

An Empirical Study of BM25 and BM25F Based Feature
Location Techniques

Zhendong Shi1, 2, Jacky Keung2, Qinbao Song1

1
Department of Computer Science and Technology

Xi’an Jiaotong University
Xi’an, China

2
Department of Computer Science

City University of Hong Kong
Hong Kong, China

zdshi0@stu.xjtu.edu.cn; jacky.keung@cityu.edu.hk; qbsong@mail.xjtu.edu.cn

ABSTRACT

Feature location is a software comprehension activity which aims

at identifying source code entities that implement functionalities.

Manual feature location is a labor-insensitive task, and developers

need to find the target entities from thousands of software

artifacts. Recent research has developed automatic and

semiautomatic methods mainly based on Information Retrieval

(IR) techniques to help developers locate the entities which are

textually similar to the feature. In this paper, we focus on

individual IR-based methods and try to find a suitable IR

technique for feature location, which could be chosen as a part of

hybrid methods to achieve good performance. We present two

feature location approaches based on BM25 and its variant

BM25F algorithm. We compared the two algorithms to the Vector

Space Model (VSM), Unigram Model (UM), and Latent Dirichlet

Allocation (LDA) on four open source projects. The result shows

that BM25 and BM25F are consistently better than other IR

methods such as VSM, UM and LDA on the four selected

software systems in their best configurations respectively.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – documentation, enhancement; H.3.3

[Information Storage and Retrieval]: Information Search and

Retrieval – Retrieval models.

General Terms

Algorithms, Experimentation

Keywords

Feature Location, Bug Localization, Software Maintenance,

Information Retrieval, BM25, BM25F.

1. INTRODUCTION
During the software development process and maintenance,

developers usually need to implement new features, improve

existing functionalities, and fix bugs. The aim of feature location

is to help developers quickly find which part of source code needs

to be added or modified, to implement the required functionalities

or remove the undesired functionalities like bugs.

Feature location is defined as identifying an initial location in the

source code corresponding to a specific functionality. Many

feature location techniques used bug reports as features in case

studies, since the feature functionality descriptions in requirement

documents are usually hard to obtain. Some researchers use bug

localization instead of feature location when the features of

interest are bug reports [15, 23, 26, 29, 31, 33].

The functionalities in feature location include implementing new

features, improving existing functions, and removing bugs which

are similar to removing unwanted functionalities [9]. No matter

what kinds of data are used (i.e., bug reports, patch descriptions,

enhancement notes, or other feature descriptions), they are all

treated as queries in the IR techniques based location task. In the

case study of this paper, most of features in the dataset are bug

reports, and the others are patch and enhancement descriptions.

There are mainly three types of analysis used in feature location:

dynamic, static and textual methods. Some studies have combined

two or the whole of those three techniques to get a better result

than using the individual technique [9]. Dynamic methods gather

information during the execution of programs for analysis. Static

methods extract the structure like control or dependence graph

from the source code to help developers analyze where the feature

is located. Textual methods, i.e. IR techniques, analyze the code

text including identifiers and comments. Rubin and Chechik [24]

divided the types of feature location analysis into two categories:

dynamic and static, according to whether the program is executed

in the location process or not.

The basis of information retrieval techniques used in feature

location is utilizing the similarities between feature terms and

source code artifacts to rank software entities according to their

relevance to the feature query. Some IR models like Latent

Semantic Indexing (LSI) [18, 21] and Latent Dirichlet Allocation

(LDA) [15, 16] have been applied in the area of feature location.

In this paper, we only focus on information retrieval based

techniques and compare the feature location performance of

different IR methods. Many hybrid methods introduced in Section

3 combined textual methods and other information from historical

data, static and dynamic analysis results. The hybrid methods

usually achieved better performance than the individual methods.

Choosing a suitable IR method in these hybrid techniques is an

important issue to achieve good performance in feature location.

BM25 [25] is a popular ranking method in information retrieval,

which uses two parameters to control the weight of term

frequencies and document lengths. Its variant BM25F [36] divides

the documents into different fields and assigns different scaling

parameters to terms in each field. BM25 has previously been

applied in duplication detection for software reports [35] and used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

InnoSWDev'14, November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

InnoSWDev’14, November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11...$15.00
http://dx.doi.org/10.1145/2666581.2666594

106

as a weighting scheme in a structured source code based bug

localization approach [26]. We have conducted experiments on a

feature location benchmark containing 4 open source projects [9]

and show that BM25 family algorithms achieved the best results

when compared to other three IR methods in their best

configurations.

2. BACKGOURND
This section we present how IR techniques perform in feature

location. The general framework of the IR method used in feature

location is shown in Figure 1. Software source code and features

like bug reports are inputs of this framework. The goal of this IR

system is to find software artifacts in the source code relevant to

the feature. According to different granularity setting, the

retrieving source code level can be method/function, class, or file

level. In this framework, the source code elements are treated as

documents in the search engine. A document is a method/function,

a class, or a file depending on the predetermined granularity. The

output of this framework is a ranked list of documents. Higher

ranks of the relevant documents usually mean better performance

of feature location.

D
o
c
u
m

e
n
t

P
re

p
ro

c
e
ss

in
g
 a

n
d
 R

e
p
re

se
n
ta

ti
o
n

Q
u
e
ry

 S
e
a
rc

h
 E

n
g
in

e

Document

Extraction +

Natural Language

Processing

Source Code

IR Technique

Features

Description

Featrue

Description

Query

Ranked

Results

Search Engine

Document

Collection

Document

Representation

Natural Language

Processing

Figure 1. A general IR framework in feature location task

The framework can be mainly divided into two parts. The first

part is document preprocessing and representation, which is

shown in the left of Figure 1. After inputting the source code in

this part, the source code terms are extracted from every

document firstly. Usually, terms in identifiers and comments will

be extracted. Then several Natural Language Processing (NLP)

steps are applied to the extracted terms in every document, which

include removal of stop words, splitting multi-words and

stemming. The stop words which need to be removed include a

general English stop words list, programming language keywords

and punctuation. Multi-word identifiers like “OpenFile” are split

into single terms “open” and “file” using techniques like

CamelCase [8]. Then the stemmer like Porter [20] is applied on

the terms to obtain their root words. The influence of choosing

only identifiers or comments, and choosing different combination

of preprocessing steps have been researched [31].

After preprocessing the raw text from source code, the documents

of source code elements are usually represented as term frequency

vectors, i.e. bag-of-words. This model assumes there is no order

of words in the text [17]. All textual methods talked here are

under this assumption. The document representation vectors differ

based on different IR techniques. For example, one of documents

representation in Vector Space Model (VSM) is tf-idf (term

frequency-inverse document frequency), which considers the term

occurring counts in a document and the number of document

including this term. In LDA [5], each document is represented by

a document-topic probability distribution, while each topic is

represented by a topic-term probability distribution.

In the second part of the framework, the query search engine

preprocesses the queries by the same as source code documents

done. The similarity between a query and a document is

depending on which IR technique is used. This IR system utilizes

the text similarity between the text in the source code elements

and the text description of the feature to give a ranked list of

documents. Developers are expected to find the target entity

quickly according to the ranked list.

3. PREVIOUS WORK
LSI (Latent Semantic Indexing) [18, 21] and LDA (Latent

Dirichlet Allocation) [15, 16] have been applied in feature

location. LSI [7] is an indexing and retrieval method that uses

Singular Value Decomposition (SVD) to extract the latent

semantic vectors from the term-by-document matrix. The

documents in the LSI model are represented as latent semantic

vectors. Poshyvanyk and Marcus [22] used FCA (Formal Concept

Analysis) to organize and represent the ranked list methods from

LSI-based feature location. LDA [5] is a topic model which

assumes there is a latent topic level between documents and words.

The LDA model uses topic distribution to represent the

documents, while each topic is a multinomial distribution over

terms.

Several papers [1, 19, 23, 31, 34] have shown the performance of

simple IR models like Vector Space Model (VSM) and Unigram

Model (UM) were better than sophisticated models like LSI and

LDA in feature location significantly. So we choose the VSM and

UM as the main comparison techniques. One reason of this result

may be these papers chose the whole feature description as the

query, while LSI [18, 21] and LDA [15, 16] work on feature

location used the manual selected queries.

In this paper, we present how we utilized BM25 and BM25F to

locate features in software. The result of our experiment shows

that when all terms of feature descriptions are treated as queries

without automatic or manual reformulation, BM25 and BM25F

achieved better performance than UM, VSM and LDA, while the

UM and VSM models performed good when using only

107

information retrieval techniques in previous work [1, 19, 23, 31,

34].

BLUiR [26] is a closed work related to this paper. It improved

bug localization using structured information retrieval with the

BM25 weighting scheme. The authors divided the source code

terms into four fields and the query terms into two fields and

calculate the similarity for each field combination then sum all

scores.

Some hybrid techniques which combine information retrieval

methods like LSI, LDA and other information such as source code

structure [2, 27, 28], dynamic analysis [10, 14, 21] and version

history [13, 29, 37] achieved good performance than only using

information retrieval methods. But these hybrid methods usually

need more input data rather than source codes text, and sometimes

the additional input cannot provide enough information to

improve the performance, for example, the version history of a

new developed system.

3.1 Feature Location vs. Bug Localization
In the opinion of some researchers, bugs are treated as unwanted

features [4, 9]. In their view, bug localization task is a subarea of

feature location, and feature location could be called bug

localization when all features are bugs. In some feature location

approaches [3, 10, 30], bug reports are used as the main input

features. But some other researchers [26, 31, 33] considered

feature location as a different area from bug localization, and

thought features do not contain bugs. In their opinion, features

only indicate the functionalities or concepts that developers want

to implement, and features usually contain few terms like only

one term, while bug reports often contain a lot of terms. In this

paper, we use the former definition, i.e., feature location includes

bug localization. We do not use the phrase bug localization as our

topic, since not all features in this case study are bug reports.

4. BM25-BASED APPROACH TO

FEATURE LOCATION
The BM25 and BM25F approaches in feature location are

introduced in this section.

4.1 BM25
BM25 [25] is a bag-of-words ranking function implemented in

Okapi information retrieval system. Each query term has a score

which depends on the occurrence of this term in all documents,

regardless of the inter-relationship between the query terms within

a document. There are two parameters in BM25 to control the

scale of both term frequencies and document lengths. So the

influence of frequent terms and long documents to the final result

would be calibrated according to their term frequencies and

document lengths.

Given a query Q with terms q1, q2, ..., qn, the BM25 score of a

document D is:

 () ∑ ()

 ()()

 () (
| |

)

()

Here, tf (qi, D) is the term frequency of qi in the document D, |D|

is the length of document D, and avgdl is the average of document

lengths in the whole corpus. The term containing |D|, avgdl, and b

indicates the normalization of document frequency. Free

parameters k1 and b control the scale of term frequency and

document length respectively. While k1 = 0, it is a binary model

(no consideration of term frequency). A b value of 0 corresponds

to no length normalization. IDF(qi) is the Inverse Document

Frequency (IDF) of term qi in the whole corpus:

 ()
 ()

 ()
 ()

Here, N is the total number of documents, n(qi) is the number of

documents contain the term qi. 0.5 is a smoothing constant to deal

with the situation n(qi) = 0. The IDF value would be negative

when n(qi) is greater than half of N. So the query term which has

occurred in larger than half of all documents is ignored in the

algorithm.

Because the feature queries in the case study are usually long

documents, a normalizing scheme is used to deal with the term

counts in a query as follows [17]:

 () ∑
() ()

 ()
 ()

 ()()

 () (
| |

)
 ()

where tf (qi,Q) is the term frequency of qi in the query Q, and k3 is

the weighting parameter which calibrates term frequency scaling

of the query. The other part is the same as Equation (1). In our

research, we tried several values for the three parameters k1, b and

k3 to get a good result.

After the scores between a query and all documents are derived by

Equation (3), every document is ranked according to the

corresponding score to the query. Documents with high scores are

ranked in the top of final result, which means these documents are

more relevant to the query.

4.2 BM25F
BM25F [36] is a variant of BM25 in which the terms in a

document are classified into several fields with different degrees

of importance. The original BM25F considered that the webpage

text is composed from title text, main body text and anchor text.

A field-dependent normalized term frequency tf' (t, f, D) of a term

t which is considered in the field f of the document D is calculated

as follows:

 ()
 ()

 ()
 ()

 ()

where tf (t, f, D) is the original term frequency of a term t occurs

in the field f of the document D, l (f, D) is the total number of

terms in the field f of the document D, avgl(f) is the average field f

length in the whole corpus, and bf is a field-dependent parameter

for scaling field length like b in BM25.

The final pseudo-frequency of term t in the document D is a linear

weighted sum of tf' (t,f,D) from different fields:

 () ∑ ()

 ()

where wf is a field-dependent weight parameter. The larger value

of wf means higher importance of the corresponding field.

Then the score between the query Q with terms q1, q2, …, qn and a

document D is calculated as follows:

108

 () ∑ ()

 ()

 ()
 ()

where IDF(qi) is calculated by Equation (2) like BM25, and k1 is

the term frequency scaling parameter.

For the reason of long feature description, we use the same query

term normalizing scheme as Equation (3) in BM25 as follows:

 () ∑ ()

 ()

 ()

() ()

 ()
 ()

At last, the documents are ranked according to the scores to a

specific query like BM25.

For simplicity, we divide the source code into two fields for

BM25F: method invocations text and the other text. The field of

method invocations only includes the terms from the invoked

method names, and it is called invocation field. The other terms in

the class are in another field called main field. This division of

source codes fields is a primary trial. We leave the experiment

with more fields to the future work. The parameters of both fields

are named as follows:

Table 1. Two-field BM25F parameters in feature location

Field \Parameter bf wf

Main b1 w1

Invocation b2 w2

Apart from the four parameters in Table 1, there are two other

parameters k1, k3. Because we only care the relative value of the

weighting parameter wf instead of the absolute value, w1 is set to 1

in all parameter setting while different values of w2 can refer to

different relative weight. So in this two fields based BM25F

scheme, there are totally five parameters to be determined before

running the algorithm.

5. CASE STUDY
We compare the performance of feature location using VSM, UM,

LDA, BM25 and BM25F on four open source software systems.

Simple methods VSM and UM were reported to have a better

performance than other sophisticated methods like LDA in feature

location. The result of this case study shows that BM25 and

BM25F outperform other three methods in their best configuration

respectively.

5.1 Data Set
We use four open source softwares: ArogUML1, JabRef2, jEdit3

and muCommmander4. The features including bug reports, patch

notes and enhancement descriptions of the four systems and the

gold set which is the set of modified methods relevant to the given

feature are from the Benchmarks [9]. They are available online5.

1 http://argouml.tigris.org/

2 http://jabref.sourceforge.net/

3 http://www.jedit.org/

4 http://www.mucommander.com/

5 http://www.cs.wm.edu/semeru/data/benchmarks/

Table 2 lists size metrics of four projects and number of features

for each system. LOC stands for lines of codes.

Table 2. Metrics of Software systems

System Version LOC Classes Features

ArgoUML 0.22 131020 1474 91

JabRef 2.6b 74138 590 39

jEdit 4.3 106481 513 150

muCommander 0.8.5 76649 1069 92

Since not all the gold methods in the benchmark, which is the

relevant methods to the specific query, exist in the modified

version of software, we set the feature location granularity in class

level, and all the gold methods are changed to classes. Then every

gold class can be found in the modified version of software.

5.2 Preprocessing
JRipples [6] is an Eclipse plug-in supporting feature location. We

modified JRipples to extract two fields terms of each class from

the dataset for BM25F techniques and whole text of each class for

other four algorithms. Thomas et al. [31] recommended to use all

text information of bug reports and software entities. In our

experiments, bug titles, descriptions, software entities text

includes identifiers, comments and so on are considered as the

source of text.

We removed a list of English stop words and Java key words. The

terms having less than 4 characters or longer than 14 characters

were removed. We split multi-word terms based on camel case

and underscores using splitting tool in JRipples. The Porter

stemmer [20] is used to get term stems.

5.3 Setting
We used R lda v1.3.2 6 package to run LDA models. We

implemented VSM, UM, BM25 and BM25F using R language by

ourselves.

5.3.1 Vector Space Model
We used the regular tf-idf weight in Vector Space Model (VSM)

as follows [17]:

 ()
 ()

 ()

 ()
 ()

Here, tf (wi, D) is the term frequency of term wi in the document D,

which is normalized by the maximum term frequency in the

document D. N is the number of total documents, and df (wi) is the

document frequency of term wi which is the number of documents

containing term wi.

After documents are represented as a vector of weight value for

each term, the similarity between the query and the document is

computed by overlap score measure, which is the sum of tf-idf

weights of terms occurs in the query [17]:

 () ∑ ()

 ()

Because most of the queries are long feature descriptions, we used

similar query normalizing scheme as Equation (3):

6 http://cran.r-project.org/web/packages/lda/index.html

109

 () ∑ ()

() ()

 ()
 ()

The query scaling parameter k3 is set from 0 to 5 with interval 0.5

in our experiment.

5.3.2 Unigram Model
Unigram Model (UM) is a language model which employs a

single multinomial distribution over terms for each document. The

probability of each term is calculated as the maximum likelihood

of each term [17]. We used UM with Jelinek-Mercer smoothing

[12] to avoid zero probability of query term which do not occur in

documents. The probability of term wi in document D with

smoothing is calculated as follows:

 (|)
 ()

∑ ()
| |

 ()
 ()

∑ ()| |

 ()

Here, tf (wi, D) is the term frequency of term wi in the document D,

tf (wi, C) is the term frequency of term wi in the whole corpus C.

The denominators of two terms in Equation (11) are the total term

number in the document D and the corpus C. The parameter u is

used to weight the UM probability from the document and the

whole corpus, and the value of u is set from 0 to 0.95 with interval

0.05 in our experiment. The similarity between the query and the

document is the product of the likelihoods of each term in the

query [17]:

 () (|) ∏ (𝑘|)

 𝑘𝜖

 ()

where qk is the kth word in the query Q, di represents the

document. The query terms which do not occur in the whole

document corpus are ignored.

5.3.3 Latent Dirichlet Allocation
The Latent Dirichlet Allocation (LDA) [5] model has three

parameters, the number of topics K, and two super parameters α

and β. Biggers et al. [4] have studied how the configurations of

parameters in LDA influence the feature location performance on

these four software systems. Since they studied configuration in

method-level which is different from our setting, we tried

different parameter values for LDA as shown in Table 3. The

similarity between the query and the document is also calculated

by Equation (12), which followed the LDA work in feature

location [15, 16]. R-lda package is based on Gibbs sampling [11]

to infer the model. We set Gibbs sampling iteration 2000 for all

experiments to make the LDA model convergence.

Table 3. LDA parameters setting

Parameter Value

α 0.1, 0.25, 0.5, 1

β 0.1, 0.25, 0.5, 1.

K 50, 100, 150, 200

5.3.4 BM25 and BM25F
We also tried different combination of parameter values for BM25

and BM25F. The BM25 and BM25F parameters setting are shown

in Table 4 and Table 5 respectively. Because BM25F has more

parameters than BM25, we set parameters of BM25F in longer

intervals than BM25. The total number of parameters combination

in BM25 is 891, while the total number of parameters

combination in BM25F is 6300.

Table 4. BM25 parameters setting

Parameter Value

k1 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

b1
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,

0.85, 0.9, 0.95, 1

kq 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

Table 5. BM25F parameters setting

Parameter Value

k1 1, 2, 3, 4, 5

b1 0.5, 0.6, 0.7, 0.8, 0.9, 1

b2 0.5, 0.6, 0.7, 0.8, 0.9, 1

w1 1

w2 0.1, 0.2, 0.5, 1, 2, 5, 10

kq 1, 2, 3, 4, 5

5.4 Evaluation Metric
We used Mean Reciprocal Rank (MRR) [32] to evaluate the result

of feature location. It is a statistic measure for evaluating an

algorithm which produces a list of possible responses to a query.

The reciprocal rank of a query in feature location is the

multiplicative inverse of the effective measure. Effective Measure

(EM) is the highest rank of source code entities implementing the

query feature in the final ranked list [21]. The mean reciprocal

rank is the average of the reciprocal ranks for a set of queries QS:

| |
∑

| |

 ()

The higher value of the MRR metric indicates the better

performance of the retrieval algorithm.

5.5 Result and Analysis
The MRR results of 5 methods with best four and worst four

configurations are shown in Table 6. The best configuration and

MRR metric of each method in each project is in bold type, and

the rank is based on MRR values. The parameter configurations

are ranked by the MRR value. The MRR of the best

configurations of BM25 and BM25F are similar for each project,

and they are higher than the best configurations of UM, VSM and

LDA for each project. A more clear comparison of best

configurations for each method and project is shown in Figure 2.

As shown in Table 6(A), the parameter k in VSM has little

influence on the performance. The parameter k value in VSM is

set from 1.5 to 3.5 to get best performance for ArgoUML, JabRef

and jEdit projects, while k = 0 in muCommander performs best in

which the query term frequency is totally ignored. The

performances of UM in different parameter configurations show

that a large weight of document generating probability with a

small weight of collection generating probability is reasonable in

UM-based feature location. When u = 0, the scores of terms only

110

count the collection generating probabilities with no document

discrimination, so it is the worst configuration in UM.

The performance of the LDA model varies according to the

different parameters. The hyperparameters setting α = 1, β = 0.25

are reasonable choice for all systems except the muCommander

project. 150 or 200 topic numbers exist mostly in the best four

configurations. Because the inference procedure in LDA is

probabilistic based iteration sampling, the result varies every time.

The MRR results of LDA in Table 6(A) are only calculated based

on running the LDA model once, but 64 LDA results with

different parameter values show that the performance of LDA is

worse than others except in the JabRef project.

BM25 and BM25F have similar MRR values in feature location

with the best four and worst four configurations. It may due to

only considering two simple fields of source codes. The term

frequency scaling parameters k1 in two algorithms also have

similar values for each project as shown in Table 6(B). For

example, k1 = 4 is suitable for both BM25 and BM25F in the jEdit

project. In the setting range, larger kq value (kq = 4, 5) is

reasonable for both algorithms in four projects, which indicates

some terms in the query with large frequency need to be scaled.

Figure 2. MRR of IR techniques in best configuration

Table 6(A). The best four and worst four configurations of VSM, UM and LDA in feature location

VSM UM LDA

Rank Configuration MRR Rank Configuration MRR Rank Configuration MRR

ArgoUML

1 k = 1.5 0.2382

2 k = 1 0.2357

3 k = 2 0.2336

4 k = 4 0.2305

8 k = 0.5 0.2275

9 k = 3.5 0.2264

10 k = 5 0.2253

11 k = 0 0.2226

1 u = 0.9 0.3271

2 u = 0.95 0.3244

3 u = 0.85 0.3204

4 u = 0.8 0.3149

17 u = 0.15 0.2356

18 u = 0.1 0.2281

19 u = 0.05 0.2138

20 u = 0 0.0014

1 α = 1, β = 0.5, K = 150 0.2125

2 α = 1, β = 0.25, K = 150 0.1940

3 α = 1, β = 0.1, K = 150 0.1931

4 α = 1, β = 0.5, K = 200 0.1898

61 α = 0.25, β = 1, K = 150 0.0901

62 α = 1, β = 0.1, K = 50 0.0895

63 α = 0.1, β = 1, K = 50 0.0886

64 α = 0.1, β = 1, K = 100 0.0621

JabRef

1 k = 3.5 0.2438

2 k = 5 0.2412

3 k = 4.5 0.2397

4 k = 3 0.2378

8 k = 1.5 0.2331

9 k = 1 0.2186

10 k = 0.5 0.2085

11 k = 0 0.1906

1 u = 0.8 0.5763

2 u = 0.85 0.5702

3 u = 0.7 0.5606

4 u = 0.75 0.5580

17 u = 0.15 0.2357

18 u = 0.1 0.2281

19 u = 0.05 0.2138

20 u = 0 0.0014

1 α = 0.5, β = 0.25, K = 150 0.3177

2 α = 0.1, β = 0.1, K = 200 0.2920

3 α = 1, β = 0.1, K = 100 0.2784

4 α = 0.25, β = 0.1, K = 100 0.2740

61 α = 0.1, β = 1, K = 200 0.0841

62 α = 0.5, β = 1, K = 150 0.0838

63 α = 0.1, β = 1, K = 150 0.0834

64 α = 0.1, β = 0.5, K = 100 0.0579

jEdit

1 k = 2 0.4778

2 k = 2.5 0.4732

3 k = 3 0.4691

4 k = 3.5 0.4688

8 k = 1.5 0.4628

9 k = 5 0.4619

10 k = 0.5 0.4462

11 k = 0 0.4262

1 u = 0.8 0.5488

2 u = 0.75 0.5467

3 u = 0.85 0.5431

4 u = 0.9 0.5427

17 u = 0.15 0.4300

18 u = 0.1 0.3997

19 u = 0.05 0.3836

20 u = 0 0.0039

1 α = 1, β = 0.25, K = 200 0.3847

2 α = 1, β = 0.1, K = 200 0.3746

3 α = 0.5, β = 0.1, K = 200 0.3690

4 α = 1, β = 0.1, K = 150 0.3604

61 α = 0.1, β = 1, K = 200 0.2103

62 α = 0.1, β = 1, K = 50 0.2008

63 α = 0.25, β = 1, K = 150 0.1966

64 α = 0.1, β = 1, K = 100 0.1859

muCommander

1 k = 0 0.3765

2 k = 0.5 0.3645

3 k = 1 0.3617

4 k = 2 0.3580

8 k = 4.5 0.3557

9 k = 3 0.3537

10 k = 3.5 0.3515

11 k = 2.5 0.3515

1 u = 0.85 0.5174

2 u = 0.9 0.5170

3 u = 0.95 0.5112

4 u = 0.8 0.5082

17 u = 0.15 0.3822

18 u = 0.1 0.3510

19 u = 0.05 0.3188

20 u = 0 0.0019

1 α = 0.5, β = 0.1, K = 200 0.3467

2 α = 0.1, β = 0.1, K = 200 0.3207

3 α = 0.25, β = 0.1, K = 150 0.3177

4 α = 0.1, β = 0.1, K = 150 0.3136

61 α = 0.1, β = 1, K = 50 0.1460

62 α = 0.1, β = 1, K = 150 0.1450

63 α = 0.25, β = 1, K = 150 0.1257

64 α = 0.1, β = 1, K = 200 0.1194

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
R

R

Project

VSM

LDA

Unigram

BM25

BM25F

111

Table 6(B). The best four and worst four configurations of BM25 and BM25F in feature location

BM25 BM25F

Rank Configuration MRR Rank Configuration (w1=1) MRR

ArgoUML

1 k1 = 1.5, b = 0.75, kq = 4.5 0.3577

2 k1 = 1.5, b = 0.75, kq = 5 0.3556

3 k1 = 1, b = 0.9, kq = 2.5 0.3549

4 k1 = 3, b = 0.55, kq = 5 0.3522

888 k1 = 5, b = 1, kq = 4.5 0.2416

889 k1 = 5, b = 1, kq = 5 0.2416

890 k1 = 4.5, b = 1, kq = 1 0.2385

891 k1 = 5, b = 1, kq = 1 0.2353

1 k1 = 3, b1 = 0.5, b2 = 1, w2 = 0.5, kq = 4 0.3561

2 k1 = 3, b1 = 0.5, b2 = 0.6, w2 = 0.2, kq = 4 0.3560

3 k1 = 3, b1 = 0.5, b2 = 0.5, w2 = 0.2, kq = 4 0.3560

4 k1 = 3, b1 = 0.5, b2 = 0.7, w2 = 0.2, kq = 4 0.3560

6297 k1 = 5, b1 = 1, b2 = 0.9, w2 = 5, kq = 4 0.2221

6298 k1 = 5, b1 = 1, b2 = 1, w2 = 5, kq = 4 0.2221

6299 k1 = 5, b1 = 1, b2 = 0.9, w2 = 5, kq = 1 0.2210

6300 k1 = 5, b1 = 1, b2 = 0.8, w2 = 5, kq = 1 0.2271

JabRef

1 k1 = 1, b = 0.65, kq = 4.5 0.6124

2 k1 = 1, b = 0.75, kq = 4 0.6013

3 k1 = 1, b = 0.8, kq = 5 0.6013

4 k1 = 1, b = 0.6, kq = 4.5 0.6005

888 k1 = 4, b = 1, kq = 1 0.4286

889 k1 = 5, b = 0.95, kq = 1 0.4267

890 k1 = 4.5, b = 1, kq = 1 0.4192

891 k1 = 5, b = 1, kq = 1 0.4167

1 k1 = 3, b1 = 0.5, b2 = 0.5, w2 = 5, kq = 4 0.6369

2 k1 = 3, b1 = 0.5, b2 = 0.1, w2 = 10, kq = 4 0.6368

3 k1 = 3, b1 = 0.5, b2 = 0.9, w2 = 10, kq = 4 0.6368

4 k1 = 3, b1 = 0.5, b2 = 0.7, w2 = 10, kq = 4 0.6347

6297 k1 = 5, b1 = 1, b2 = 0.5, w2 = 1, kq = 1 0.4167

6298 k1 = 5, b1 = 1, b2 = 0.8, w2 = 2, kq = 1 0.4166

6299 k1 = 5, b1 = 1, b2 = 0.9, w2 = 2, kq = 1 0.4166

6300 k1 = 5, b1 = 1, b2 = 1, w2 = 2, kq = 1 0.4166

jEdit

1 k1 = 4, b = 0.55, kq = 4.5 0.6376

2 k1 = 4, b = 0.55, kq = 5 0.6367

3 k1 = 4.5, b = 0.5, kq = 5 0.6366

4 k1 = 4, b = 0.55, kq = 4 0.6363

888 k1 = 3.5, b = 1, kq = 1 0.5506

889 k1 = 5, b = 1, kq = 1 0.5488

890 k1 = 4.5, b = 1, kq = 1.5 0.5484

891 k1 = 4.5, b = 1, kq = 1 0.5431

1 k1 = 4, b1 = 0.5, b2 =0.5, w2 = 0.5, kq = 5 0.6373

2 k1 = 4, b1 = 0.5, b2 =0.8, w2 = 1, kq = 5 0.6373

3 k1 = 4, b1 = 0.5, b2 =0.8, w2 = 0.5, kq = 5 0.6373

4 k1 = 4, b1 = 0.5, b2 =1, w2 = 0.5, kq = 5 0.6373

6297 k1 = 4, b1 = 1, b2 =0.6, w2 = 10, kq = 1 0.5203

6298 k1 = 5, b1 = 1, b2 =0.7, w2 = 10, kq = 1 0.5179

6299 k1 = 5, b1 = 1, b2 =0.8, w2 = 10, kq = 1 0.5174

6300 k1 = 5, b1 = 1, b2 =0.9, w2 = 10, kq = 1 0.5170

muCommander

1 k1 = 3, b = 0.55, kq = 5 0.5743

2 k1 = 4, b = 0.5, kq = 2.5 0.5737

3 k1 = 4.5, b = 0.5, kq = 2.5 0.5727

4 k1 = 2.5, b = 0.6, kq = 4.5 0.5600

888 k1 = 5, b = 1, kq = 3.5 0.4425

889 k1 = 5, b = 1, kq = 5 0.4413

890 k1 = 5, b = 1, kq = 1.5 0.4390

891 k1 = 5, b = 1, kq = 1 0.4370

1 k1 = 4, b1 = 0.5, b2 = 0.5, w2 = 2, kq = 3 0.5760

2 k1 = 4, b1 = 0.5, b2 = 0.6, w2 = 2, kq = 3 0.5741

3 k1 = 4, b1 = 0.5, b2 = 0.8, w2 = 2, kq = 3 0.5732

4 k1 = 4, b1 = 0.5, b2 = 0.7, w2 = 2, kq = 3 0.5732

6297 k1 = 5, b1 = 1, b2 = 0.5, w2 = 2, kq = 1 0.4345

6298 k1 = 5, b1 = 1, b2 = 0.7, w2 = 2, kq = 1 0.4343

6299 k1 = 5, b1 = 1, b2 = 0.6, w2 = 2, kq = 1 0.4342

6300 k1 = 5, b1 = 1, b2 = 1, w2 = 5, kq = 4 0.4341

In BM25, b = 1, which means the full scaling of document length,

exists in the worst four configurations of all four projects,

indicating that full document length normalizing is not suitable in

this case study. In BM25F, b1 = 0.5, which is the lowest value of

the corresponding setting range, existed in all best four

configurations of all projects, while b1 = 1, which is the highest

value of the setting range, existed in all worst four configurations

of all projects. This indicates that, for the main field, little scaling

on the field length is enough. Since we did not test b1 value lower

than 0.5, the future work needs to focus on more parameter

configurations. The field weight parameter w2 has different

suitable values in different projects. There is no obvious trend that

the methods invocation field should be weighted higher or lower

than the main field.

5.6 Threats to Validity
There are several threats to the validity of our results. First, we

used several parameter values for each IR method in our case

study, but we cannot set so many parameters without knowing the

relevant entities of queries in practice. Some reasonable parameter

settings of five methods for our selected four systems have been

discussed in the previous section, but we cannot assure they are

suitable in other software systems.

Although in each best configuration for the five methods, BM25

and BM25F achieve better performance than other three methods,

the parameter tuning job in BM25 family algorithms is still a

challenge, even we know the previous features and relevant

entities of a system to learn a reasonable parameter setting. For

BM25F, one choice is using the original BM25F parameter

optimizing procedure [36], which is a local optimizing process

and needs to know the relevant entities of features in advance. An

empirical parameter recommendation of BM25 algorithm in

feature location still needs to be studied in the future work.

The evaluation metric we used MRR is based on the effective

measure, which is the rank of first relevant entity in the returned

list. Because there are usually multiple entities relevant to a

feature, the rank of other entities except the top rank one are not

considered in this evaluation metric. Nevertheless, this metric is

widely used in feature location and allow different techniques to

be compared with each other.

112

Because the amount of computation is quite large, we did not use

large number of parameter values. Some parameters are set in the

smallest or largest values to get the best or worst performance.

Use more parameters values might get more reasonable results.

6. CONCLUSION AND FUTURE WORK
Searching software entities related to specific functionalities

manually cost a lot of time. Several information retrieval based

feature location approaches have been proposed to help

developers to find the initial location of relevant features. This

paper proposes BM25 and BM25F based feature location

approaches, and show that they are better than three other regular

IR methods, namely VSM, UM, and LDA in four open source

projects.

There are a lot of works to do in the future. We only used MRR as

the evaluation metric and ranked the results by MRR scores.

Some other metrics could be used in the future work: Top-N

Rank, which indicate the number of features whose relevant

documents are ranked in the top N of the return lists, and Mean

Average Precision (MAP), which is the meaning of average

precision scores for each query. We considered text terms in

method invocations and other terms as two fields in this BM25F

based feature location approach. Defining more fields in BM25F

may improve the performance. For example, the text terms in

class/method names, comments, identifiers, or the other source

code could be considered as an individual field respectively in

BM25F. Some existing hybrid feature location methods combing

IR models and other information may use the BM25 family

methods as the IR model part to increase the performance.

7. ACKNOWLEDGEMENT
This research is supported in part by the City University of Hong

Kong research fund (Project No. 7200354, 7003032).

8. REFERENCES
[1] Abebe, S.L., Haiduc, S., Tonella, P. and Marcus, A. 2011.

The Effect of Lexicon Bad Smells on Concept Location in

Source Code. Source Code Analysis and Manipulation

(SCAM), 2011 11th IEEE International Working

Conference on (2011), 125–134.

[2] Ali, N., Sabane, A., Gueheneuc, Y. and Antoniol, G. 2012.

Improving Bug Location Using Binary Class

Relationships. Source Code Analysis and Manipulation

(SCAM), 2012 IEEE 12th International Working

Conference on (2012), 174–183.

[3] Bassett, B. and Kraft, N.A. 2013. Structural information

based term weighting in text retrieval for feature location.

Program Comprehension (ICPC), 2013 IEEE 21st

International Conference on (May. 2013), 133–141.

[4] Biggers, L., Bocovich, C., Capshaw, R., Eddy, B.,

Etzkorn, L. and Kraft, N. 2012. Configuring latent

Dirichlet allocation based feature location. Empirical

Software Engineering. (2012), 1–36.

[5] Blei, D.M., Ng, A.Y. and Jordan, M.I. 2003. Latent

Dirichlet Allocation. Journal of Machine Learning

Research. 3, 4-5 (2003), 993–1022.

[6] Buckner, J., Buchta, J., Petrenko, M. and Rajlich, V. 2005.

JRipples: A Tool for Program Comprehension During

Incremental Change. Proceedings of the 13th

International Workshop on Program Comprehension

(Washington, DC, USA, 2005), 149–152.

[7] Deerwester, S. and Deerwester, S. 1990. Indexing by

latent semantic analysis. Journal of the American Society

for Information Science. 41, 6 (1990), 391–407.

[8] Dit, B., Guerrouj, L., Poshyvanyk, D. and Antoniol, G.

2011. Can Better Identifier Splitting Techniques Help

Feature Location? Program Comprehension (ICPC), 2011

IEEE 19th International Conference on (2011), 11–20.

[9] Dit, B., Revelle, M., Gethers, M. and Poshyvanyk, D.

2013. Feature location in source code: a taxonomy and

survey. Journal of Software: Evolution and Process. 25, 1

(2013), 53–95.

[10] Dit, B., Revelle, M. and Poshyvanyk, D. 2013. Integrating

information retrieval, execution and link analysis

algorithms to improve feature location in software.

Empirical Software Engineering. 18, 2 (2013), 277–309.

[11] Griffiths, T.L. and Steyvers, M. 2004. Finding scientific

topics. Proceedings of the National Academy of Sciences

of the United States of America. 101 Suppl 1, (2004),

5228–5235.

[12] JELINEK, F. 1980. Interpolated estimation of Markov

source parameters from sparse data. Pattern Recognition

in Practice. (1980).

[13] Kim, D., Tao, Y., Kim, S. and Zeller, A. 2013. Where

Should We Fix This Bug? A Two-Phase Recommendation

Model. Software Engineering, IEEE Transactions on. 39,

11 (Nov. 2013), 1597–1610.

[14] Liu, D., Marcus, A., Poshyvanyk, D. and Rajlich, V. 2007.

Feature Location via Information Retrieval Based

Filtering of a Single Scenario Execution Trace.

Proceedings of the Twenty-second IEEE/ACM

International Conference on Automated Software

Engineering (Atlanta, Georgia, USA, 2007), 234–243.

[15] Lukins, S.K., Kraft, N.A. and Etzkorn, L.H. 2010. Bug

localization using latent Dirichlet allocation. Information

and Software Technology. 52, 9 (2010), 972–990.

[16] Lukins, S.K., Kraft, N.A. and Etzkorn, L.H. 2008. Source

Code Retrieval for Bug Localization Using Latent

Dirichlet Allocation. Reverse Engineering, 2008. WCRE

’08. 15th Working Conference on (2008), 155–164.

[17] Manning, C.D., Raghavan, P. and Schütze, H. 2008.

Introduction to information retrieval. Cambridge

university press Cambridge.

[18] Marcus, A., Sergeyev, A., Rajlich, V. and Maletic, J.I.

2004. An information retrieval approach to concept

location in source code. Reverse Engineering, 2004.

Proceedings. 11th Working Conference on (2004), 214–

223.

[19] Moreno, L., Bandara, W., Haiduc, S. and Marcus, A.

2013. On the Relationship between the Vocabulary of Bug

Reports and Source Code. Software Maintenance (ICSM),

2013 29th IEEE International Conference on (2013), 452–

455.

[20] Porter, M.F. 1980. An algorithm for suffix stripping.

Program: electronic library and information systems. 14,

3 (1980), 130–137.

[21] Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol,

G. and Rajlich, V. 2007. Feature Location Using

Probabilistic Ranking of Methods Based on Execution

Scenarios and Information Retrieval. Software

Engineering, IEEE Transactions on. 33, 6 (2007), 420–

432.

[22] Poshyvanyk, D. and Marcus, A. 2007. Combining Formal

Concept Analysis with Information Retrieval for Concept

Location in Source Code. Program Comprehension, 2007.

ICPC ’07. 15th IEEE International Conference on (Jun.

2007), 37–48.

113

[23] Rao, S. and Kak, A. 2011. Retrieval from Software

Libraries for Bug Localization: A Comparative Study of

Generic and Composite Text Models. Proceedings of the

8th Working Conference on Mining Software Repositories

(Waikiki, Honolulu, HI, USA, 2011), 43–52.

[24] Rubin, J. and Chechik, M. 2013. A Survey of Feature

Location Techniques. Domain Engineering. I. Reinhartz-

Berger, A. Sturm, T. Clark, S. Cohen, and J. Bettin, eds.

Springer Berlin Heidelberg. 29–58.

[25] S. E. Robertson, S. Walker S. Jones M. M.

HancockBeaulieu and Gatford, M. 1995. Okapi at TREC-

3. Overview of the Third Text REtrieval Conference

(TREC–3) (1995).

[26] Saha, R.K., Lease, M., Khurshid, S. and Perry, D.E. 2013.

Improving bug localization using structured information

retrieval. Automated Software Engineering (ASE), 2013

IEEE/ACM 28th International Conference on (Nov.

2013), 345–355.

[27] Scanniello, G. and Marcus, A. 2011. Clustering Support

for Static Concept Location in Source Code. Program

Comprehension (ICPC), 2011 IEEE 19th International

Conference on (2011), 1–10.

[28] Singh, P. and Batra, S. 2012. A Novel Technique for Call

Graph Reduction for Bug Localization. International

Journal of Computer Applications. 47, 15 (Jun. 2012),

150000–5.

[29] Sisman, B. and Kak, A.C. 2012. Incorporating version

histories in Information Retrieval based bug localization.

Mining Software Repositories (MSR), 2012 9th IEEE

Working Conference on (Jun. 2012), 50–59.

[30] Tantithamthavorn, C., Ihara, A., Hata, H. and Matsumoto,

K. 2014. Impact Analysis of Granularity Levels on

Feature Location Technique. Requirements Engineering.

D. Zowghi and Z. Jin, eds. Springer Berlin Heidelberg.

135–149.

[31] Thomas, S.W., Nagappan, M., Blostein, D. and Hassan,

A.E. 2013. The Impact of Classifier Configuration and

Classifier Combination on Bug Localization. Software

Engineering, IEEE Transactions on. 39, 10 (2013), 1427–

1443.

[32] Voorhees, E.M. 1999. The TREC-8 Question Answering

Track Report. Natural Language Engineering. E.

Voorhees and De. Harman, eds. NIST. 77–82.

[33] Wang, S. and Lo, D. 2014. Version History, Similar

Report, and Structure: Putting Them Together for

Improved Bug Localization. Proceedings of the 22Nd

International Conference on Program Comprehension

(Hyderabad, India, 2014), 53–63.

[34] Wang, S., Lo, D., Xing, Z. and Jiang, L. 2011. Concern

Localization using Information Retrieval: An Empirical

Study on Linux Kernel. Reverse Engineering (WCRE),

2011 18th Working Conference on (2011), 92–96.

[35] Yang, C.-Z., Du, H.-H., Wu, S.-S. and Chen, I.-X. 2012.

Duplication Detection for Software Bug Reports Based on

BM25 Term Weighting. Technologies and Applications of

Artificial Intelligence (TAAI), 2012 Conference on (Nov.

2012), 33–38.

[36] Zaragoza, H., Zaragoza, H., Craswell, N., Craswell, N.,

Taylor, M., Taylor, M., Saria, S., Saria, S., Robertson, S.

and Robertson, S. 2004. Microsoft Cambridge at TREC-

13: Web and HARD tracks. Proceedings of TREC 2004.

(2004).

[37] Zhou, J., Zhang, H. and Lo, D. 2012. Where should the

bugs be fixed? More accurate information retrieval-based

bug localization based on bug reports. Software

Engineering (ICSE), 2012 34th International Conference

on (2012), 14–24.

114

