. We consider
a generic global requirement of the system, which states that if
victims exist in the city, eventually all victims are safe. An LTL
property encoding the requirement is found in Formula 21. Such a
property can be used to validate the domain modeling, by verifying
that the model and dynamics specified indeed lead to a valid system.

□(Victim → ⋄¬Building? .(Victim | −0)) (21)
∧ Victim ℜ(RoadSegment ∨ Crossroad) Hospital.(−1)).

Note that verification in such a use case can bootstrap planning for
adaptation; knowledge of the potential evolutions of the system
can be a prerequisite for engineering adaptation at runtime. States
in the evolution of the system where a critical situation manifests
can be identified in advance, and countermeasures can be devised.

7.3.2 Scenario B: Trace Checking. In another scenario, given the
model presented, we may be interested in verifying some property
of an execution of the system. This execution may originate from
historical behaviors of a deployed system or a simulation, as is
typical in UAV controller design. In such a case, the evaluation
model consists of a trace of spatial configurations and our approach
can be used to verify a spatio-temporal trace property.

For instance, we may be interested in evaluating some UAV
swarm planning algorithm, that claims to ensure that path plans
for UAVs result in passes by points of interest of the space not
too often. This "clumping" problem is encountered in a variety
of domains [13, 35]. The property of Formula 22, describes the
situation where a UAVk in a Building is found near (with some
degree of nearness n) to some other UAVv, occurring twice while a
Victim is not present. Given the equivalenceψ W ϕ = (□ψ)∨ (ψ U ϕ)
and relevant spatial predicates π and ξ below, we can encode it as
bounded existence in LTL.

π = (NnUAVk .(−2)) ∧ UAVv .(−1),
ξ = ¬Building? .(UAVv .(−1) | Victim | −0) :
⋄ ξ → (¬ξ U (ξ ∧ (¬π W (π W (¬π W (π W □¬π)))))). (22)

7.4 Experimental Results
To obtain suitable datasets for our experiments, we automatically
generate CityGML models using Random3Dcity [3] and transform
them into bigraphs, into which we randomly insert UAVs and vic-
tims. Bigraphical model sizes for three cities of different size are
presented in Table 1; column Bigraph refers to the number of nodes
and links in the corresponding bigraphs. The city models, BRS and
property specifications are available at [49].

To conduct experiments for Scenario A, we interpret a BRS encod-
ing UAV movements as a KS. At every state, for each possible move-
ment of every UAV, the UAV performs the movement if possible,
i.e. there is a match of the corresponding reaction rule’s redex and
global application conditions are fulfilled in the induced bigraphical
closure model of the state. If a state reflecting the produced config-
uration does not exist in the KS, it is created. The process continues

Table 1: Experimental setup and results of the UAV disaster
scenario for system verification and trace checking.

Bigraph
KS Analysis Trace Analysis

Size Scenario A Size Scenario B

city1 301 137(206) 256 sec 137 14 sec
city2 534 383(525) 9 min 383 55 sec
city3 670 1258(1845) 67 min 1258 307 sec

until no new states are produced – the KS fully interprets the BRS1.
Subsequently, we proceed to verify the property of Formula 21. In
our experimental setup, we consider 10 disaster victims along with
5 autonomous UAVs which roam in test cities of different sizes. Col-
umn KS size of Table 1 refers to states (and transitions) of the Kripke
structure obtained from a BRS. Experiments were conducted on an
Intel 2.5GHz processor; execution times are reported in column 4 of
Table 1. Note that analysis times reflect the total time taken, which
includes i) interpretation of the BRS augmented with global spatial
application conditions, ii) spatial and iii) LTL model checking.

For Scenario B involving trace checking, we randomly generate
a sequence of UAV movements for each city (column 5), using the
same datasets and basic experimental setup as for Scenario A – the
trace size in each city is intended to allow comparison with a KS of
same state size. Spatio-temporal verification times of the properties
of Formula 22 upon each trace are reported in column 6 of Table 1.

7.5 Discussion
We have demonstrated that by using our framework, powerful rea-
soning can be supported over the BRS-based model of an evolving
space such as the smart city environment considered in our case
study. By utilizing both global and local application conditions
on reaction rules, we were able to encode complex primitives of
change. Moreover, regarding the interplay of spatial predicates with
temporal behavior, complex properties can be expressed. However,
from our experience modeling a complex, realistic case study as
the one presented and considering the perspective of practition-
ers aiming to use our approach, interfaces and tooling integration
would go a long way in supporting specification. On the other hand,
while our reference implementation is an unoptimized prototype,
experimental results indicate feasibility for relevant models.

As evident by the diversity of performance results for full BRS
interpretation and verification (of a KS – Scenario A) with respect
to only verification (in the form of trace checking – Scenario B), we
note that the biggest contributor to analysis overhead is the rate of
change in the BRS. This signifies that our approach of engineering
space-dependent systems is fit for design-time verification where
time can largely not be an issue, and on the other hand suggests
that trace checking (and runtime verification) is highly feasible.

8 RELATEDWORK
In this paper, we presented a methodology and framework where
the reasoning support is realized as an integration of fundamental
techniques. Consequently, we primarily classify related work into
two categories. First, we review theoretical foundations on formally
modeling space and its dynamics, positioning our work. Thereafter,
we discuss related approaches integrating spatio-temporal reason-
ing techniques with a focus on engineering dependable systems.
1It may also be bounded to a lookahead horizon, to address performance concerns.

46

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

Topological relations have been traditionally considered in the
context of database systems, query languages [32] and logics for the
spatial data analysis in Geographical Information Systems [5]. The
focus has been in relations that exist between regions, lines, and
points of a geometric model [19, 20]. Additionally, query languages
for topological properties of spatial databases have been extensively
studied [39], and recent approaches have focused on several aspects
such as counting properties and path comparisons [22]. Conversely,
in our conception space is discrete and is modeled as a specific
graph structure arising from two relations that can be considered
topological, between arbitrary entities. In addition, spatial logics
have also been studied in the context of process calculi [8], where
the typical theme is predication against the structure of agents,
also with applications to graph databases [7]. However, our choice
of using a spatial logic of closure spaces over some other logic is
multifold. Closure spaces are a generic mathematical framework
which for our purposes serves as the interface between arbitrary
binary relations and our modeling formalism. Moreover, the choice
of bigraphs, a formalism based on graph structures is motivated by
its well-defined dynamics semantics; BRS (and graph transforma-
tion systems in general), can subsume other formalisms which deal
with change such as process calculi, for engineering applications.
Overall, all constituents of our approach are compatible with each
other since they are based on elementary relations of entities, the
basic building block being graphs inducing quasi-discrete spaces.

In our approach, for the spatial fragment we build upon the work
of Ciancia et al. on spatial logics [11, 12], configuring the SLCS logic
over evolving models of space built from bigraphical structures and
used for components such as spatial model checking and rewriting
application conditions. SLCS was proposed for quasi-discrete clo-
sure spaces, and applications have arisen on grid-like structures of
space. However, the underlying model for evaluating the satisfac-
tion relation in our case is a bigraphical closure model. Moreover,
our contribution is the integration of the two ways of predicating; a
powerful selection of entities through bigraph matching is used as
propositions in the context of SLCS used to predicate over relations
in space. An extension of [11] was used [10] for spatio-temporal
reasoning, using CTL as the temporal fragment; however, in con-
trast to our work, the model of space at each state of the Kripke
Structure is fixed, there is no concept of modeling dynamics and
only primitive propositions (i.e., not patterns) are considered.

Bigraphical-specific Bilog [15] has been proposed as composi-
tion of two logics, a place graph and a link graph logic, enabling
unified predication over both structures. A subset has been imple-
mented [44], where a class of predicates is checked by reduction to
bigraph matching. The closure space-based approach we utilize is
generic, guarantees compatibility with the underlying graph rep-
resentation and flexibility regarding existing tools and reasoning
methods. In the approach reflected in this paper, graphs are found
in states of a transition system representing behavior – this model
is then checked against a logic specification. Graph-interpreted
temporal logics in graph transition systems are studied in [25] gen-
erally, where a decision procedure is also provided. We note that
compositional verification with graph transformation [30] would
enable reasoning on incomplete behavioral specifications of evolv-
ing CPSp, something we identify as future work. Klein and Giese
propose a visual approach for jointly specifying structural and

temporal properties using Timed Story Scenario Diagrams [33], ab-
staining from use of both spatial and temporal logics by specifying
temporal properties as sets of valid orderings of structural patterns,
restricting the approach to specification of local spatial properties.

In addition to theoretical advances, CPS have motivated appli-
cations of spatio-temporal reasoning. The subject of topology of
cyber and physical spaces has been previously studied. In previous
work [52], we considered the Ambient Calculus [9], and moved
to bigraphs as a meta-calculus allowing for more expressiveness
and complex reconfiguration operators within adaptive security
in cyber-physical systems [51]. However, spatial predicates used
were locally bounded. In [47], a combination of metric and spatial
logics has been proposed for verification of safety properties in CPS.
In [46], a composition of a topologic and temporal logic is presented
over hybrid automata. A combination of CTL and SLCS is devel-
oped [13] to study bike sharing systems while runtime verification
of spatio-temporal behaviors of complex systems is studied in [38],
extending Signal Spatio-Temporal Logic with SLCS. In contrast to
these approaches, we focus on combining evolving spaces with
spatio-temporal verification. However to the best of our knowledge,
integration of spatio-temporal and evolutionary dimensions with a
focus on engineering dependable systems has not been considered.

9 CONCLUSIONS
In this paper, we proposed a methodology and technical framework
for engineering evolving cyber-physical spaces with a particular
focus on modeling and verification. We used bigraphs and an ex-
tended form of Bigraphical Reactive Systems to model space and
its dynamics. Concerning analysis and verification, such a reactive
system is interpreted as a Kripke Structure representing an evolving
space, thus enabling explicit-state verification of properties of inter-
est. Such properties involve both spatial and temporal aspects. We
restrict the combination of the components of our framework such
that complexity of spatio-temporal reasoning in evolving spaces
is manageable. We demonstrated the applicability of our approach
by considering modeling and verification of a disaster scenario in a
smart city environment, and presented experimental results of the
scalability of the procedures involved for different city model sizes.

Although our work has been motivated by emerging problems in
engineering dependable cyber-physical spaces, the notion of discrete
space as treated in this paper may be considered as a fundamental
concept and basic principle of abstraction in many areas of com-
puting. Network topologies, object-oriented program structures or
software architectures are traditional examples which inherently
build on an abstract notion of discrete space. In fact, bigraphs and
BRS have been adopted, e.g., for modeling cloud workload spec-
ifications [48], socio-technical and human behavior aspects [2],
network protocols [6], and software architectures [41]. To that end,
we believe that our approach can be applied in a much broader
scope to generally tackle a considerable amount of the manifold
challenges arising from engineering dependable evolving systems.

ACKNOWLEDGMENTS
Thisworkwas partially supported by ERCAdvancedGrant no.227977
(SMScom). The authors would like to thank Vincenzo Ciancia,
Michele Loreti and Rocco de Nicola for insightful discussions on spa-
tial reasoning, and Filip Biljecki for his support on Random3Dcity.

47

Modeling and Verification of Evolving Cyber-Physical Spaces ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Kaith Emerson Ballard. 1960. Leibniz’s theory of space and time. Journal of the

History of Ideas 21, 1 (1960), 49–65.
[2] Steve Benford, Muffy Calder, Tom Rodden, and Michele Sevegnani. 2016. On

Lions, Impala, and Bigraphs: Modelling Interactions in Physical/Virtual Spaces.
ACM Trans. Comput.-Hum. Interact. 23, 2, Article 9 (May 2016), 56 pages. DOI:
http://dx.doi.org/10.1145/2882784

[3] Filip Biljecki, Hugo Ledoux, and Jantien Stoter. 2016. Generation of multi-LOD
3D city models in CityGML with the procedural modelling engine Random3Dcity.
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. (2016), 51–59. DOI:http:
//dx.doi.org/10.5194/isprs-annals-III-4-W1-51-2016

[4] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin
Milner. 2007. Matching of Bigraphs. Electronic Notes in Theoretical Computer
Science 175, 4 (2007), 3–19.

[5] Roger S Bivand, Edzer Pebesma, and Virgilio Gómez-Rubio. 2013. Spatial Data
Import and Export. Springer.

[6] Muffy Calder and Michele Sevegnani. 2014. Modelling IEEE 802.11 CSMA/CA
RTS/CTS with stochastic bigraphs with sharing. Formal Aspects of Computing 26,
3 (2014), 537–561.

[7] Luca Cardelli and Luís Caires. 2001. A spatial logic for concurrency. In TACS,
Vol. 1. 1–37.

[8] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. 2002. A spatial logic for
querying graphs. In Automata, Languages and Programming. Springer, 597–610.

[9] Luca Cardelli and Andrew D. Gordon. 1998. Mobile Ambients. In Proc. of the 1st
Int. Conf. on Foundations of Software Science and Computation Structure. 140–155.

[10] Vincenzo Ciancia, Gianluca Grilletti, Diego Latella, Michele Loreti, and Mieke
Massink. 2015. An experimental spatio-temporal model checker. In International
Conference on Software Engineering and Formal Methods. Springer, 297–311.

[11] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink. 2014. Speci-
fying and verifying properties of space. In Theoretical Computer Science. Springer,
222–235.

[12] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink. 2016. Model
Checking Spatial Logics for Closure Spaces. Logical Methods in Computer Science
12, 4 (2016). DOI:http://dx.doi.org/10.2168/LMCS-12(4:2)2016

[13] Vincenzo Ciancia, Diego Latella, Mieke Massink, and Rytis Pakauskas. 2015. Ex-
ploring spatio-temporal properties of bike-sharing systems. In Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), 2015 IEEE International Conference
on. IEEE, 74–79.

[14] Edmund M Clarke, Orna Grumberg, and Doron A Peled. 1999. Model Checking.
MIT press.

[15] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. 2005. Spatial
logics for bigraphs. Springer.

[16] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. Thirty
years of graph matching in pattern recognition. International journal of pattern
recognition and artificial intelligence 18, 03 (2004), 265–298.

[17] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Löwe. 1997. Algebraic Approaches to Graph Transformation-Part I:
Basic Concepts and Double Pushout Approach.. In Handbook of Graph Grammars.
163–246.

[18] Christopher M Eaton, Edwin KP Chong, and Anthony A Maciejewski. 2016.
Multiple-Scenario Unmanned Aerial System Control: A Systems Engineering
Approach and Review of Existing Control Methods. Aerospace 3, 1 (2016), 1.

[19] Max J Egenhofer, Andrew U Frank, and Jeffrey P Jackson. 1989. A topological
data model for spatial databases. Springer.

[20] Max J Egenhofer and John Herring. 1990. Categorizing binary topological rela-
tions between regions, lines, and points in geographic databases. The 9 (1990),
94–1.

[21] Alexander Faithfull, Gian Perrone, and Thomas Hildebrandt. 2013. Big red: A
development environment for bigraphs. In Selected Revised Papers from the 4th
Intl. Workshop on Graph Computation Models (GCM 2012), Vol. 61.

[22] Diego Figueira and Leonid Libkin. 2015. Path Logics for Querying Graphs:
Combining Expressiveness and Efficiency. In Logic in Computer Science (LICS),
2015 30th Annual ACM/IEEE Symposium on. IEEE, 329–340.

[23] Marcelo Finger and Dov M Gabbay. 1992. Adding a temporal dimension to a
logic system. Journal of Logic, Language and Information 1, 3 (1992), 203–233.

[24] David Gabelaia, Roman Kontchakov, Ágnes Kurucz, Frank Wolter, and Michael
Zakharyaschev. 2005. Combining Spatial and Temporal Logics: Expressiveness
vs. Complexity. J. Artif. Intell. Res.(JAIR) 23 (2005), 167–243.

[25] Fabio Gadducci, Reiko Heckel, and Manuel Koch. 1998. A fully abstract model
for graph-interpreted temporal logic. In International Workshop on Theory and
Application of Graph Transformations. Springer, 310–322.

[26] Antony Galton. 2003. A generalized topological view of motion in discrete space.
Theoretical Computer Science 305, 1 (2003), 111–134.

[27] Rob Gerth, Doron Peled, Moshe Y Vardi, and Pierre Wolper. 1996. Simple on-
the-fly automatic verification of linear temporal logic. In Protocol Specification,
Testing and Verification XV. Springer, 3–18.

[28] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen
Højsgaard. 2008. An Implementation of Bigraph Matching. (2008).

[29] Gerhard Gröger, Thomas H Kolbe, Angela Czerwinski, Claus Nagel, and others.
2008. OpenGIS city geography markup language (CityGML) encoding standard,
version 1.0. 0. (2008).

[30] Reiko Heckel. 1998. Compositional verification of reactive systems specified by
graph transformation. In International Conference on Fundamental Approaches to
Software Engineering. Springer Berlin Heidelberg, 138–153.

[31] Timo Kehrer, Christos Tsigkanos, and Carlo Ghezzi. 2016. An EMOF-Compliant
Abstract Syntax for Bigraphs. CoRR abs/1612.01638 (2016).

[32] Jessie Kennedy, Peter Barclay, and others. 1996. A survey of query languages for
geographic information systems. (1996).

[33] Florian Klein and Holger Giese. 2007. Joint structural and temporal property
specification using timed story scenario diagrams. In International Conference on
Fundamental Approaches to Software Engineering. Springer, 185–199.

[34] Roman Kontchakov, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. 2007.
Spatial logic+ temporal logic=? In Handbook of spatial logics. Springer, 497–564.

[35] Alexander G Madey and Gregory R Madey. 2013. Design and evaluation of UAV
swarm command and control strategies. In Proceedings of the Agent-Directed
Simulation Symposium. Society for Computer Simulation International, 7.

[36] Robin Milner. 2006. Pure bigraphs: Structure and dynamics. Information and
computation 204, 1 (2006), 60–122.

[37] Robin Milner. 2009. The Space and Motion of Communicating Agents. Cambridge
University Press.

[38] Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke
Massink. 2015. Qualitative and quantitative monitoring of spatio-temporal prop-
erties. In Runtime Verification. Springer, 21–37.

[39] Christos H Papadimitriou, Dan Suciu, and Victor Vianu. 1996. Topological queries
in spatial databases. In Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 81–92.

[40] Gian Perrone, Søren Debois, and Thomas T. Hildebrandt. 2013. A Verification
Environment for Bigraphs. Innovations in Systems and Software Engineering 9, 2
(2013), 95–104.

[41] Alejandro Sánchez, Luìs Soares Barbosa, and Daniel Riesco. 2013. Verifying
bigraphical models of architectural reconfigurations. In Theoretical Aspects of
Software Engineering (TASE), 2013 International Symposium on. IEEE, 135–138.

[42] Jesús Sánchez-García, José Manuel García-Campos, SL Toral, DG Reina, and
Federico Barrero. 2016. An Intelligent Strategy for Tactical Movements of UAVs
in Disaster Scenarios. International Journal of Distributed Sensor Networks 2016
(2016).

[43] Michele Sevegnani andMuffy Calder. 2015. Bigraphs with Sharing. Theor. Comput.
Sci. 577 (2015), 43–73.

[44] Michele Sevegnani, Chris Unsworth, and Muffy Calder. 2010. A SAT Based
Algorithm for the Matching Problem in Bigraphs with Sharing. Technical Report.
University of Glasgow.

[45] Ron Shamir and Dekel Tsur. 1997. Faster subtree isomorphism. In Theory of
Computing and Systems, 1997., Proceedings of the Fifth Israeli Symposium on. IEEE,
126–131.

[46] Zhucheng Shao and Jing Liu. 2013. Spatio-temporal Hybrid Automata for Cyber-
Physical Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 337–354. DOI:
http://dx.doi.org/10.1007/978-3-642-39718-9_20

[47] Haiying Sun, Jing Liu, Xiaohong Chen, and Dehui Du. 2015. Specifying Cyber
Physical System Safety Properties with Metric Temporal Spatial Logic. In 2015
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 254–260.

[48] Christos Tsigkanos and Timo Kehrer. 2016. On Formalizing and Identifying
Patterns in Cloud Workload Specifications. In 13th Working IEEE/IFIP Conference
on Software Architecture, WICSA 2016, Venice, Italy, April 5-8, 2016. 262–267. DOI:
http://dx.doi.org/10.1109/WICSA.2016.52

[49] Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. 2017. Accompanied material
and data for this paper. http://home.deib.polimi.it/tsigkanos/fse17. (2017).

[50] Christos Tsigkanos, Timo Kehrer, Carlo Ghezzi, Liliana Pasquale, and Bashar
Nuseibeh. 2016. Adding static and dynamic semantics to building information
models. In Proceedings of the 2nd International Workshop on Software Engineering
for Smart Cyber-Physical Systems. ACM, 1–7.

[51] Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nuseibeh. 2016.
On the Interplay Between Cyber and Physical Spaces for Adaptive Security.
IEEE Transactions on Dependable and Secure Computing PP, 99 (2016), 1–1. DOI:
http://dx.doi.org/10.1109/TDSC.2016.2599880

[52] Christos Tsigkanos, Liliana Pasquale, Claudio Menghi, Carlo Ghezzi, and Bashar
Nuseibeh. 2014. Engineering Topology Aware Adaptive Security: Preventing
Requirements Violations at Runtime. In Proc. of the 22nd Int. Requirements Engi-
neering Conf. 203–212.

[53] Junfei Xie, Firas AI-Emrani, Yixin Gu, Yan Wan, and Shengli Fu. 2016. UAV-
Carried Long Distance Wi-Fi Communication Infrastructure. In AIAA Infotech@
Aerospace. 0747.

48

http://dx.doi.org/10.1145/2882784
http://dx.doi.org/10.5194/isprs-annals-III-4-W1-51-2016
http://dx.doi.org/10.5194/isprs-annals-III-4-W1-51-2016
http://dx.doi.org/10.2168/LMCS-12(4:2)2016
http://dx.doi.org/10.1007/978-3-642-39718-9_20
http://dx.doi.org/10.1109/WICSA.2016.52
http://home.deib.polimi.it/tsigkanos/fse17
http://dx.doi.org/10.1109/TDSC.2016.2599880

	Abstract
	1 Introduction
	2 Motivating Example
	3 Modeling Space
	3.1 Modeling Space with Bigraphs

	4 Reasoning on Space
	4.1 Evaluation Model of Space
	4.2 Verification in Space

	5 Modeling Dynamics of Space
	6 Reasoning on Evolving Spatial Configurations
	6.1 Evolving Spatial Configurations
	6.2 Reasoning on Evolving Configurations
	6.3 Reasoning Complexity

	7 Evaluation
	7.1 Case Study: UAV Emergency Response in a Smart City
	7.2 Modeling Space and its Dynamics
	7.3 Analysis Scenarios and Verification
	7.4 Experimental Results
	7.5 Discussion

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

