
Kmax: Finding All Configurations of Kbuild Makefiles Statically
Paul Gazzillo

Yale University, USA

paul.gazzillo@yale.edu

ABSTRACT
Feature-oriented software design is a useful paradigm for building

and reasoning about highly-configurable software. By making vari-

ability explicit, feature-oriented tools and languages make program

analysis tasks easier, such as bug-finding, maintenance, and more.

But critical software, such as Linux, coreboot, and BusyBox rely

instead on brittle tools, such as Makefiles, to encode variability,

impeding variability-aware tool development. Summarizing Make-

file behavior for all configurations is difficult, because Makefiles

have unusual semantics, and exhaustive enumeration of all config-

urations is intractable in practice. Existing approaches use ad-hoc

heuristics, missing much of the encoded variability in Makefiles. We

present Kmax, a new static analysis algorithm and tool for Kbuild

Makefiles. It is a family-based variability analysis algorithm, where

paths are Boolean expressions of configuration options, called reach-
ing configurations, and its abstract state enumerates string values

for all configurations. Kmax localizes configuration explosion to

the statement level, making precise analysis tractable. The imple-

mentation analyzes Makefiles from the Kbuild build system used

by several low-level systems projects. Evaluation of Kmax on the

Linux and BusyBox build systems shows it to be accurate, precise,

and fast. It is the first tool to collect all source files and their config-

urations from Linux. Compared to previous approaches, Kmax is

far more accurate and precise, performs with little overhead, and

scales better.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Interpreters; Software
testing and debugging;

KEYWORDS
Kmax, Makefiles, Kbuild, Variability, Configuration, Static Analysis

ACM Reference Format:
Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Make-

files Statically. In Proceedings of 2017 11th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Paderborn, Germany, September 4–8,
2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106283

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00

https://doi.org/10.1145/3106237.3106283

1 INTRODUCTION
Feature-oriented software design (FOSD) is a paradigm that pro-

vides a principled way to develop highly-variable software [3]. A

line of software products can be produced from a single codebase

by combining a selection of features. By making features explicit

and carrying them through the build process, variability in FOSD

programs is easier to reason about andmore amenable to automated

software engineering tools.

Some of the most critical software infrastructure, however, does

not use FOSD-friendly tools, instead relying on brittle languages

such as Makefiles to encode variability, impeding variability-aware

analysis. Linux, BusyBox, Apache and other systems that use Make-

files have been shown to harbor variability bugs that are not ex-

posed unless a particular configuration is tested [1]. Even bugs

easy to find for a single-configuration bugfinder have been unwit-

tingly committed into these codebases, from simple bugs such as

linker errors to more pernicious buffer overflows, and testing all

configurations is infeasible.

Beyond bug-finding, many other software engineering tasks

depend on a complete picture of Makefile variability: measure-

ment of the scale, evolution, and interactions of features in variable

systems [12, 15, 26, 31, 38, 43]; program analyses such as data-

flow analysis, code coverage, and feature model validation [13, 23–

25, 39, 45, 46]; code maintenance such as evolution and dead code

elimination [35, 36, 46]; and translating existing variability to new

variability encodings [6, 21, 27]. All of these analyses use ad-hoc

tools or ignore Makefile variability altogether, resulting in an in-

complete feature-model that necessarily excludes configurations.

For instance, several studies on the Linux 2.6.33.3 x86 kernel source

explicitly report using 7,691 or fewer C source files [17, 20, 25]

while our new results show that there are 9,044 C source files, 17%

more that have been missed in previous experiments.

While Makefiles are widely used, they remain a pain point for

automated reasoning about build system variability. Brute force

enumeration is intractable, because configurations are exponen-

tial in the number of configuration options. Static analysis is hard,

because Makefiles are written in an expressive programming lan-

guage that has unusual semantics. For instance, variable names can

be constructed at runtime via string operations.

Previous attempts to analyze build system Makefiles, such as

fuzzy parsing and brute force, have been ad-hoc and incomplete [5,

12, 33, 46]. Their heuristics elide the complexities of the Makefile

language. As a result, they miss much information, limiting the

completeness and correctness of downstream analysis tools. To

be fair, these tools were not designed to be a complete analysis of

configurations, and provide enough precision for the experimental

evaluation of their respective contributions. In contrast, our aim is

an accurate and precise configuration analysis that can be used for

variability analysis of build systems themselves and for downstream

tools.

279

https://doi.org/10.1145/3106237.3106283
https://doi.org/10.1145/3106237.3106283

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Paul Gazzillo

Our goal is to enable family-based analysis of build system vari-

ability [3]. A family-based analysis reasons about the space of

possible configurations as a whole, typically in a single pass, as

opposed to reasoning about configurations separately. Previous

heuristics for Kbuild Makefile analysis have difficulty covering the

configuration space tractably, so are less useful for reasoning about

variability. An example of the utility of a variability-aware analysis

is finding unreachable code. The Linux kernel contains source that

can never be compiled, either due to bugs in the Makefiles or in-

feasible combinations of configurations. More subtly, many source

files are only feasible when building for a specific architecture. This

is useful information for software tools, e.g., a bug found in an

infeasible configuration is a false positive. Reasoning about the

entire space of configurations makes handling such issues feasible.

KBuildMiner [5] and GOLEM [12, 46] represent state of art ap-

proaches to analyzing Kbuild Makefile configurations. KBuildMiner

works by parsing common Makefile usage patterns. But parsing

alone invariably misses much by not accounting for Makefiles se-

mantics, even when Makefiles are manually adjusted to fit the

parser’s grammar. GOLEM uses heuristic brute force enumeration.

It enables one or more features at a time and executes the Makefiles,

recording the resulting output. But this approach is very slow, and

still only covers a fraction of all configurations, because of the sheer

number of combinations of configuration options. In contrast, we

approach variability in Makefiles as a static analysis problem. This

is a natural fit: features are Makefile variables and variability is

encoded with if-then-else statements and variable expansion.

We introduce a new, family-based, static analysis algorithm

called Kmax for Kbuild Makefiles that yields a precise description

of variability. Kmax provides abstractions for the configuration

and string domains, and its data-flow results yield a precise sum-

mary of all possible configurations of a Makefile. The analysis

is path-sensitive, where paths model the reaching configurations,
i.e., the combinations of configuration settings that lead to a par-

ticular point in the Makefile program. By using Binary Decision

Diagrams (BDDs) to concisely represent paths, we can model all

configurations with good performance in practice, even on the

highly-configurable build system for Linux.

Kmax’s abstract state enumerates all configurations of string val-

ues, which localizes configuration explosion to the statement-level

instead of the entire Makefile. This enables precise analysis of com-

plex string operations in Makefiles such as runtime variable name

construction. In a single pass, Kmax collects a BDD representation

of the space of configurations from Kbuild Makefiles. With this

representation, it can incorporate further constraints on the space

due to developer policy, e.g., drivers that only apply to a specific

platform.

Kmax’s analysis approach is implemented in a new tool, which

analyzes Makefiles written for the Kbuild build system used by

many highly-configurable projects including the Linux kernel, Busy-

Box, and coreboot. The Kmax tool collects all C files comprising

the codebase and Boolean expressions of configuration options

that control them, i.e., the feature model. We evaluate Kmax for

accuracy, precision, and performance on the build systems for the

Linux kernel and BusyBox. Kmax takes only minutes on the Linux

build system and is the first to correctly find all C files for the

Linux kernel and their configurations. Kmax is compared against

the state of art heuristic approaches, KBuildMiner and GOLEM,

and is shown to be much more accurate and precise with better or

little performance overhead and better scalability. Because of its

principled approach to variability, Kmax is able to identify dead

and orphaned code due to infeasible configurations.

The contributions of this paper are as follows:

• A new static analysis algorithm for Kbuild Makefiles (Sec-

tion 3).

• An implementation of the algorithm in a new tool, Kmax,

for the Makefile-based Kbuild build system that collects all

C source file names and the configurations in which they

are built (Section 4).

• An experimental evaluation of Kmax on two build systems

that demonstrates its precision, accuracy, and speed, taking

minutes for the Linux build system and seconds for BusyBox

(Section 5).

• A comparison of Kmax to previous Kbuild analysis tools

KBuildMiner and GOLEM on two versions of the Linux

source code showing that Kmax is substantially more ac-

curate and precise with little performance overhead and

better scalability (Section 6).

Kmax is available online for download
1
.

2 OVERVIEW
Figure 1 is a small, representative example drawn from the thou-

sands of individual Makefiles comprising the Linux build system
2
.

For brevity, this example involves two configuration options A and B,
but Makefiles in practice may have dozens or hundreds of configura-

tion options, making exhaustive enumeration of all configurations

infeasible.

A and B are Boolean Linux configuration options, which in Linux

means that the option is set either to y for yes to include the fea-

ture or is left unset to exclude the feature. Makefiles do not have

any other variable type besides string, so Boolean is a convention

describing this range of values for a configuration option. When

executed, this Makefile determines, given inputs A and B, which
source code files to include in the build. Lines 1–7 programmatically

construct the set of filenames and store them in the variable obj-y,
which is used in the rule on lines 8–9 to perform the actual build.

The first statement (line 1) is an assignment that initializes obj-y
to fork.o, the object file corresponding to the fork.c source file.
The following if-then-else block tests whether A equals y (line 2), i.e.,
whether feature A has been enabled. Variables are referenced (ex-
panded in Makefile terminology) with the $(A) syntax. Depending

on A’s value, BITS is either set to to 32 (line 3) or to 64 (line 5).
The next statement (line 7) is another type of assignment (+=)

that appends to an existing variable value. Looking first at the

right-hand side, the value of the assignment is computed by first

expanding any variable references. In this case, BITS is expanded
to one of its earlier, configuration-dependent definitions, 32 or

64. By Makefile semantics, any adjacent strings are implicitly con-

catenated, resulting in probe_32.o or probe_64.o. Notice that

because BITS is configuration-dependent, the filename itself is now

configuration-dependent, depending indirectly on input A.

1
http://github.com/paulgazz/kmax.

2
All Linux examples are from v3.19.

280

http://github.com/paulgazz/kmax

Kmax: Finding All Configurations of Kbuild Makefiles Statically ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

1 obj-y := fork.o

2 ifeq ($(A),y)

3 BITS := 32

4 else

5 BITS := 64

6 endif

7 obj-$(B) += probe_$(BITS).o

8 built-in.o: $(obj-y)

9 # do compilation

Figure 1: An example illustrating the challenges of
static analysis of Makefiles. Collected from Linux
kernel source: kernel/Makefile, arch/x86/Makefile,
arch/x86/kernel/apic/Makefile, and scripts/Makefile.build.

Table 1: The final state of all variables used in Figure 1 for
all combinations of configuration options A and B.

A B obj-y obj-
on on fork.o probe_32.o
on off fork.o probe_32.o
off on fork.o probe_64.o
off off fork.o probe_64.o

The left-hand side of this assignment exposes Makefile’s unusual

support for runtime variable name construction. The name of the

variable to assign is computed in exactly the same way as the value

on the right side. In this case, B is expanded and concatenated with

the prefix obj-, so the variable name will either be obj-y or just
obj- when B is unset. Because variable names can, and often are,

constructed at runtime with string operations, the variable name
itself is configuration-dependent. This complicates static analysis,

because the abstract state needs to map variable names to their

abstract values. Crucially, if our abstraction of string values is not

precise enough, our summary of variability will be very imprecise,

unable to collect the names of source files or how and if they are

added to obj-y to be built. The usage patterns in Figure 1 are very

common in Linux build system Makefiles.

Figure 1 happens to be small enough to execute all combinations

of configuration options, though in practice Makefiles can have

too many configuration options to do so. Table 1 shows the final

program state for each configuration of Figure 1, one per row. The

first two columns are the settings for A and B respectively. For

simplicity, “on” means the configuration option is set to y, while
“off” means it is left undefined. The third and fourth columns are the

final values for obj-y and obj-, respectively, for each combination

of inputs. For instance, when A is off and B is on, BITS is set to 64

by line 5, then line 7 appends probe_64.o to obj-y. Notice that B
controls the name of the variable being assigned: whenever B is off,

obj-, not obj-y, gets the assignment from line 7, preventing either

of the probe_##.o files from being built.

As the number of configuration options grows, computing this

complete table by brute force is infeasible. Kmax summarizes this

table for larger numbers of configuration options than would be

feasible with brute force by abstracting the representations of con-

figurations and program state. Configuration options are treated

symbolically. Program state uses abstracted string values whose

abstract domain is precise enough for runtime string computation,

even of variable names, while still being tractable.

Kmax represents paths with symbolic Boolean expressions of

configuration options. To reflect the notion that a path captures

variability, we call this expression a reaching configuration. The
path condition is updated by if-then-else constructs and tracked

for each program point by Kmax. The abstract state of a program

value is a set of concrete string values tagged with their reaching

configurations. This domain permits Kmax to summarize all paths,

yet have the runtime string values available for computing precise

variable names and values. Input variables are also given in this

abstract domain to describe all possible input values. Linux and

BusyBox have well-defined configuration options, and our imple-

mentation is able to automatically construct these input values for

nearly all configuration options.

Let us see how Kmax works on the example in Figure 1. The path

condition begins as ⊤ or true, which represents all configurations.

The first assignment sets obj-y to fork.o under this path condition,
i.e., all configurations (line 1). Then the algorithm computes an

updated path condition for both the if and else branches of the

if-then-else block (line 2), i.e., “A is on” and “A is off” respectively.
The path condition is represented with Binary Decision Diagrams

(BDDs), where BDD variables correspond to these input values.

Updates to the path condition are backed by Boolean operations

on the BDD. This representation enables a much more compact

representation of the configuration than the exhaustive table of

all configurations. Moreover, BDDs can be compared for equality

efficiently, which Kmax exploits to deduplicate abstract state.

Each branch updates the value of BITS under its own path condi-
tion (lines 3 and 5). Both of its possible values, 32 and 64, are stored

in the abstract symbol table and tagged with the path conditions

in which they were defined, i.e., the reaching configurations. The

assignment statement on line 7 illustrates Kmax’s abstract seman-

tics when expanding these values. Kmax expands all variables to

all definitions and executes all resulting assignments according to

their concrete semantics. For B on, i.e., set to y, the assignment to

obj-y is executed for both definitions of BITS, 32 and 64. Likewise,

for B off, i.e., left unset, the assignment to obj- is executed for

both definitions of BITS as well. This results in the three unique

definitions (after deduplication) for obj-y and two for obj- that

are shown in Table 1. The next section details the intricacies of the

complete analysis algorithm, such as how Kmax tracks the reaching

configurations, ensures the abstract state covers all configurations,

performs variable expansion, and more.

Each variable’s configurations are handled separately, and the

number of unique abstract configurations stored in the abstract

state is smaller, three compared to four, than for brute force enu-

meration. The difference is even more pronounced for Makefiles

with larger numbers of configuration options. Kmax’s abstraction

localizes the explosion caused by exhaustive enumeration of config-

urations to the statement-level, while preserving the precise string

values needed to evaluate Makefile semantics like runtime variable

name computation. While abstract values can themselves suffer

intractable blowup in theory, they are efficient in practice because

281

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Paul Gazzillo

of this localization. Moreover they are amenable to deduplication

and infeasible path trimming. Our implementation takes minutes

even on the highly-configurable build system of Linux.

3 ALGORITHM
The Kmax algorithm is a path-sensitive static analysis of Makefile

constructs. Like the concrete Makefile evaluator, Kmax keeps track

of a symbol table of variable assignments and a list of collected rules.

There are, however, two key differences. First, the analysis main-

tains a path condition at each program point. The path condition

reflects some combination of conditional branches from the begin-

ning of the Makefile to the program point. It is represented with a

Binary Decision Diagram (BDD), where BDD nodes are the input

variables to the Makefile. Because input variables are configuration

options, the path condition corresponds to reaching configurations,

i.e., a Boolean expression representing the configuration settings

leading to that point in the program.

Second, Kmax maintains abstract versions of the symbol table

and rule list. The symbol table stores, for each variable in the pro-

gram, an enumeration of each possible concrete string value the

variable may take. These concrete values are tagged with the path

condition in which each assignment was made, possible because

Kmax tracks the path condition at each program point. Similarly,

the rule list maintains an enumeration of concrete rules tagged

their path conditions. The utility of this design is that it enables

abstraction over all paths, even when there is runtime string ma-

nipulation.

The abstract state blends the precision of concrete evaluation

with the generality of abstraction. Conveniently, the Makefile lan-

guage does not have a loop construct, enabling the analysis to be

very precise since finding a fixed-point is unnecessary. While enu-

merating configurations in the abstract state does mean superlinear

running time for the analysis, the symbolic representation of paths

via BDDs makes for an efficient abstraction of paths and enables

aggressive trimming and deduplication of the abstract state.

3.1 Definitions
Path conditions. A single path condition is denoted with p̂ and

is a BDD with its usual Boolean operations. Kmax uses a stack P
to track the current path condition in nested conditional blocks

and restore the path condition after a conditional block. The stack

provides the methods Push(P , p̂), p̂ ← Pop(P), and p̂ ← Peek(P)
with their usual definitions.

Abstract values. An abstract value is denoted by v̄ and is a set of

pairs {(v, p̂)}, wherev is a concrete value and p̂ is a path condition. It
is an abstraction of concrete strings. They are the bread-and-butter

of the analysis and are used as the input and output to several

functions, such as variable expansion and symbol table lookups.

We define a special cross-product operation ×◦ for abstract val-
ues. It lifts any concrete operator ◦, such as string concatenation,

for use on abstract values. It computes the operation for all possible

combinations of concrete values, producing the corresponding path

conditions. For two abstract values v̄ and w̄ and some concrete

operation ◦, it is defined to be

v̄ ×◦ w̄ = {(v ◦w, p̂ ∧ q̂) | ∀(v, p̂) ∈ v̄,∀(w, q̂) ∈ w̄}

As an optimization, the implementation removes entries when

q̂ ∧ p̂ = ⊥, i.e., infeasible paths.

BDD construction. The MakeBDD function takes an abstract

value from a conditional guard and generates a BDD. Conditional

expressions can themselves contain variables and function calls

that need to be expanded to an abstract value first. (The Expand

algorithm is described in the next subsection.) After expanding the

conditional guard,MakeBDD evaluates the resulting abstract value

v̄, producing a new BDD.

MakeBDD(v̄) =
∨
(v,p̂)∈v̄

BDD(v) ∧ p̂

MakeBDD works by converting each concrete part of the abstract

value into a BDD and conjoining it with the corresponding path

condition. Finally, the terms are unioned. The resulting BDD is used

to compute new path conditions for conditional blocks.

The symbol table. S denotes the symbol table. It stores the defini-

tions of each variable in the program during analysis. The symbol

table is a set of triples (v,d, p̂).v is the concrete name of the variable,

d is its concrete definition, and p̂ is the path condition in which the

v → d mapping holds. An entry for v where d is null represents
an undefined variable, because the empty string is still considered

to be a defined variable in Makefile semantics.

The symbol tables maintains the following invariants:

(1) The definitions for each variable span all paths, i.e.,

∀v∀(v,d, p̂) ∈ S,
∨

p̂ = ⊤

This ensures that expansions of the variable cover all possible

paths through the program.

(2) All definitions for a variable v are mutually exclusive, i.e.,

∀v ∀(v,di ,pi), (v,dj ,pj) ∈ S,di , dj ,pi ∧ pj = ⊥
This invariant ensures that, at any point in the program,

there is one and only one definition per path.

The first invariant is maintained by adding a null definition for

any paths that do not assign the variable. The second invariant,

however, requires careful handling of updates to the symbol table.

A special update operation ⊎ adds a new definition (v,d, p̂) to
S , preserving the invariant. Before adding the new definition, it

updates the path conditions of any existing entries (w = v) to
exclude the new definition’s path condition, i.e., (q̂ ∧ ¬p̂). All other
entries (w , v) are left alone. Formally, this is

S ⊎ (v,d, p̂) = {(w, ∗, q̂ ∧ ¬p̂) | (w, ∗, q̂) ∈ S,w = v}
∪ {(w, ∗, q̂) | (w, ∗, q̂) ∈ S,w , v}
∪ {(v,d, p̂)}

As an optimization, the implementation removes entries when

q̂ ∧ ¬p̂ = ⊥, i.e., infeasible paths.
Define updates the symbol table S given abstract values for the

variable name v̄ and the definition d̄ under a given path condition

p̂. It uses ⊎ to update the symbol table with every combination of

concrete variable name and definition under the appropriate path

condition.

Define(S, v̄, d̄, p̂) = S ⊎ (v,d, p̂ ∧ p̂v ∧ p̂d)
∀(v, p̂v) ∈ v̄,∀(d, p̂d) ∈ d̄

282

Kmax: Finding All Configurations of Kbuild Makefiles Statically ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Lookup retrieves the definition of a given abstract variable name.

It produces a new abstract value with each definition of each possi-

ble variable name under the appropriate path conditions.

Lookup(S, v̄) = {(d, p̂ ∧ q̂) | (v, p̂) ∈ v̄, (v,d, q̂) ∈ S}
IsDefinedconc returns the path conditions under which a given

concrete variable name v is defined. It forms the union of the path

conditions for all definitions that are not null, representing all the

paths in which the variable has been assigned.

IsDefinedconc(S,v) =
∨

(v,d,p̂)∈S
(p̂), for d , null

The abstract version of IsDefined combines all the situations in

which the abstract variable name is defined. For each (v, p̂) of the
abstract variable name v̄, it uses IsDefinedconc on v , restricting
the resulting path condition via p̂. These results are then unioned.

IsDefined(S, v̄) =
∨
(v,p̂)∈v̄

(p̂ ∧ IsDefinedconc(S,v))

The rules set. R is the set of Makefiles rules. A rule is a tuple

(t ,d, c,p), where t represent the rule targets, d its dependencies, c
the list of commands to run when the rule is matched, and p̂ is the

path condition in which the rule appears. Rules can appear in con-

ditionals and have variable expansion, making them configuration-

dependent as well. Adding a new rule works by taking each combi-

nation of possibilities for the targets t̄, dependencies d̄, and com-

mands c̄ and adding them to the rule set under the appropriate path

condition, i.e.,

AddRules(R, t̄, d̄, c̄, p̂) = R ∪
⋃
(t ,d, c, p̂ ∧ p̂t ∧ p̂d ∧ p̂c)

∀(t , p̂t) ∈ t̄,∀(d, p̂d) ∈ d̄,∀(c, p̂c) ∈ c̄

3.2 The Static Analysis Algorithm
Algorithm 1 is the Makefile static analysis algorithm Kmax. Kmax

takes a Makefilem and an initial symbol table S0 containing the

abstract values of the input variables and returns the resulting

symbol table and rule set. Global variable are first initialized (lines 2

and 3). P , a stack of path conditions from nested conditional blocks,

is initialized to ⊤, i.e., all configuration. The symbol table S is

initialized to the input values S0, and the rule R set starts as the

empty set.

Two core methods comprise the analysis: Eval (lines 4–30) han-

dles statements and Expand (lines 31–46) handles expressions. Eval
iterates over each statement (line 5). The path condition for each

statement is computed from the stack of path conditions P (line 6).

This represents the conjunction of conditions due to nested con-

ditionals. Lines 8-17 show how Makefile conditional statements

update these path conditions.

Updating path conditions. ifeq tests for equality between the

value of two expressions x and y (line 8). In normal Makefile eval-

uation, any variables or function calls are first expanded, and the

resulting string is compared for equality. In Kmax, variables are

expanded to abstract values with Expand (line 9). The two abstract

values x̄ and ȳ are crossed using the lifted equality operation ×==,
thenMakeBDD converts the resulting abstract value into a BDD

(line 10). This new BDD path condition is then pushed onto P . ifdef

Algorithm 1 Kmax(m, S0) - Evaluate a Makefile

Input: A Makefilem and a initial symbol table S0
Output: The final symbol table and rule set

1: function Kmax(m, S0)
2: P = ∅; Push(P ,⊤) ▷ Initialize to all paths

3: S = S0; R = ∅ ▷ Initialize abstract state

4: procedure Eval(m)

5: for each statement ∈m do
6: p̂ ← ∧

q̂∈P q̂ ▷ Compute current path condition

7: switch statement do
8: case ifeq (x ,y)
9: x̄← Expand(x); ȳ← Expand(y)
10: Push(P ,MakeBDD(x̄ ×== ȳ))
11: case ifdef (x)
12: x̄← Expand(x)
13: Push(P , IsDefined(S, x̄))
14: case else
15: q̂ ← Pop(P); Push(P ,¬q̂)
16: case endif
17: Pop(P)
18: case x:=y ▷ Variable assignment

19: x̄← Expand(x); ȳ← Expand(y)
20: S ← Define(S, x̄, ȳ, p̂)
21: case t : d c ▷ Rule definition

22: t̄← Expand(t); d̄← Expand(d)
23: c̄← Expand(c)
24: R′ = AddRules(R, t̄, d̄, c̄, p̂)
25: case include x ▷ Makefile inclusion

26: for each (m, q̂) ∈ Expand(x) do
27: Push(P , p̂ ∧ q̂)
28: Eval(m)
29: Pop(P)
30: end procedure
31: function Expand(e)
32: ē← ∅
33: for each subexp ∈ e do
34: switch subexp do
35: case x ▷ Concrete string

36: s̄← {(x ,⊤)}
37: case xy ▷ Concatenation

38: s̄← Expand(x) ×concat Expand(y)
39: case $(x) ▷ Variable expansion

40: s̄← Lookup(S,Expand(x))
41: case $(funname arglist) ▷ Function call

42: ā← Expand(arglist)
43: s̄← {(funname(a), p̂) | ∀(a, p̂) ∈ ā}
44: ē← ē ×join(’ ’) s̄ ▷ Combine each subexpression

45: return ē
46: end function
47: Eval(m) ▷ Start evaluating the input Makefile

48: return (S,R) ▷ Return the final abstract state

49: end function

283

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Paul Gazzillo

does much the same thing (line 11). x is expanded (line 12) and

the symbol table is queried via IsDefined for the conditions under

which it has definitions (line 13). Then this new path condition is

pushed onto P .
else is handled differently. Its path represents the negation of

its sibling if statement. The last path condition pushed onto P is

that from the sibling if, because else can not appear alone. Line 15

pops this path condition and pushes the negation of it back onto P .
endif terminates a conditional block and simply pops P (line 17)

to return to the last path condition before entering the conditional

block.

Collecting abstract state. Variable assignment maps a variable

name x to a definition y (line 18). In Makefiles, both sides of the

assignment are expanded (line 19), enabling runtime construction

of variable names. This complexity is subsumed by abstract values

and the Define operation. Define adds the new definitions to the

symbol table, associating all possible concrete variable names with

their definitions under mutually exclusive path conditions (line 20).

Makefiles have two flavors3 of variable. They differ only by when
their definitions are expanded. The := operator used on line 18

creates a simply-expanded variable. Its definition is expanded at

assignment time, as shown in the expansion of y on line 19. A

recursively-expanded variable is defined with the = operator and is

expanded at expansion time. This type of assignment is omitted

from the algorithm for brevity. To evaluate it, remove the expansion

of y on line 19 and instead perform it on the result of the Lookup

on line 40. Recursively-expanded variables are the default flavor,

and the symbol table tracks the flavor of each variable.

The append operator (+=), also omitted for brevity, concatenates

a variable’s previous definition with the new definition. It is sup-

ported by adding a call to Lookup after line 19 and concatenating

the resulting definitions via the cross-product operator ×concat. The
flavor of the variable remains the same.

Rule definitions work much like variable assignment (line 21).

The expressions for the rule targets, dependencies, and commands

are expanded (line 22-23), since they may contain variable refer-

ences and function calls. The helper function AddRules updates

the rule set R using the resulting abstract values (line 24).

For include, Expand computes the abstract value of the expres-

sion (line 26), because the name of file can be computed at runtime.

Eval is called on each file under its corresponding path condition

q̂ combined with the current path condition (lines 27–29).

Expanding expressions. Line 31 defines Expand. It takes a string
expression e and performs any concatenations, variable expansions,

and function calls it contains.

Makefile expressions are implicitly delimited by whitespace,

forming subexpressions. Line 33 loops over each of these subex-

pressions of e . Concrete strings containing no expansions (line 35)

are trivially converted to abstract values by constructing a single

pair (x ,⊤), i.e., this string has the same value in all paths (line 36).

Concatenations happen when variable expansions or function

calls are adjacent to other subexpressions, i.e., xy (line 37). Each

term is first expanded, yielding abstract values. The abstract values

are concatenated by lifting the concrete string concat operation

3
https://www.gnu.org/software/make/manual/html_node/Flavors.html

using the cross-product ×concat (line 38). This yields all possible
concatenations under their corresponding path conditions.

Variable expansion (line 39) is handled using the symbol table

Lookup function (line 40). Because variable names can be con-

structed at runtime, x is expanded before the lookup is performed

and Lookup operates on this resulting abstract value. Note that

this evaluation is for simply-expanded variables. For recursively-

expanded variables, the resulting definition is expanded after the

Lookup.

Function calls, e.g., subst or filter, take a comma-delimited list

of arguments, arglist (line 41). In concrete Makefile evaluation,

the arguments are first expanded. Similarly, arglist is passed to

Expand (line 42). The function call is analyzed by evaluating the

concrete implementation of the function on all combinations of

concrete arguments under the appropriate path conditions (line 43).

There is one function, shell, that makes a shell call. Because we are

lifting the concrete operation, the shell call can still be abstracted,

since each result is associated with its path condition. It is assumed,

however, that the shell calls do not have side-effects between shell

calls that affect the mutual exclusion of the path conditions.

Line 44 joins the abstract results of the expansion of each subex-

pression using the cross-product. The join(’ ’) operator is used

to produce a whitespace-delimited expression from the expanded

subexpressions.

4 IMPLEMENTATION
To evaluate the efficacy of Kmax, we implemented its static

analysis algorithm in a tool that analyzes the variability of Makefiles

for codebases that use the Kbuild build system. Kbuild, originally

developed for the Linux kernel, is used in several low-level systems

projects including BusyBox (a toolchain used in operating system

installers, routers, etc), coreboot (open-source firmware supporting

many hardware platforms and shipped in Chromebooks), uClibc

and uClibc++ (libraries for embedded systems), and EmbToolkit

(build toolchain for embedded systems).

Kbuild provides canned build rules for reserved variable names,

such as obj-y. Programmers encode variability by populating these

variables in a collection of Makefiles like the one shown in Figure 1.

The names of C source files (or their corresponding .o object files)

are added to a well-known variable, obj-y (lines 1 and 7). Any di-

rectories added to obj-y have their Makefiles recursively processed

by Kbuild, paralleling the hierarchical directory structure of large

codebases. Build rules (lines 7-8) are typically not needed, because

they are already provided by Kbuild. Kbuild has many other special

variables and features, such as obj-m for load-time modules. A full

description can be found in its documentation
4
.

Kbuild Makefiles provide an ideal testbed. There are thousands

of lines of source code that encode variability for large codebases

like Linux, they contain an enormous variety of real-world usage

that spans the range of Makefile semantics, and they abstract away

shell calls to the C compiler and other external tools that cannot be

modeled easily by any analysis tool.

Several Kbuild clients also use Kconfig, a specification language

for configuration options, of which Linux has over 14,000. Kconfig

makes it possible to automatically generate the abstract values for

4
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

284

https://www.gnu.org/software/make/manual/html_node/Flavors.html
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

Kmax: Finding All Configurations of Kbuild Makefiles Statically ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

1 config USB

2 tristate "Support for Host-side USB"

3 depends on USB_ARCH_HAS_HCD

4 select NLS # for UTF-8 strings

Figure 2: An example Kconfig definition for a configuration
option. From Linux: drivers/usb/Kconfig.

the input variables. Figure 2 is an example definition of a configura-

tion option from the Linux kernel. Line 1 declares the option, in this

case USB. Line 2 declares the type of the option. tristate options

are like Boolean options, but they have a range of three values

instead of two: y for enabled, m for enabled as a kernel module, and

unset for disabled. Some configuration variables are of type string.
The range of string values for such options is specified manually in

our implementation for three variables as noted in next section.

Lines 3–4 specify constraints on this configuration option in

terms of other options. The depends on declaration means that

USB_ARCH_HAS_HCDmust be enabled in order for USB to be enabled.
select is the reverse: enabling USB forces NLS to be enabled as well.
These constraints define the legal combinations of configuration

options, a feature model. Our implementation uses these constraints

to limit the range of input configuration options when processing

Makefiles. Kconfig provides more features such as file inclusion

and conditionals that can be found in its complete documentation
5
.

Kmax is implemented in python. It uses the Makefile parser from

pymake
6
, a python port of make. For BDDs, it uses the CUDD

library
7
. The static analysis algorithm and its data structures for ab-

stract values have been implemented from scratch. Kbuild behavior

is built into Kmax, so that it recognizes reserved variables such as

obj-y. It permits file inclusion both via Makefile include as well as
by specifying a subdirectory to obj-y. Makefile rules are currently

ignored as they are rarely used in Kbuild Makefiles. Kmax takes a

Kbuild Makefile as input and produces the final abstract state in

the form of a symbol table, as well as the list of the source files and

directories for all configurations for use in evaluating Kmax and

comparing it with other tools.

5 EXPERIMENTAL EVALUATION
The implementation of Kmax is evaluated on the build systems

of two systems projects: Linux (v3.19) and BusyBox (v1.25.0). The

experiment runs Kmax on the Kbuild Makefiles of each and, from

the resulting abstract state, collects the names of the C files that

comprise the program along with their reaching configurations. All

experiments in this and subsequent sections are performed on a

workstation running a 4.2GHz 4-core processor with 16GB of RAM.

The scripts to run the experiments are available online with the

implementation of Kmax
8
.

Not all C files in a source tree are program source files. There

are helper programs, example applications, and other source files

that can never be configured for inclusion in the final program.

Because Kmax is the first tool to find the C files that comprise

5
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

6
https://github.com/mozilla/pymake

7
http://vlsi.colorado.edu/~fabio/CUDD/

8
http://github.com/paulgazz/kmax

Table 2: Verification of the accuracy of Kmax on the Linux
v3.19 and BusyBox v1.25.0 build systems.

Type of C File Linux BusyBox
1 Identified by Kmax 19,651 560

2 Libraries 200 0

3 In non-Kbuild directories 524 23

4 Helper programs 215 5

5 #included C files 147 21

6 Examples 3 6

7 Orphaned 49 18

8 No configuration option 13 0

9 Not built with Kbuild 2 0

TOTAL C FILES 20,804 633

All C files in source tree 20,804 633

Missed by Kmax 0 0

the program, we manually verify the C files that Kmax excludes

against the source tree and by inspecting, when necessary, the

original Makefiles to evaluate its accuracy and precision. Accuracy

is measured by the number of source files correctly identified as

being part of the program. Precision is measured by the number

of files misidentified, where more misidentified files means less

precision.

Table 2 summarizes the results of the verification. For each build

system tested, it shows the number of C files identified by Kmax

(row 1) followed an account of every other C file in the source tree

(rows 2–9). These are then added up and compared to the actual

number of C files in the source tree, found using find and grep to

get all files ending with .c.

Linux. Linux has 1,985 Kbuild Makefiles with 29,525 lines of

source. Its build process is complicated by its support for multiple

architectures, x86, arm, powerpc, etc. The build system treats the

different architectures like separate projects, each with its own

top-level Kbuild and Kconfig entry points. To find source files for

the entire Linux project, Kmax is run once for each of its 30 archi-

tectures separately.

Most architecture-specific code is abstracted away into the arch/
directory while the rest of code is largely shared. Still, there are

architecture-specific source files throughout the codebase that Kcon-

fig associates with the a specific architecture via constraints. For

instance, ps3disk.c is only built when CONFIG_PS3_DISK is en-

abled, an option only defined when building for powerpc. Kmax has

no difficulty with this. When analyzing x86, for instance, it will not

include ps3disk.c. It evaluates Makefiles according to the input

variables, and CONFIG_PS3_DISK is always undefined for x86.

All input configuration options used to initialize Kmax’s symbol

table were automatically generated from Kconfig except for three.

These three are manually-specified, because they are not of type

bool or tristate: CONFIG_WORD_SIZE takes either 32 or 64; BITS
also takes 32 or 64; and MMU is either -nommu or the empty string.

All three are used in Makefiles to dynamically generate the names

of C files via concatenation.

On average, Kmax takes 77.52 seconds for one architecture with

a minimum of 63.28 seconds and a maximum of 357.65 seconds. The

285

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://github.com/mozilla/pymake
http://vlsi.colorado.edu/~fabio/CUDD/
http://github.com/paulgazz/kmax

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Paul Gazzillo

total for all 30 architectures is 2,325.55 seconds. Table 2 details the

verification of Kmax’s output for Linux. Kmax finds that 19,651 C

files from the source tree are referenced from the Kbuild Makefiles

as part of the Linux kernel (row 1) including 200 built as libraries

(row 2) compared to 20,804 total C files.

While most C files are in the kernel source directories, i.e., the

Kbuild directories, there are some directories that exclusively con-

tain tools not part of the kernel program. For example, the scripts
directory contains the Kbuild and Kconfig tools themselves. There

are 524 C files in these non-Kbuild directories (row 3).

Within the Kbuild directories, there are also many C files not

meant for compilation into the kernel program. Helper programs

(row 4) are stand-alone programs to assist the build process, such

as hex2hex.c, a hex converter used for generating a header file.

Some C files are included via the preprocessor #include in other

C files (row 5) and should not be double counted. Still others are

only example programs for driver developers (row 6).

Some C files are orphaned (row 7), i.e., they appear to be kernel

source, but are not referenced by the Makefiles. These source files

are dead code or are being staged for inclusion into the kernel.

Similarly, several C files are referenced by Kbuild, but, lacking a

definition of the their configuration options, cannot be compiled

into the kernel by any configurations (row 8). Lastly, there were

two kernel source files built by a custom Makefile rule instead of

via Kbuild (row 9).

Adding the counts for all the C files identified by Kmax and those

it correctly omitted, we find that every C file from the source tree

is accounted for and conclude Kmax misses none.

BusyBox. We repeat the same experiment for BusyBox. BusyBox

is a much simpler case compared to Linux. It has 30 Kbuild files with

840 SLoC. Kmax takes about 2.30 seconds to run on all BusyBox

Makefiles. The last column of Table 2 shows the verification of

Kmax’s output. There are 633 total C files in the source tree, and

Kmax identifies 560 from the Kbuild Makefiles (row 1).

As with the Linux kernel, BusyBox also has a script directory
as well as others that do not contain Kbuild Makefiles (row 3). It

uses stand-alone helper programs during the build (row 4), has

#included C files (row 5), and has example user applications such

as networking/httpd_ssi.c that are not referenced in any build

files (row 6).

BusyBox’s orphaned C files (row 7) are orphaned for different

reasons, however. Some, like networking/tc.c are referenced in

the Makefiles, but their controlling configuration options have been

commented out of the Kconfig files, preventing their inclusion in

any configuration. Several C files in the Kbuild directories lack

references in the Makefiles and appear to be intentionally dead

code, as all 13 have the prefix unused_ in their filenames.

Adding up the rows we find that the total number of C files

matches what is in the source tree and conclude that Kmax has

missed none.

6 COMPARISON TO PREVIOUS WORK
Kmax is compared against the previous tools KBuildMiner

9
and

GOLEM
10

for both correctness and performance. KBuildMiner

9
https://code.google.com/p/variability/

10
https://www4.cs.fau.de/Research/VAMOS/

Table 3: Accuracy and precision for each tool as compared to
Kmax. “All” lists the number of C files gathered for all archi-
tectures. “Missed” are thosemissed by each tool as compared
to Kmax. “x86” is the number gathered from the run on x86
only. “Misidentified” is the number of C files from the “x86”
column not configurable for x86.
†Kmax has by definition 0 missed and misidentified files.
‡The number of missed files is biased by the KBuildMiner’s
failure to run on 6 architectures for v3.19. v2.6.33.3 shows it
is on par with GOLEM.

Tool All Missed x86 Misidentified
v3.19
Kmax 19,651

†
14,783

†

KBuildMiner 16,948 2,703
‡

14,904 440

GOLEM 18,404 1,247 14,460 390

v2.6.33.3
Kmax 12,325

†
9,044

†

KBuildMiner 10,353 1,972 8,981 134

GOLEM 10,553 1,772 8,962 129

parses Makefiles with an approximate grammar, looking for us-

age patterns [5]. GOLEM employs a brute force approach [12, 46].

It enables one or more features at a time and runs make to see which
compilation units get activated.

In this experiment, each tool is run on the Linux source code

for each architecture, and the names of all C files found from the

Makefiles are collected from each. We compare their results using

the Kmax output as a baseline, because the previous section verified

the set of C files produced by Kmax.

Two version of the Linux source are tested: v3.19 and v2.6.33.3.

v3.19 is used because it is the version on which the verification of

Kmax was performed in the previous section. To eliminate bias due

to a technical rather than fundamental limitation, we also run the

experiment on an older version of Linux, v2.6.33.3. This version

was chosen because a previous study testing both KBuildMiner and

GOLEM shows both running successfully on that version [12].

Accuracy is measured by the difference in the total number

of C files found compared to Kmax’s output. To measure preci-

sion, we compare the outputs for just the x86 version of the Linux

kernel source to measure the number of misidentified files, i.e.,

architecture-specific C files that cannot be enabled for the x86

architecture. Lastly, we compare running time.

Accuracy and Precision. Table 3 compares the C files found by

Kmax with those found by KBuildMiner and GOLEM. The rows are

grouped by the version of Linux tested. The first column is the tool

name, and the second shows the number of C files gathered for all

architectures. The Missed column shows how many C files were

missing as compared to Kmax, which for both versions of Linux

is well over a thousand. We note that KBuildMiner was unable to

successfully process six architectures of Linux v3.19, so its results

for that version are misleading. Its results on v2.6.33.3, a version

on which it is known from the literature to work, shows that it is

fundamentally limited, missing over 1,900 C files.

286

https://code.google.com/p/variability/

Kmax: Finding All Configurations of Kbuild Makefiles Statically ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 4: Running time of each tool running on the x86 archi-
tecture of two Linux versions, v3.19 and v2.6.33.3. Each tool
was run five times, excluding the warm-up run for KBuild-
Miner. The minimum, average computed by the mean, and
maximum are listed in “sec” for seconds, “min” for minutes,
and “hrs” for hours.

Tool Min Mean Max
v3.19
Kmax 84.03 sec 84.15 sec 84.25 sec

KBuildMiner 44.17 sec 45.00 sec 45.87 sec

GOLEM 3.41 hrs 3.42 hrs 3.43 hrs

v2.6.33.3
Kmax 46.69 sec 46.75 sec 46.80 sec

KBuildMiner 11.82 sec 12.32 sec 12.87 sec

GOLEM 53.96 min 54.56 min 55.04 min

The last two columns show the number of C files found on the

x86 run as well as the number misidentified files. To compute the

misidentified files, we take the list of filenames produced by each

tool and remove those also identified by Kmax. The remaining are

those that can not be configured when building for x86.

Nearly all of these misidentified files are specific to another

architecture. For instance, both KBuildMiner and GOLEM collect

ps3disk.c when analyzing x86. As shown in Section 5, this C file

can only be compiled for powerpc, as enforced by its configuration

option. A small number of misidentified C files are dead code. For

example, several C files in drivers/acpi/acpica, e.g., hwtimer.c,
are controlled by a phony configuration option that is not defined

in Kconfig, ACPI_FUTURE_USAGE. Kmax’s static analysis approach

enables the precision necessary for handling these situations.

KBuildMiner and GOLEM both miss thousands of C files and

misidentify hundreds for the x86 architecture alone. This means

that configuration-dependent bug-finders based on these tools will

miss much source code compared to Kmax.

Running Time. The running time of all three tools was evaluated

by running each five times for the x86 architecture of both Linux

v2.6.33.3 and v3.19. Kmax and GOLEM are both python applications.

KBuildMiner is written in Java and Scala, so a JVM warm-up run is

used before collecting its running time.

Table 4 shows the results of the running time experiment. Each

row is one tool, grouped by Linux version. The columns are the

tool name followed by the minimum, mean, and maximum running

times for the five runs. For v3.19, The fastest tool is KBuildMiner,

taking 45 seconds. This is expected, since it only performs parsing

without evaluation. Kmax takes about 85 seconds, about double

the time. Note that Kmax’s python implementation would likely

improve in performance if ported to Java. GOLEM, on the other

hand, is far slower than both tools, taking hours instead of seconds.

GOLEM’s long running time comes from repeatedly execute make
for one configuration at a time. This process is time-consuming

without yielding much better results than KBuildMiner.

The results are similar for v2.6.33.3. Both Kmax and KBuildMiner

take under a minute, with KBuildMiner less than a quarter of the

running time of Kmax. GOLEM is still prohibitively long in compar-

ison, taking over 50 minutes. When compared to the larger v3.19

version of Linux, both KBuildMiner and GOLEM take four times

times longer. Kmax, on the other hand, scales much better, taking

only about twice as long.

In summary, KBuildMiner’s fuzzy parsing is the fastest, while

GOLEM is orders of magnitude more time-consuming than both of

the other tools. Kmax is far more accurate and precise, performs

very quickly on the highly-configurable Linux build system, and

scales much better.

7 RELATEDWORK

Analysis of Makefiles. KBuildMiner collects C files by parsing

Makefiles [5]. It uses a custom grammar supporting specific usage

patterns. Makex takes a similar parsing approach [33]. Dietrich

et al. found it yielded only 75 percent coverage, underperforming

both KBuildMiner and GOLEM [12]. After adding support for Make-

file conditionals, its authors report a yield of 85%
11
. GOLEM uses

a dynamic analysis approach, trying one or more configuration

variables at a time to see which C files are enabled. Dietrich et al.

compare GOLEM to other tools including KBuildMiner and Makex

to evaluate their coverage [12].

Tamrawi et al. describe SYMake, a symbolic Makefile evaluator

for use in tools such as Makefile refactorings [44]. SYMake builds a

symbolic dependency graph from Makefiles for use in identifying

code smells and in refactoring. It preserves string operations, vari-

able assignments, and conditionals on the symbolic dependency

graph. Like Kmax, SYMake is a static analysis of Makefile con-

structs. It does not, however, model configurations as paths through

the Makefile, which limits its ability to perform variability-aware

analyses and collect configurations. In contrast, Kmax provides ab-

stractions for both configurations and the string domain and yields

data-flow results that precisely summarize a Makefiles’ variability,

enabling it, for instance, to find dead code.

Adams et al. describe MAKAO, a visualization tool for Makefile

dependencies. It extracts a concrete dependency graph for a single

configuration [2].While it is not variability-aware, Kmax has the po-

tential to enhance MAKAO and such concrete tools by defining the

space of legal configuration in which to sample. Such configuration

space sampling approaches have been studied before [28].

Program analysis. Several program analyses use BDDs, such as

BDD-based points-to analysis [7] and BDD-based software veri-

fication [8]. Xie and Aiken use BDDs to represent paths and use

SAT solving to find bugs [50]. Notably it checks for bugs after pre-
processing, and therefore in a single configuration. Kmax enables

configuration-dependent bug-finders by using BDDs to represent

reaching configurations.

Several existing program analysis techniques simulate multi-

ple executions of a program with a single execution, using state

splitting to minimize combinatorial explosion and avoid duplicate

work. Kmax’s technique for keeping multiple values of each vari-

able while executing Makefile constructs in a single pass resembles

these approaches. Tucek et al. provide an improvement to test-

ing patched systems called delta execution [48]. Exploiting the fact

11
http://www.sarahnadi.org/research/kbuildvariability

287

http://www.sarahnadi.org/research/kbuildvariability

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Paul Gazzillo

that patches are often relatively small, it uses a single execution

rather than running unpatched and patched versions side-by-side,

splitting only at differences. Austin and Flanagan describe an in-

formation flow analysis of JavaScript programs that tracks faceted
values, i.e. both high and low values simultaneously, during a single

execution [4]. This retains the benefits of multi-process execution,

but collapses executions when raw values are the same, improving

performance. Sen et al. describe MultiSE, an improvement over

dynamic symbolic execution for JavaScript programs [41]. It deals

with the path-explosion problem by representing variables with

multiple symbolic values guarded by path constraints represented

by BDDs, rather than auxiliary variables.

Christensen et al. describe a technique that statically analyzes

the string values of Java programs [10]. In contrast, Kmax uses

the simpler technique of exhaustively computing each possible

concrete string given the range of values in the abstract variables.

Variability-aware analysis. Midtgaard et al. describe a new frame-

work to systematically lift abstract-interpretation-based analyses

to family-based analyses [30]. Abstract interpretation is a rigorous

technique for constructing static analyses [11]. Kmax is a family-

based static analysis approach. While not strictly abstract interpre-

tation per se, Kmax’s static approach interprets Makefile language

constructs over an abstract state to perform variability-aware anal-

ysis of Kbuild Makefiles.

Kästner et al. describe a variability-aware module system that

permits variability within modules, overcoming the limitations of

modeling real-world variability with the traditional coarse-grained

module-level variability [21]. An implementation extracts a variabil-

ity model by parsing BusyBox C files and checks for type and linker

errors, the latter akin to the application of configuration-dependent

bug-finders to undefined function calls. There is no mention of

Makefile analysis, and we imagine Kmax would be a useful tool for

this and other variability-aware analyses.

Kmax’s representation of variable values, by storing all possi-

ble values with their configuration, resembles previous work on

variational programming. Walkingshaw et al. proposes variational
data structures, which represents variation explicitly in the lan-

guage itself, rather than requiring repeated execution of the entire

program for each combination of variations [49]. Chen et al. go

further and describe variational programming in general, including

syntax, variational-preserving computation and other semantics,

and a variational type system. [9]. Kmax’s abstract variables can be

thought of as variational data types that Kmax infers the values of

during analysis, albeit not a language feature per se.

Thum et al. produce a comprehensive survey of software prod-

uct line analysis strategies that classify them into product-based,

feature-based, and family-based [47]. In this classification, Kmax

is a family-based analysis, because it reasons about the space of

possible configurations as a whole. It simulates multiple execu-

tions simultaneously by maintaining abstract variables that repre-

sent multiple concrete values with their configurations. Variability-

aware C preprocessors use a similar approach to store and expand

macros [16, 17, 20]. Kim et al. test all combinations of features in a

software product line with shared execution [22]. Instructions are

executed until variability requires a split in state, and states are

merged when possible. Meinicke et al. describe variability-aware

execution for Java, a dynamic analysis used to measure the config-

uration complexity of several programs [29]. Its conditional values
store multiple concrete values and their configurations.

Configuration analysis. Reisner et al. use symbolic evaluation of

PHP to measure configuration properties and code coverage [37].

Nguyen et al. describe variability-aware execution of PHP to test

combinations of plugins efficiently [34]. Concolic execution com-

bines symbolic and concrete execution for improved testing, specif-

ically to create concrete test cases [18, 40].

There are several studies on Linux’s build system as a software

product line. Sincero et al. identified Kconfig as a feature model [43],

and several publications demonstrate building feature models from

Kconfig. Berger et al. compared Kconfig and another modeling

language called CDL to illustrate real-world use of variability mod-

eling [6]. She et al. built a formal hierarchy of features for Linux [42].

Dietrich et al. quantified the granularity of features in the Linux ker-

nel [13]. Dintzner et al. tracked changes in Linux’s feature model

over time [14]. Tartler et al. calculated code coverage for a sin-

gle configuration and maximized coverage with a minimal set of

features [45]. Nadi andHolt analyzed KbuildMakefiles to find anom-

alies such as unused C files [32]. Thum surveys software product

line analysis techniques, categorizing methods for modeling fea-

tures as well as techniques for software tools to deal with variability

in software [47].

Kmax provides a precise characterization of the configurations

encoded by Kbuild Makefiles, essential to family-based analysis,

such as bug-finding, testing, and refactoring tools, for the Linux

kernel and other tools that use Kbuild.

Partial evaluation. Partial evaluation specializes a program, e.g.,

for optimization, for a given set of inputs, precomputing values

and unfolding all possible results [19]. The way Kmax evaluates

operations on abstract values is akin to this unfolding.

8 CONCLUSION
We have introduced Kmax, a new static analysis algorithm for

Kbuild Makefiles that summarizes their behavior for all configu-

rations. It is a path-sensitive analysis, where paths are abstracted

with Binary Decision Diagrams and represent the reaching con-

figurations at each program point. The abstract state enumerates

unique string values tagged with their reaching configurations. The

algorithm is implemented in a tool that collects the C source files

and their configurations from the Makefile-based Kbuild build sys-

tem. This tool is evaluated on the Linux and BusyBox build systems

and can analyze even the highly-configurable Linux build system

in minutes. Compared to ad-hoc solutions, Kmax is more accurate

and precise, enabling more precise downstream variability-aware

tools. Additionally, Kmax performs better or with little overhead, is

more scalable, and can find unreachable code. Future work includes

using Kmax on more build systems and porting it to other build

languages as well as incorporating its results into other variability-

aware analysis tools.

ACKNOWLEDGMENTS
I would like to thank the all the reviewers for helping make this a

better paper and Shiyi Wei for his indispensable advice.

288

Kmax: Finding All Configurations of Kbuild Makefiles Statically ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs in

the Linux Kernel: A Qualitative Analysis. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE ’14). ACM, New

York, NY, USA, 421–432. https://doi.org/10.1145/2642937.2642990

[2] B. Adams, H. Tromp, K. de Schutter, and W. de Meuter. 2007. MAKAO. In

2007 IEEE International Conference on Software Maintenance. 517–518. https:

//doi.org/10.1109/ICSM.2007.4362678

[3] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer Publish-
ing Company, Incorporated.

[4] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic

Information Flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’12). ACM, New York,

NY, USA, 165–178. https://doi.org/10.1145/2103656.2103677

[5] Thorsten Berger, Steven She, Krzysztof Czarnecki, and Andrzej Wasowski. 2010.

Feature-to-Code Mapping in Two Large Product Lines. Technical Report. University
of Leipzig (Germany), University of Waterloo (Canada), IT University of Copen-

hagen (Denmark). http://informatik.uni-leipzig.de/~berger/tr/2010-berger.pdf

[6] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof

Czarnecki. 2010. Variability Modeling in the Real: A Perspective from the Oper-

ating Systems Domain. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE ’10). ACM, New York, NY, USA, 73–82.

https://doi.org/10.1145/1858996.1859010

[7] Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and Navindra Umanee.

2003. Points-to analysis using BDDs. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Inplementation. ACM Press,

103–114. https://doi.org/10.1145/781131.781144

[8] Dirk Beyer and Andreas Stahlbauer. 2014. BDD-based software verification.

International Journal on Software Tools for Technology Transfer 16, 5 (2014), 507–
518. https://doi.org/10.1007/s10009-014-0334-1

[9] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2016. A Calculus for Varia-

tional Programming. In 30th European Conference on Object-Oriented Program-
ming, ECOOP 2016, July 18-22, 2016, Rome, Italy. 6:1–6:28. https://doi.org/10.4230/
LIPIcs.ECOOP.2016.6

[10] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003.

Precise Analysis of String Expressions. In Proceedings of the 10th International
Conference on Static Analysis (SAS’03). Springer-Verlag, Berlin, Heidelberg, 1–18.
http://dl.acm.org/citation.cfm?id=1760267.1760269

[11] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’77). ACM, New York, NY, USA,

238–252. https://doi.org/10.1145/512950.512973

[12] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikshat, and Daniel

Lohmann. 2012. A robust approach for variability extraction from the Linux build

system. In Proceedings of the 16th International Software Product Line Conference.
21–30. http://doi.acm.org/10.1145/2362536.2362544

[13] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikshat, and Daniel

Lohmann. 2012. Understanding linux feature distribution. In Proceedings of the
2012 Workshop on Modularity in Systems Software. 15–20. http://doi.acm.org/10.

1145/2162024.2162030

[14] Nicolas Dintzner, Arie Van Deursen, and Martin Pinzger. 2013. Extracting Feature

Model Changes from the Linux Kernel Using FMDiff. In Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS ’14). ACM, New York, NY, USA, Article 22, 8 pages. https://doi.org/10.

1145/2556624.2556631

[15] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2017. Analysing the

Linux kernel feature model changes using FMDiff. Software & Systems Modeling
16, 1 (2017), 55–76. https://doi.org/10.1007/s10270-015-0472-2

[16] Alejandra Garrido and Ralph Johnson. 2005. Analyzing Multiple Configurations

of a C Program. In Proceedings of the 21st ICSM. 379–388. http://dx.doi.org/10.

1109/ICSM.2005.23

[17] Paul Gazzillo and Robert Grimm. 2012. SuperC: parsing all of C by taming the

preprocessor. In Proceedings of the ACM Conference on Programming Language
Design and Implementation. 323–334. http://doi.acm.org/10.1145/2254064.2254103

[18] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,

NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[19] Neil D. Jones. 1996. An Introduction to Partial Evaluation. ACM Comput. Surv.
28, 3 (Sept. 1996), 480–503. https://doi.org/10.1145/243439.243447

[20] Christian Kästner et al. 2011. Variability-Aware Parsing in the Presence of Lexical

Macros and Conditional Compilation. In Proceedings of the 26th ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications. 805–824.
http://dx.doi.org/10.1145/2048066.2048128

[21] Christian Kästner et al. 2012. A variability-aware module system. In Proceedings
of the 27th ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications. 773–792. http://doi.acm.org/10.1145/2384616.2384673

[22] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don S. Batory. 2012. Shared Exe-

cution for Efficiently Testing Product Lines. In 23rd IEEE International Symposium
on Software Reliability Engineering, ISSRE 2012, Dallas, TX, USA, November 27-30,
2012. 221–230. https://doi.org/10.1109/ISSRE.2012.23

[23] Jörg Liebig et al. 2010. An analysis of the variability in forty preprocessor-based

software product lines. In Proceedings of the 32th International Conference on
Software Engineering. 105–114. http://doi.acm.org/10.1145/1806799.1806819

[24] Jörg Liebig et al. 2011. Analyzing the discipline of preprocessor annotations in 30

million lines of C code. In Proceedings of the 10th ACM International Conference
on Aspect-Oriented Software Development. 191–202. http://doi.acm.org/10.1145/

1960275.1960299

[25] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and

Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2013). ACM, New York, NY, USA, 81–91. https://doi.org/10.1145/2491411.2491437

[26] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wa-

sowski. 2010. Evolution of the Linux Kernel Variability Model. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 136–150. https://doi.org/10.1007/978-3-642-15579-6_

10

[27] Bill McCloskey and Eric Brewer. 2005. ASTEC: A New Approach to Refactoring

C. In Proceedings of the 10th European Software Engineering Conference. 21–30.
http://dx.doi.org/10.1145/1081706.1081712

[28] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.

2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In

Proceedings of the 38th International Conference on Software Engineering (ICSE).
ACM Press, New York, NY, 643–654. https://doi.org/10.1145/2884781.2884793

[29] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter

Saake. 2016. On Essential Configuration Complexity: Measuring Interactions in

Highly-configurable Systems. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2016). ACM, New York, NY,

USA, 483–494. https://doi.org/10.1145/2970276.2970322

[30] Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski.

2015. Systematic Derivation of Correct Variability-aware Program Analyses. Sci.
Comput. Program. 105, C (July 2015), 145–170. https://doi.org/10.1016/j.scico.

2015.04.005

[31] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.

Where do Configuration Constraints Stem From? An Extraction Approach and an

Empirical Study. IEEE Transactions on Software Engineering 41, 8 (2015), 820–841.

https://doi.org/10.1109/TSE.2015.2415793

[32] Sarah Nadi and Ric Holt. 2011. Make It or Break It: Mining Anomalies from

Linux Kbuild. In Proceedings of the 2011 18th Working Conference on Reverse
Engineering (WCRE ’11). IEEE Computer Society, Washington, DC, USA, 315–324.

https://doi.org/10.1109/WCRE.2011.46

[33] Sarah Nadi and Ric Holt. 2012. Mining Kbuild to Detect Variability Anomalies in

Linux. In Proceedings of the 2012 16th European Conference on Software Mainte-
nance and Reengineering (CSMR ’12). IEEE Computer Society, Washington, DC,

USA, 107–116. https://doi.org/10.1109/CSMR.2012.21

[34] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring

Variability-aware Execution for Testing Plugin-based Web Applications. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
ACM, New York, NY, USA, 907–918. https://doi.org/10.1145/2568225.2568300

[35] Yoann Padioleau et al. 2010. Documenting and automating collateral evolutions

in linux device drivers. 247–260. http://doi.acm.org/10.1145/1352592.1352618

[36] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. 2006. Understanding Collat-

teral Evolution in Linux Device Drivers. In Proceedings of the 1st European Con-
ference on Computer Systems. 59–71. http://dx.doi.org/10.1145/1217935.1217942

[37] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.

2010. Using Symbolic Evaluation to Understand Behavior in Configurable Soft-

ware Systems. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 445–454.

https://doi.org/10.1145/1806799.1806864

[38] Valentin Rothberg, Nicolas Dintzner, Andreas Ziegler, and Daniel Lohmann. 2016.

Feature Models in Linux: From Symbols to Semantics. In Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS ’16). ACM, New York, NY, USA, 65–72. https://doi.org/10.1145/2866614.

2866624

[39] Sandro Schulze et al. 2011. Analyzing the Effect of Preprocessor Annotations on

Code Clones. In Proceedings of the 11th IEEE InternationalWorkshop on Source Code
Analysis and Manipulation. 115–124. http://dx.doi.org/10.1109/SCAM.2011.12

[40] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit

Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,

263–272. https://doi.org/10.1145/1081706.1081750

289

https://doi.org/10.1145/2642937.2642990
https://doi.org/10.1109/ICSM.2007.4362678
https://doi.org/10.1109/ICSM.2007.4362678
https://doi.org/10.1145/2103656.2103677
http://informatik.uni-leipzig.de/~berger/tr/2010-berger.pdf
https://doi.org/10.1145/1858996.1859010
https://doi.org/10.1145/781131.781144
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.4230/LIPIcs.ECOOP.2016.6
https://doi.org/10.4230/LIPIcs.ECOOP.2016.6
http://dl.acm.org/citation.cfm?id=1760267.1760269
https://doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/2362536.2362544
http://doi.acm.org/10.1145/2162024.2162030
http://doi.acm.org/10.1145/2162024.2162030
https://doi.org/10.1145/2556624.2556631
https://doi.org/10.1145/2556624.2556631
https://doi.org/10.1007/s10270-015-0472-2
http://dx.doi.org/10.1109/ICSM.2005.23
http://dx.doi.org/10.1109/ICSM.2005.23
http://doi.acm.org/10.1145/2254064.2254103
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/243439.243447
http://dx.doi.org/10.1145/2048066.2048128
http://doi.acm.org/10.1145/2384616.2384673
https://doi.org/10.1109/ISSRE.2012.23
http://doi.acm.org/10.1145/1806799.1806819
http://doi.acm.org/10.1145/1960275.1960299
http://doi.acm.org/10.1145/1960275.1960299
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1007/978-3-642-15579-6_10
https://doi.org/10.1007/978-3-642-15579-6_10
http://dx.doi.org/10.1145/1081706.1081712
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1109/WCRE.2011.46
https://doi.org/10.1109/CSMR.2012.21
https://doi.org/10.1145/2568225.2568300
http://doi.acm.org/10.1145/1352592.1352618
http://dx.doi.org/10.1145/1217935.1217942
https://doi.org/10.1145/1806799.1806864
https://doi.org/10.1145/2866614.2866624
https://doi.org/10.1145/2866614.2866624
http://dx.doi.org/10.1109/SCAM.2011.12
https://doi.org/10.1145/1081706.1081750

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Paul Gazzillo

[41] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:

Multi-path Symbolic Execution Using Value Summaries. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 842–853. https://doi.org/10.1145/2786805.2786830

[42] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof

Czarnecki. 2011. Reverse Engineering Feature Models. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE ’11). ACM, New York, NY,

USA, 461–470. https://doi.org/10.1145/1985793.1985856

[43] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. 2007. Is the

linux kernel a software product line?. In Proceedings of the International Workshop
on Open Source Software and Product Lines (SPLC-OSSPL). 134–140.

[44] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. 2012. Build code

analysis with symbolic evaluation. In Software Engineering (ICSE), 2012 34th
International Conference on. 650–660. https://doi.org/10.1109/ICSE.2012.6227152

[45] Reinhard Tartler et al. 2011. Configuration Coverage in the Analysis of Large-

Scale System Software. ACM SIGOPS Operating Systems Review 45, 3 (Dec. 2011),

10–14. http://dx.doi.org/10.1145/2094091.2094095

[46] Reinhard Tartler et al. 2011. Feature Consistency in Compile-Time-Configurable

System Software: Facing the Linux 10,000 Feature Problem. In Proceedings of the

6th European Conference on Computer Systems. 47–60. http://dx.doi.org/10.1145/
1966445.1966451

[47] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.

2014. A Classification and Survey of Analysis Strategies for Software Product

Lines. Comput. Surveys 47, 1, Article 6 (June 2014), 45 pages. https://doi.org/10.
1145/2580950

[48] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. 2009. Efficient Online Valida-

tion with Delta Execution. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS XIV). ACM, New York, NY, USA, 193–204. https://doi.org/10.1145/1508244.

1508267

[49] Eric Walkingshaw, Christian KÃďstner, Martin Erwig, Sven Apel, and Eric Bod-

den. 2014. Variational Data Structures: Exploring Tradeoffs in Computing with

Variability. In In Proceedings of the ACM Symposium on New Ideas in Programming
and Reflections on Software (Onward. ACM, 213–226.

[50] Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Using Boolean Sat-

isfiability. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’05). ACM, New York, NY, USA,

351–363. https://doi.org/10.1145/1040305.1040334

290

https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/1985793.1985856
https://doi.org/10.1109/ICSE.2012.6227152
http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://doi.org/10.1145/1508244.1508267
https://doi.org/10.1145/1508244.1508267
https://doi.org/10.1145/1040305.1040334

	Abstract
	1 Introduction
	2 Overview
	3 Algorithm
	3.1 Definitions
	3.2 The Static Analysis Algorithm

	4 Implementation
	5 Experimental Evaluation
	6 Comparison to Previous Work
	7 Related Work
	8 Conclusion
	References

