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ABSTRACT 

Feature location is a software comprehension activity which aims 

at identifying source code entities that implement functionalities. 

Manual feature location is a labor-insensitive task, and developers 

need to find the target entities from thousands of software 

artifacts. Recent research has developed automatic and 

semiautomatic methods mainly based on Information Retrieval 

(IR) techniques to help developers locate the entities which are 

textually similar to the feature. In this paper, we focus on 

individual IR-based methods and try to find a suitable IR 

technique for feature location, which could be chosen as a part of 

hybrid methods to achieve good performance. We present two 

feature location approaches based on BM25 and its variant 

BM25F algorithm. We compared the two algorithms to the Vector 

Space Model (VSM), Unigram Model (UM), and Latent Dirichlet 

Allocation (LDA) on four open source projects. The result shows 

that BM25 and BM25F are consistently better than other IR 

methods such as VSM, UM and LDA on the four selected 

software systems in their best configurations respectively. 

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 

Enhancement – documentation, enhancement; H.3.3 

[Information Storage and Retrieval]: Information Search and 

Retrieval – Retrieval models.  

General Terms 

Algorithms, Experimentation 

Keywords 

Feature Location, Bug Localization, Software Maintenance, 

Information Retrieval, BM25, BM25F. 

1. INTRODUCTION 
During the software development process and maintenance, 

developers usually need to implement new features, improve 

existing functionalities, and fix bugs. The aim of feature location 

is to help developers quickly find which part of source code needs 

to be added or modified, to implement the required functionalities 

or remove the undesired functionalities like bugs. 

Feature location is defined as identifying an initial location in the 

source code corresponding to a specific functionality. Many 

feature location techniques used bug reports as features in case 

studies, since the feature functionality descriptions in requirement 

documents are usually hard to obtain. Some researchers use bug 

localization instead of feature location when the features of 

interest are bug reports [15, 23, 26, 29, 31, 33]. 

The functionalities in feature location include implementing new 

features, improving existing functions, and removing bugs which 

are similar to removing unwanted functionalities [9]. No matter 

what kinds of data are used (i.e., bug reports, patch descriptions, 

enhancement notes, or other feature descriptions), they are all 

treated as queries in the IR techniques based location task. In the 

case study of this paper, most of features in the dataset are bug 

reports, and the others are patch and enhancement descriptions. 

There are mainly three types of analysis used in feature location: 

dynamic, static and textual methods. Some studies have combined 

two or the whole of those three techniques to get a better result 

than using the individual technique [9]. Dynamic methods gather 

information during the execution of programs for analysis. Static 

methods extract the structure like control or dependence graph 

from the source code to help developers analyze where the feature 

is located. Textual methods, i.e. IR techniques, analyze the code 

text including identifiers and comments. Rubin and Chechik [24] 

divided the types of feature location analysis into two categories: 

dynamic and static, according to whether the program is executed 

in the location process or not. 

The basis of information retrieval techniques used in feature 

location is utilizing the similarities between feature terms and 

source code artifacts to rank software entities according to their 

relevance to the feature query. Some IR models like Latent 

Semantic Indexing (LSI) [18, 21] and Latent Dirichlet Allocation 

(LDA) [15, 16] have been applied in the area of feature location. 

In this paper, we only focus on information retrieval based 

techniques and compare the feature location performance of 

different IR methods. Many hybrid methods introduced in Section 

3 combined textual methods and other information from historical 

data, static and dynamic analysis results. The hybrid methods 

usually achieved better performance than the individual methods. 

Choosing a suitable IR method in these hybrid techniques is an 

important issue to achieve good performance in feature location.  

BM25 [25] is a popular ranking method in information retrieval, 

which uses two parameters to control the weight of term 

frequencies and document lengths. Its variant BM25F [36] divides 

the documents into different fields and assigns different scaling 

parameters to terms in each field. BM25 has previously been 

applied in duplication detection for software reports [35] and used 
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as a weighting scheme in a structured source code based bug 

localization approach [26]. We have conducted experiments on a 

feature location benchmark containing 4 open source projects [9] 

and show that BM25 family algorithms achieved the best results 

when compared to other three IR methods in their best 

configurations. 

2. BACKGOURND 
This section we present how IR techniques perform in feature 

location. The general framework of the IR method used in feature 

location is shown in Figure 1. Software source code and features 

like bug reports are inputs of this framework. The goal of this IR 

system is to find software artifacts in the source code relevant to 

the feature. According to different granularity setting, the 

retrieving source code level can be method/function, class, or file 

level. In this framework, the source code elements are treated as 

documents in the search engine. A document is a method/function, 

a class, or a file depending on the predetermined granularity. The 

output of this framework is a ranked list of documents. Higher 

ranks of the relevant documents usually mean better performance 

of feature location. 

 

D
o
c
u
m

e
n
t 

P
re

p
ro

c
e
ss

in
g
 a

n
d
 R

e
p
re

se
n
ta

ti
o
n

Q
u
e
ry

 S
e
a
rc

h
 E

n
g
in

e

Document 

Extraction + 

Natural Language 

Processing

Source Code

IR Technique

Features 

Description

Featrue 

Description

Query

Ranked

Results

Search Engine

Document

Collection

Document 

Representation

Natural Language 

Processing

 

Figure 1.  A general IR framework in feature location task 

 

The framework can be mainly divided into two parts. The first 

part is document preprocessing and representation, which is 

shown in the left of Figure 1. After inputting the source code in 

this part, the source code terms are extracted from every 

document firstly. Usually, terms in identifiers and comments will 

be extracted. Then several Natural Language Processing (NLP) 

steps are applied to the extracted terms in every document, which 

include removal of stop words, splitting multi-words and 

stemming. The stop words which need to be removed include a 

general English stop words list, programming language keywords 

and punctuation. Multi-word identifiers like “OpenFile” are split 

into single terms “open” and “file” using techniques like 

CamelCase [8]. Then the stemmer like Porter [20] is applied on 

the terms to obtain their root words. The influence of choosing 

only identifiers or comments, and choosing different combination 

of preprocessing steps have been researched [31]. 

After preprocessing the raw text from source code, the documents 

of source code elements are usually represented as term frequency 

vectors, i.e. bag-of-words. This model assumes there is no order 

of words in the text [17]. All textual methods talked here are 

under this assumption. The document representation vectors differ 

based on different IR techniques. For example, one of documents 

representation in Vector Space Model (VSM) is tf-idf (term 

frequency-inverse document frequency), which considers the term 

occurring counts in a document and the number of document 

including this term. In LDA [5], each document is represented by 

a document-topic probability distribution, while each topic is 

represented by a topic-term probability distribution. 

In the second part of the framework, the query search engine 

preprocesses the queries by the same as source code documents 

done. The similarity between a query and a document is 

depending on which IR technique is used. This IR system utilizes 

the text similarity between the text in the source code elements 

and the text description of the feature to give a ranked list of 

documents. Developers are expected to find the target entity 

quickly according to the ranked list. 

3. PREVIOUS WORK 
LSI (Latent Semantic Indexing) [18, 21] and LDA (Latent 

Dirichlet Allocation) [15, 16] have been applied in feature 

location. LSI [7] is an indexing and retrieval method that uses 

Singular Value Decomposition (SVD) to extract the latent 

semantic vectors from the term-by-document matrix. The 

documents in the LSI model are represented as latent semantic 

vectors. Poshyvanyk and Marcus [22] used FCA (Formal Concept 

Analysis) to organize and represent the ranked list methods from 

LSI-based feature location. LDA [5] is a topic model which 

assumes there is a latent topic level between documents and words. 

The LDA model uses topic distribution to represent the 

documents, while each topic is a multinomial distribution over 

terms. 

Several papers [1, 19, 23, 31, 34] have shown the performance of 

simple IR models like Vector Space Model (VSM) and Unigram 

Model (UM) were better than sophisticated models like LSI and 

LDA in feature location significantly. So we choose the VSM and 

UM as the main comparison techniques. One reason of this result 

may be these papers chose the whole feature description as the 

query, while LSI [18, 21] and LDA [15, 16] work on feature 

location used the manual selected queries. 

In this paper, we present how we utilized BM25 and BM25F to 

locate features in software. The result of our experiment shows 

that when all terms of feature descriptions are treated as queries 

without automatic or manual reformulation, BM25 and BM25F 

achieved better performance than UM, VSM and LDA, while the 

UM and VSM models performed good when using only 
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information retrieval techniques in previous work [1, 19, 23, 31, 

34].  

BLUiR [26] is a closed work related to this paper. It improved 

bug localization using structured information retrieval with the 

BM25 weighting scheme. The authors divided the source code 

terms into four fields and the query terms into two fields and 

calculate the similarity for each field combination then sum all 

scores. 

Some hybrid techniques which combine information retrieval 

methods like LSI, LDA and other information such as source code 

structure [2, 27, 28], dynamic analysis [10, 14, 21] and version 

history [13, 29, 37] achieved good performance than only using 

information retrieval methods. But these hybrid methods usually 

need more input data rather than source codes text, and sometimes 

the additional input cannot provide enough information to 

improve the performance, for example, the version history of a 

new developed system.  

3.1 Feature Location vs. Bug Localization 
In the opinion of some researchers, bugs are treated as unwanted 

features [4, 9]. In their view, bug localization task is a subarea of 

feature location, and feature location could be called bug 

localization when all features are bugs. In some feature location 

approaches [3, 10, 30], bug reports are used as the main input 

features. But some other researchers [26, 31, 33] considered 

feature location as a different area from bug localization, and 

thought features do not contain bugs. In their opinion, features 

only indicate the functionalities or concepts that developers want 

to implement, and features usually contain few terms like only 

one term, while bug reports often contain a lot of terms. In this 

paper, we use the former definition, i.e., feature location includes 

bug localization. We do not use the phrase bug localization as our 

topic, since not all features in this case study are bug reports.  

4. BM25-BASED APPROACH TO 

FEATURE LOCATION 
The BM25 and BM25F approaches in feature location are 

introduced in this section.  

4.1 BM25 
BM25 [25] is a bag-of-words ranking function implemented in 

Okapi information retrieval system. Each query term has a score 

which depends on the occurrence of this term in all documents, 

regardless of the inter-relationship between the query terms within 

a document. There are two parameters in BM25 to control the 

scale of both term frequencies and document lengths. So the 

influence of frequent terms and long documents to the final result 

would be calibrated according to their term frequencies and 

document lengths. 

Given a query Q with terms q1, q2, ..., qn, the BM25 score of a 

document D is: 

     (   )  ∑   (  )

 

   

  (    )(    )

  (    )    (     
| |

     
)
 

( ) 

Here, tf (qi, D) is the term frequency of qi in the document D, |D| 

is the length of document D, and avgdl is the average of document 

lengths in the whole corpus. The term containing |D|, avgdl, and b 

indicates the normalization of document frequency. Free 

parameters k1 and b control the scale of term frequency and 

document length respectively. While k1 = 0, it is a binary model 

(no consideration of term frequency). A b value of 0 corresponds 

to no length normalization. IDF(qi) is the Inverse Document 

Frequency (IDF) of term qi in the whole corpus: 

   (  )     
   (  )     

 (  )     
                           ( ) 

Here, N is the total number of documents, n(qi) is the number of 

documents contain the term qi. 0.5 is a smoothing constant to deal 

with the situation n(qi) = 0. The IDF value would be negative 

when n(qi) is greater than half of N. So the query term which has 

occurred in larger than half of all documents is ignored in the 

algorithm. 

Because the feature queries in the case study are usually long 

documents, a normalizing scheme is used to deal with the term 

counts in a query as follows [17]:  
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where tf (qi,Q) is the term frequency of qi in the query Q, and k3 is 

the weighting parameter which calibrates term frequency scaling 

of the query. The other part is the same as Equation (1). In our 

research, we tried several values for the three parameters k1, b and 

k3 to get a good result. 

After the scores between a query and all documents are derived by 

Equation (3), every document is ranked according to the 

corresponding score to the query. Documents with high scores are 

ranked in the top of final result, which means these documents are 

more relevant to the query. 

4.2 BM25F 
BM25F [36] is a variant of BM25 in which the terms in a 

document are classified into several fields with different degrees 

of importance. The original BM25F considered that the webpage 

text is composed from title text, main body text and anchor text.  

A field-dependent normalized term frequency tf' (t, f, D) of a term 

t which is considered in the field f of the document D is calculated 

as follows: 

   (     )  
  (     )

       
 (   )
    ( )

                ( ) 

where tf (t, f, D) is the original term frequency of a term t occurs 

in the field f of the document D, l (f, D) is the total number of 

terms in the field f of the document D, avgl(f) is the average field f 

length in the whole corpus, and bf  is a field-dependent parameter 

for scaling field length like b in BM25. 

The final pseudo-frequency of term t in the document D is a linear 

weighted sum of tf' (t,f,D) from different fields: 

   (   )  ∑      (     )

 

                           ( ) 

where wf is a field-dependent weight parameter. The larger value 

of wf means higher importance of the corresponding field. 

Then the score between the query Q with terms q1, q2, …, qn and a 

document D is calculated as follows: 
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where IDF(qi) is calculated by Equation (2) like BM25, and k1 is 

the term frequency scaling parameter. 

For the reason of long feature description, we use the same query 

term normalizing scheme as Equation (3) in BM25 as follows: 
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At last, the documents are ranked according to the scores to a 

specific query like BM25. 

For simplicity, we divide the source code into two fields for 

BM25F: method invocations text and the other text. The field of 

method invocations only includes the terms from the invoked 

method names, and it is called invocation field. The other terms in 

the class are in another field called main field. This division of 

source codes fields is a primary trial. We leave the experiment 

with more fields to the future work. The parameters of both fields 

are named as follows: 

 

Table 1. Two-field BM25F parameters in feature location 

Field \Parameter bf wf 

Main b1 w1 

Invocation b2 w2 

Apart from the four parameters in Table 1, there are two other 

parameters k1, k3. Because we only care the relative value of the 

weighting parameter wf instead of the absolute value, w1 is set to 1 

in all parameter setting while different values of w2 can refer to 

different relative weight. So in this two fields based BM25F 

scheme, there are totally five parameters to be determined before 

running the algorithm. 

5. CASE STUDY 
We compare the performance of feature location using VSM, UM, 

LDA, BM25 and BM25F on four open source software systems. 

Simple methods VSM and UM were reported to have a better 

performance than other sophisticated methods like LDA in feature 

location. The result of this case study shows that BM25 and 

BM25F outperform other three methods in their best configuration 

respectively. 

5.1 Data Set 
We use four open source softwares: ArogUML1, JabRef2, jEdit3 

and muCommmander4. The features including bug reports, patch 

notes and enhancement descriptions of the four systems and the 

gold set which is the set of modified methods relevant to the given 

feature are from the Benchmarks [9]. They are available online5. 

                                                                 

1 http://argouml.tigris.org/  

2 http://jabref.sourceforge.net/  

3 http://www.jedit.org/  

4 http://www.mucommander.com/  

5 http://www.cs.wm.edu/semeru/data/benchmarks/  

Table 2 lists size metrics of four projects and number of features 

for each system. LOC stands for lines of codes. 

 

Table 2. Metrics of Software systems 

System Version LOC Classes Features 

ArgoUML 0.22 131020 1474 91 

JabRef 2.6b 74138 590 39 

jEdit 4.3 106481 513 150 

muCommander 0.8.5 76649 1069 92 

Since not all the gold methods in the benchmark, which is the 

relevant methods to the specific query, exist in the modified 

version of software, we set the feature location granularity in class 

level, and all the gold methods are changed to classes. Then every 

gold class can be found in the modified version of software. 

5.2 Preprocessing 
JRipples [6] is an Eclipse plug-in supporting feature location.  We 

modified JRipples to extract two fields terms of each class from 

the dataset for BM25F techniques and whole text of each class for 

other four algorithms. Thomas et al. [31] recommended to use all 

text information of bug reports and software entities. In our 

experiments, bug titles, descriptions, software entities text 

includes identifiers, comments and so on are considered as the 

source of text.  

We removed a list of English stop words and Java key words. The 

terms having less than 4 characters or longer than 14 characters 

were removed. We split multi-word terms based on camel case 

and underscores using splitting tool in JRipples. The Porter 

stemmer [20] is used to get term stems. 

5.3 Setting 
We used R lda v1.3.2 6  package to run LDA models. We 

implemented VSM, UM, BM25 and BM25F using R language by 

ourselves.  

5.3.1 Vector Space Model 
We used the regular tf-idf weight in Vector Space Model (VSM) 

as follows [17]: 

      (    )  
  (    )

      (    )
   

 

  (  )
             ( ) 

Here, tf (wi, D) is the term frequency of term wi in the document D, 

which is normalized by the maximum term frequency in the 

document D. N is the number of total documents, and df (wi) is the 

document frequency of term wi which is the number of documents 

containing term wi.  

After documents are represented as a vector of weight value for 

each term, the similarity between the query and the document is 

computed by overlap score measure, which is the sum of tf-idf 

weights of terms occurs in the query [17]: 

   (   )  ∑       (    )

    

                       ( ) 

Because most of the queries are long feature descriptions, we used 

similar query normalizing scheme as Equation (3): 

                                                                 

6 http://cran.r-project.org/web/packages/lda/index.html  
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The query scaling parameter k3 is set from 0 to 5 with interval 0.5 

in our experiment. 

5.3.2 Unigram Model 
Unigram Model (UM) is a language model which employs a 

single multinomial distribution over terms for each document. The 

probability of each term is calculated as the maximum likelihood 

of each term [17]. We used UM  with Jelinek-Mercer smoothing 

[12] to avoid zero probability of query term which do not occur in  

documents. The probability of term wi in document D with 

smoothing is calculated as follows: 

 (  | )   
  (    )

∑   (    )
| |
   

 (   )
  (    )

∑   (    )| |
   

     (  ) 

Here, tf (wi, D) is the term frequency of term wi in the document D, 

tf (wi, C) is the term frequency of term wi in the whole corpus C. 

The denominators of two terms in Equation (11) are the total term 

number in the document D and the corpus C. The parameter u is 

used to weight the UM probability from the document and the 

whole corpus, and the value of u is set from 0 to 0.95 with interval 

0.05 in our experiment. The similarity between the query and the 

document is the product of the likelihoods of each term in the 

query [17]: 

   (    )     ( |  )    ∏  ( 𝑘|  )

 𝑘𝜖 

                (  ) 

where qk is the kth word in the query Q, di represents the 

document. The query terms which do not occur in the whole 

document corpus are ignored. 

5.3.3 Latent Dirichlet Allocation 
The Latent Dirichlet Allocation (LDA) [5] model has three 

parameters, the number of topics K, and two super parameters α 

and β. Biggers et al. [4] have studied how the configurations of 

parameters in LDA influence the feature location performance on 

these four software systems. Since they studied configuration in 

method-level which is different from our setting, we tried 

different parameter values for LDA as shown in Table 3. The 

similarity between the query and the document is also calculated 

by Equation (12), which followed the LDA work in feature 

location [15, 16]. R-lda package is based on Gibbs sampling [11] 

to infer the model. We set Gibbs sampling iteration 2000 for all 

experiments to make the LDA model convergence. 

 

Table 3. LDA parameters setting 

Parameter Value 

α 0.1, 0.25, 0.5, 1 

β 0.1, 0.25, 0.5, 1. 

K 50, 100, 150, 200 

 

5.3.4 BM25 and BM25F 
We also tried different combination of parameter values for BM25 

and BM25F. The BM25 and BM25F parameters setting are shown 

in Table 4 and Table 5 respectively. Because BM25F has more 

parameters than BM25, we set parameters of BM25F in longer 

intervals than BM25. The total number of parameters combination 

in BM25 is 891, while the total number of parameters 

combination in BM25F is 6300.  

 

Table 4. BM25 parameters setting 

Parameter Value 

k1 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 

b1 
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,  

0.85, 0.9, 0.95, 1 

kq 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 

Table 5. BM25F parameters setting 

Parameter Value 

k1 1, 2, 3, 4, 5 

b1 0.5, 0.6, 0.7, 0.8, 0.9, 1 

b2 0.5, 0.6, 0.7, 0.8, 0.9, 1 

w1 1 

w2 0.1, 0.2, 0.5, 1, 2, 5, 10 

kq 1, 2, 3, 4, 5 

 

5.4 Evaluation Metric 
We used Mean Reciprocal Rank (MRR) [32] to evaluate the result 

of feature location. It is a statistic measure for evaluating an 

algorithm which produces a list of possible responses to a query. 

The reciprocal rank of a query in feature location is the 

multiplicative inverse of the effective measure. Effective Measure 

(EM) is the highest rank of source code entities implementing the 

query feature in the final ranked list [21]. The mean reciprocal 

rank is the average of the reciprocal ranks for a set of queries QS:  

    
 

|  |
∑

 

   

|  |

   

                                        (  ) 

The higher value of the MRR metric indicates the better 

performance of the retrieval algorithm. 

5.5 Result and Analysis 
The MRR results of 5 methods with best four and worst four 

configurations are shown in Table 6. The best configuration and 

MRR metric of each method in each project is in bold type, and 

the rank is based on MRR values. The parameter configurations 

are ranked by the MRR value. The MRR of the best 

configurations of BM25 and BM25F are similar for each project, 

and they are higher than the best configurations of UM, VSM and 

LDA for each project. A more clear comparison of best 

configurations for each method and project is shown in Figure 2.  

As shown in Table 6(A), the parameter k in VSM has little 

influence on the performance. The parameter k value in VSM is 

set from 1.5 to 3.5 to get best performance for ArgoUML, JabRef 

and jEdit projects, while k = 0 in muCommander performs best in 

which the query term frequency is totally ignored. The 

performances of UM in different parameter configurations show 

that a large weight of document generating probability with a 

small weight of collection generating probability is reasonable in 

UM-based feature location. When u = 0, the scores of terms only 
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count the collection generating probabilities with no document 

discrimination, so it is the worst configuration in UM.  

The performance of the LDA model varies according to the 

different parameters. The hyperparameters setting α = 1, β = 0.25 

are reasonable choice for all systems except the muCommander 

project. 150 or 200 topic numbers exist mostly in the best four 

configurations. Because the inference procedure in LDA is 

probabilistic based iteration sampling, the result varies every time. 

The MRR results of LDA in Table 6(A) are only calculated based 

on running the LDA model once, but 64 LDA results with 

different parameter values show that the performance of LDA is 

worse than others except in the JabRef project. 

BM25 and BM25F have similar MRR values in feature location 

with the best four and worst four configurations. It may due to 

only considering two simple fields of source codes.  The term 

frequency scaling parameters k1 in two algorithms also have 

similar values for each project as shown in Table 6(B). For 

example, k1 = 4 is suitable for both BM25 and BM25F in the jEdit 

project. In the setting range, larger kq value (kq = 4, 5) is 

reasonable for both algorithms in four projects, which indicates 

some terms in the query with large frequency need to be scaled. 

 

Figure 2.  MRR of IR techniques in best configuration 

Table 6(A). The best four and worst four configurations of VSM, UM and LDA in feature location 

VSM UM LDA 

Rank  Configuration MRR Rank Configuration  MRR Rank                   Configuration                      MRR 

ArgoUML 

1           k = 1.5 0.2382 

2           k = 1 0.2357 

3           k = 2 0.2336 

4           k = 4 0.2305 

8           k = 0.5 0.2275 

9           k = 3.5 0.2264 

10         k = 5 0.2253 

11         k = 0 0.2226 

1           u = 0.9 0.3271 

2           u = 0.95 0.3244 

3           u = 0.85 0.3204 

4           u = 0.8 0.3149 

17         u = 0.15 0.2356 

18         u = 0.1 0.2281 

19         u = 0.05 0.2138 

20         u = 0 0.0014 

1         α = 1,       β = 0.5,    K = 150               0.2125 

2         α = 1,       β = 0.25,  K = 150               0.1940 

3         α = 1,       β = 0.1,    K = 150               0.1931 

4         α = 1,       β = 0.5,    K = 200               0.1898 

61       α = 0.25,  β = 1,       K = 150               0.0901 

62       α = 1,       β = 0.1,    K = 50                 0.0895 

63       α = 0.1,    β = 1,       K = 50                 0.0886 

64       α = 0.1,    β = 1,       K = 100               0.0621 

JabRef 

1           k = 3.5 0.2438 

2           k = 5 0.2412 

3           k = 4.5 0.2397 

4           k = 3 0.2378 

8           k = 1.5 0.2331 

9           k = 1 0.2186 

10         k = 0.5 0.2085 

11         k = 0 0.1906 

1           u = 0.8 0.5763 

2           u = 0.85 0.5702 

3           u = 0.7 0.5606 

4           u = 0.75 0.5580 

17         u = 0.15 0.2357 

18         u = 0.1 0.2281 

19         u = 0.05 0.2138 

20         u = 0 0.0014 

1         α = 0.5,    β = 0.25,  K = 150               0.3177 

2         α = 0.1,    β = 0.1,    K = 200               0.2920 

3         α = 1,       β = 0.1,    K = 100               0.2784 

4         α = 0.25,  β = 0.1,    K = 100               0.2740 

61       α = 0.1,    β = 1,       K = 200               0.0841 

62       α = 0.5,    β = 1,       K = 150               0.0838 

63       α = 0.1,    β = 1,       K = 150               0.0834 

64       α = 0.1,    β = 0.5,    K = 100               0.0579 

jEdit 

1           k = 2 0.4778 

2           k = 2.5 0.4732 

3           k = 3 0.4691 

4           k = 3.5 0.4688 

8           k = 1.5 0.4628 

9           k = 5 0.4619 

10         k = 0.5 0.4462 

11         k = 0 0.4262 

1           u = 0.8 0.5488 

2           u = 0.75 0.5467 

3           u = 0.85 0.5431 

4           u = 0.9 0.5427 

17         u = 0.15 0.4300 

18         u = 0.1 0.3997 

19         u = 0.05 0.3836 

20         u = 0 0.0039 

1         α = 1,       β = 0.25,  K = 200               0.3847 

2         α = 1,       β = 0.1,    K = 200               0.3746 

3         α = 0.5,    β = 0.1,    K = 200               0.3690 

4         α = 1,       β = 0.1,    K = 150               0.3604 

61       α = 0.1,    β = 1,       K = 200               0.2103 

62       α = 0.1,    β = 1,       K = 50                 0.2008 

63       α = 0.25,  β = 1,       K = 150               0.1966 

64       α = 0.1,    β = 1,       K = 100               0.1859 

muCommander 

1           k = 0 0.3765 

2           k = 0.5 0.3645 

3           k = 1 0.3617 

4           k = 2 0.3580 

8           k = 4.5 0.3557 

9           k = 3 0.3537 

10         k = 3.5 0.3515 

11         k = 2.5 0.3515 

1           u = 0.85 0.5174 

2           u = 0.9 0.5170 

3           u = 0.95 0.5112 

4           u = 0.8 0.5082 

17         u = 0.15 0.3822 

18         u = 0.1 0.3510 

19         u = 0.05 0.3188 

20         u = 0 0.0019 

1         α = 0.5,    β = 0.1,    K = 200               0.3467 

2         α = 0.1,    β = 0.1,    K = 200               0.3207 

3         α = 0.25,  β = 0.1,    K = 150               0.3177 

4         α = 0.1,    β = 0.1,    K = 150               0.3136 

61       α = 0.1,    β = 1,       K = 50                 0.1460 

62       α = 0.1,    β = 1,       K = 150               0.1450 

63       α = 0.25,  β = 1,       K = 150               0.1257 

64       α = 0.1,    β = 1,       K = 200               0.1194 
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Table 6(B). The best four and worst four configurations of BM25 and BM25F in feature location 

BM25 BM25F 

Rank              Configuration                       MRR    Rank              Configuration (w1=1)                               MRR 

ArgoUML 

1          k1 = 1.5,  b = 0.75,   kq = 4.5          0.3577 

2          k1 = 1.5,  b = 0.75,   kq = 5             0.3556 

3          k1 = 1,     b = 0.9,     kq = 2.5          0.3549 

4          k1 = 3,     b = 0.55,   kq = 5             0.3522 

888      k1 = 5,     b = 1,        kq = 4.5          0.2416 

889      k1 = 5,     b = 1,        kq = 5             0.2416 

890      k1 = 4.5,  b = 1,        kq = 1             0.2385 

891      k1 = 5,     b = 1,        kq = 1             0.2353 

1          k1 = 3, b1 = 0.5, b2 = 1,    w2 = 0.5, kq = 4          0.3561 

2          k1 = 3, b1 = 0.5, b2 = 0.6, w2 = 0.2, kq = 4          0.3560 

3          k1 = 3, b1 = 0.5, b2 = 0.5, w2 = 0.2, kq = 4          0.3560 

4          k1 = 3, b1 = 0.5, b2 = 0.7, w2 = 0.2, kq = 4          0.3560 

6297    k1 = 5, b1 = 1,    b2 = 0.9, w2 = 5,    kq = 4          0.2221 

6298    k1 = 5, b1 = 1,    b2 = 1,    w2 = 5,    kq = 4          0.2221 

6299    k1 = 5, b1 = 1,    b2 = 0.9, w2 = 5,    kq = 1          0.2210 

6300    k1 = 5, b1 = 1,    b2 = 0.8, w2 = 5,    kq = 1          0.2271 

JabRef 

1          k1 = 1,     b = 0.65,   kq = 4.5          0.6124 

2          k1 = 1,     b = 0.75,   kq = 4             0.6013 

3          k1 = 1,     b = 0.8,     kq = 5             0.6013 

4          k1 = 1,     b = 0.6,     kq = 4.5          0.6005 

888      k1 = 4,     b = 1,        kq = 1             0.4286 

889      k1 = 5,     b = 0.95,   kq = 1             0.4267 

890      k1 = 4.5,  b = 1,        kq = 1             0.4192 

891      k1 = 5,     b = 1,        kq = 1             0.4167 

1          k1 = 3, b1 = 0.5, b2 = 0.5, w2 = 5,    kq = 4          0.6369 

2          k1 = 3, b1 = 0.5, b2 = 0.1, w2 = 10,  kq = 4          0.6368 

3          k1 = 3, b1 = 0.5, b2 = 0.9, w2 = 10,  kq = 4          0.6368 

4          k1 = 3, b1 = 0.5, b2 = 0.7, w2 = 10,  kq = 4          0.6347 

6297    k1 = 5, b1 = 1,    b2 = 0.5, w2 = 1,    kq = 1          0.4167 

6298    k1 = 5, b1 = 1,    b2 = 0.8, w2 = 2,    kq = 1          0.4166 

6299    k1 = 5, b1 = 1,    b2 = 0.9, w2 = 2,    kq = 1          0.4166 

6300    k1 = 5, b1 = 1,    b2 = 1,    w2 = 2,    kq = 1          0.4166 

jEdit 

1          k1 = 4,      b = 0.55,  kq = 4.5          0.6376 

2          k1 = 4,      b = 0.55,  kq = 5             0.6367 

3          k1 = 4.5,   b = 0.5,    kq = 5             0.6366 

4          k1 = 4,      b = 0.55,  kq = 4             0.6363 

888      k1 = 3.5,   b = 1,       kq = 1             0.5506 

889      k1 = 5,      b = 1,       kq = 1             0.5488 

890      k1 = 4.5,   b = 1,       kq = 1.5          0.5484 

891      k1 = 4.5,   b = 1,       kq = 1             0.5431 

1           k1 = 4, b1 = 0.5, b2 =0.5, w2 = 0.5, kq = 5          0.6373 

2           k1 = 4, b1 = 0.5, b2 =0.8, w2 = 1,    kq = 5          0.6373 

3           k1 = 4, b1 = 0.5, b2 =0.8, w2 = 0.5, kq = 5          0.6373 

4           k1 = 4, b1 = 0.5, b2 =1,    w2 = 0.5, kq = 5          0.6373 

6297     k1 = 4, b1 = 1, b2 =0.6,    w2 = 10,  kq = 1          0.5203 

6298     k1 = 5, b1 = 1, b2 =0.7,    w2 = 10,  kq = 1          0.5179 

6299     k1 = 5, b1 = 1, b2 =0.8,    w2 = 10,  kq = 1          0.5174 

6300     k1 = 5, b1 = 1, b2 =0.9,    w2 = 10,  kq = 1          0.5170 

muCommander 

1          k1 = 3,      b = 0.55,  kq = 5             0.5743 

2          k1 = 4,      b = 0.5,    kq = 2.5          0.5737 

3          k1 = 4.5,   b = 0.5,    kq = 2.5          0.5727 

4          k1 = 2.5,   b = 0.6,    kq = 4.5          0.5600 

888      k1 = 5,      b = 1,       kq = 3.5          0.4425 

889      k1 = 5,      b = 1,       kq = 5             0.4413 

890      k1 = 5,      b = 1,       kq = 1.5          0.4390 

891      k1 = 5,      b = 1,       kq = 1             0.4370 

1           k1 = 4, b1 = 0.5, b2 = 0.5, w2 = 2,   kq = 3         0.5760 

2           k1 = 4, b1 = 0.5, b2 = 0.6, w2 = 2,   kq = 3         0.5741 

3           k1 = 4, b1 = 0.5, b2 = 0.8, w2 = 2,   kq = 3         0.5732 

4           k1 = 4, b1 = 0.5, b2 = 0.7, w2 = 2,   kq = 3         0.5732 

6297     k1 = 5, b1 = 1,    b2 = 0.5, w2 = 2,   kq = 1         0.4345 

6298     k1 = 5, b1 = 1,    b2 = 0.7, w2 = 2,   kq = 1         0.4343 

6299     k1 = 5, b1 = 1,    b2 = 0.6, w2 = 2,   kq = 1         0.4342 

6300     k1 = 5, b1 = 1,    b2 = 1,    w2 = 5,   kq = 4         0.4341 

 

In BM25, b = 1, which means the full scaling of document length, 

exists in the worst four configurations of all four projects,  

indicating that full document length normalizing is not suitable in 

this case study. In BM25F, b1 = 0.5, which is the lowest value of 

the corresponding setting range, existed in all best four 

configurations of all projects, while b1 = 1, which is the highest 

value of the setting range, existed in all worst four configurations 

of all projects. This indicates that, for the main field, little scaling 

on the field length is enough. Since we did not test b1 value lower 

than 0.5, the future work needs to focus on more parameter 

configurations. The field weight parameter w2 has different 

suitable values in different projects. There is no obvious trend that 

the methods invocation field should be weighted higher or lower 

than the main field. 

5.6 Threats to Validity 
There are several threats to the validity of our results. First, we 

used several parameter values for each IR method in our case 

study, but we cannot set so many parameters without knowing the 

relevant entities of queries in practice. Some reasonable parameter 

settings of five methods for our selected four systems have been 

discussed in the previous section, but we cannot assure they are 

suitable in other software systems. 

Although in each best configuration for the five methods, BM25 

and BM25F achieve better performance than other three methods, 

the parameter tuning job in BM25 family algorithms is still a 

challenge, even we know the previous features and relevant 

entities of a system to learn a reasonable parameter setting. For 

BM25F, one choice is using the original BM25F parameter 

optimizing procedure [36], which is a local optimizing process 

and needs to know the relevant entities of features in advance. An 

empirical parameter recommendation of BM25 algorithm in 

feature location still needs to be studied in the future work. 

The evaluation metric we used MRR is based on the effective 

measure, which is the rank of first relevant entity in the returned 

list. Because there are usually multiple entities relevant to a 

feature, the rank of other entities except the top rank one are not 

considered in this evaluation metric. Nevertheless, this metric is 

widely used in feature location and allow different techniques to 

be compared with each other. 
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Because the amount of computation is quite large, we did not use 

large number of parameter values. Some parameters are set in the 

smallest or largest values to get the best or worst performance. 

Use more parameters values might get more reasonable results. 

6. CONCLUSION AND FUTURE WORK 
Searching software entities related to specific functionalities 

manually cost a lot of time. Several information retrieval based 

feature location approaches have been proposed to help 

developers to find the initial location of relevant features. This 

paper proposes BM25 and BM25F based feature location 

approaches, and show that they are better than three other regular 

IR methods, namely VSM, UM, and LDA in four open source 

projects.  

There are a lot of works to do in the future. We only used MRR as 

the evaluation metric and ranked the results by MRR scores. 

Some other metrics could be used in the future work: Top-N 

Rank, which indicate the number of features whose relevant 

documents are ranked in the top N of the return lists, and Mean 

Average Precision (MAP), which is the meaning of average 

precision scores for each query. We considered text terms in 

method invocations and other terms as two fields in this BM25F 

based feature location approach. Defining more fields in BM25F 

may improve the performance. For example, the text terms in 

class/method names, comments, identifiers, or the other source 

code could be considered as an individual field respectively in 

BM25F. Some existing hybrid feature location methods combing 

IR models and other information may use the BM25 family 

methods as the IR model part to increase the performance. 
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