
BugMap: A Topographic Map of Bugs
Jiangtao Gong1 and Hongyu Zhang1,2

1Tsinghua University
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

Beijing, China
gongjiangtao2@gmail.com, hongyu@tsinghua.edu.cn

ABSTRACT
A large and complex software system could contain a large
number of bugs. It is desirable for developers to understand how
these bugs are distributed across the system, so they could have a
better overview of software quality. In this paper, we describe
BugMap, a tool we developed for visualizing large-scale bug
location information. Taken source code and bug data as the input,
BugMap can display bug localizations on a topographic map. By
examining the topographic map, developers can understand how
the components and files are affected by bugs. We apply this tool
to visualize the distribution of Eclipse bugs across
components/files. The results show that our tool is effective for
understanding the overall quality status of a large-scale system and
for identifying the problematic areas of the system.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance and Enhancement]:
Restructuring, Reengineering

General Terms
Experimentation, Human Factors, Measurement

Keywords
Software visualization, bug, topographic map, bug location.

1. INTRODUCTION
Although a range of measures have been taken to assure software
quality, in reality released software systems still contain bugs. For
a large-scale, widely-used software system, the project team could
receive a large number of bug reports over time. For example,
49,422 bugs were reported for the Eclipse system in 2010, on
average 135 bugs per day. These bugs are typically stored and
maintained by a bug tracking system such as BugZilla. It is
interesting for developers to understand how the bugs are
distributed across the system, so they could identify the
problematic areas of the system.

Visualization is an important way to comprehend large amounts of
information. It has been applied to many areas including software
engineering. Many software visualization techniques have been
developed to help developers comprehend software-related
information, such as bug database [2], code metrics [16], evolution
history [9], vocabulary [10], dependencies [13], and clones [8].

In this paper, we propose to visualize bug location information to
help developers understand the overall quality status of a
large-scale software system. Traditional tabular format is not
suitable for visualizing a large amount of information. We propose
a novel tool called BugMap, which visualizes bug location
information on a topographic map. Using BugMap,
component/files are displayed on a two-dimensional map, where
the distance between two components/files indicates the
dependency between them. The bug numbers are visualized using
contour lines. The “height” of a contour line indicates the number
of bugs in a component/file. Different colors are also used to
denote different heights of contours.

A screenshot of BugMap for Eclipse 2.0 is shown in Figure 1,
which displays the distribution of Eclipse bugs across all the
Eclipse components. It enables the users to understand the overall
quality status of the system. In this paper, we describe the design
of the BugMap tool and the experiment on Eclipse 2.0.

Figure 1. The bug map of Eclipse 2.0

2. BUGMAP

2.1 Topographic Map
Topographic map is a type of map that uses contour lines to
visualize geological information. A contour line1 is a curve along
which all points have equal height. Traditionally, topographic
maps are applied to areas such as geography and civil engineering.
Recently, it has been applied to visualize data obtained from
information retrieval and knowledge discovery [5, 7].

1 http://en.wikipedia.org/wiki/Contour_line

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia.
Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2494582

647

On a topographic map, each contour line indicates that all the
points on this line have the same height (z position). On a
topographic map for displaying geological information, the orange
color often denotes mountains, while the green color represents
plains. Therefore, if the color of an area is darker (more orange), it
is a higher terrain. If the color is lighter (more green), it is a
lower-lying area. For example, Figure 2 gives a sample
topographic map. There are 4 points (A, B, C, D) on 3 contour
lines on the map. The points B and C are on the same contour line,
therefore these two points have the same height (z position). Based
on the contour lines, we know that ZA<ZB=ZC<ZD (Zi represents
the z position of the corresponding point i).

Figure 2. A sample topographic map

2.2 Visualization of Bug Locations on a
Topographic Map
We visualize the bug localization information using a topographic
map as follows.

2.2.1 The Layout of Topographic Map
In our topographic map for bugs, topography is generated from an
undirected graph G = (V, E), where each vertex v in V is a
component or a file and each edge eij in E is the dependency
between two nodes vi and vj.

We measure the degree of dependency as the number of function
calls between two components/files. The stronger the dependency,
the closer the two components/files on a topographic map.

To depict the dependency relationship, we calculate the (x, y)
position for each node in the graph G. There are many graph
layout algorithms. However the computation cost of these
algorithms is often high for a large-scale graph. In our work, we
choose the Force-Directed layout algorithm [3], which is a graph
drawing algorithm based on physical simulations 2 . The
Force-Directed algorithm assigns forces among the set of E and
the set of V of graph G, and uses the repulsive forces between any
vi and vj and attractive forces between adjacent vi and vj. The force
models can be described using Hooke's law and Coulomb's law as
follows:

Hookeᇱs law: ܨ௔ሺ݁௜௝ሻ ൌ ݀௜௝
ଶ ݇⁄

Coulombᇱs law: ܨ௥൫݁௜௝൯ ൌ െ ݇ଶ ݀௜௝ൗ

In the above formula, dij represents the distance between vi and vj,
and k denotes a constant of the optimal length of E.

In our work, we use dependency as attractive force and give each
pair of nodes a relatively large repulsive force to ensure that the

2 http://en.wikipedia.org/wiki/Force-directed_graph_drawing

nodes can be dispersed in the entire plane. We calculate the
relative displacement of each node based on the attractive force
and repulsive force until its value is no longer changed.

2.2.2 Visualizing the Number of Bugs
In our topographic map, we use the contour lines to depict the
number of bugs in each component/file. The height of a contour
line (z position) indicates the number of bugs. Like ordinary
topographic map, our bug map also uses different colors to
indicate the height of each point. In Figure 1, a point with a darker
color (more orange) indicates that the component has more bugs,
and a point with a lighter color (more green) indicates that the
component has fewer bugs. For example, the highest point in this
map is the component “org.eclipse.debug.ui”, which has 1155
bugs. The component “org.eclipse.ui.externaltools” has 71 bugs
therefore it has a lighter color. Because the distribution of bugs
could be highly skewed, we transform the bug numbers using a log
function to fit the height scale.

After the z position of a component/file is computed, we need to
calculate the z position of other points. This can be achieved by an
interpolation algorithm for image processing. In our work, we
adopt an inverse distance weighting interpolation algorithm [6]:

଴ݖ ൌ ෍
1

ሺ݀௜ሻଶ

௡

௜ୀଵ
௜ݖ ൤ ෍

1
ሺ݀௜ሻଶ

௡

௜ୀଵ
൨

ିଵ

In this formula, z0 represents the estimated value, zi is the z
position of the ith (i = 1,2,3,...,n) points, di represents the distance
between z0 and zi.

2.2.3 Generating a Topography Image
In our work, we use the CONREC [1] algorithm to generate
contour lines. Contouring aids in visualizing three dimensional
surfaces on a two dimensional medium. In the CONREC
algorithm, line segments that make up a given contour are
generated from a two-dimensional array, where the z positions are
stored in array elements and the horizontal (x) and vertical (y)
coordinates are array indexers. We use the CONREC algorithm to
generate output as vector shapes [4] and then plot the topography
image.

2.3 Tool Development
We develop BugMap, a tool for visualizing bug location
information on a topographic map. Figure 3 shows the overall
structure of BugMap. Given a software project, BugMap acquires
the dependency data, metric data (such as lines of code), and bug
data from project repositories. In our implementation, we extract
the dependency data using the DependencyFinder 3 tool, the
source code metric data using Eclipse Metrics plugin, and the bug
data from the Bugzilla bug-tracking system. We store all the data
into a MySQL database for further analysis and visualization.

BugMap calculates the map layout using the Force-Directed
algorithm described in the previous section. After all the
coordinates of components/files are computed, BugMap uses the
inverse distance weighting interpolation algorithm to calculate
other points’ z position in a 900*900 data grid. Finally, BugMap
uses this data grid to generate a topographic map through the
CONREC algorithm.

3 http://depfind.sourceforge.net/

648

Figure 4. The file-level view of bug map for Eclipse 2.0

Figure 3. The structure of BugMap

BugMap utilizes the HTML5 inline SVG (Scalable Vector
Graphics)4 as its display platform. It plots the contour lines using
a JavaScript implementation of the CONREC contouring

4 http://www.w3.org/TR/SVGTiny12/

algorithm5 . BugMap also supports the zooming and panning
functions. By clicking a component label in the bug map, the
detailed information about the distribution of bugs across files in
that component can be displayed.

3. AN EXPERIMENT ON ECLIPSE
We use Eclipse version 2.0 as an example to illustrate the usage of
our tool. The Eclipse bug information is fetched form Bugzilla.
We collected 8,000 bug reports in 45 Eclipse components and
6,730 source code files. We extracted 162,387 dependency
relationships among the components/files using the
DependencyFinder tool.

Having collected the data, we visualize it using BugMap. Figure 1
shows an overview of the topographic map for Eclipse 2.0. Some
of the problematic components are highlighted on the map. It can
be found that that the largest component “org.eclipse.swt” (its
label has the largest font) is not the component having the most of
the bugs (its color is not the darkest). The color of component
“org.eclipse.debug.ui” is the darkest among all components,
meaning that it is the most problematic component. By simply
examining the bug map, the developers can quickly obtain an
overview of the quality status of the entire system.

5 http://paulbourke.net/papers/conrec/

Bug Map

MySQLL

Bug

S
of

tw
ar

e
R

ep
os

it
or

y

Bug Data

Metric Data

Dependency
Data

Calculate
layout

Calculate z
positions

Source Code

Plot topographic
map using SVG
and JavaScript

Generate
contour lines
using CONREC

649

We can also select a component on BugMap and zoom into it.
Figure 4 shows an enlarged bug map with a file-level view. We
can see that the four Java source files in the
“org.eclipse.jdt.debug.ui” component: JDIModelPresentation,
JavaDebugOptionsManager, JDIDebugUIPlugin, and
JavaDebugPreferencePage have strong inter-dependencies and
also have high numbers of bugs. This indicates a potential
problematic area of source code that should be reviewed. Our
approach can help developers quickly understand the quality of
files in a component and identify areas for improvement.

4. RELATED WORK
Software visualization is “the use of the crafts of typography,
graphic design, animation, and cinematography with modern
human-computer interaction and computer graphics technology to
facilitate both the human understanding and effective use of
computer software” [14]. Over the years, many software
visualization techniques have been proposed. For example,
D’Ambros et al. [2] proposed a system radiography technique to
display bug information at the system level. It is a high level
indicator of the system health. They also proposed a “Bug Watch”
technique to visualize information about a specific bug. Kuhn et al.
[10] proposed a “software map”, in which in the position of a
software artifact reflects its vocabulary, and distance corresponds
to similarity of vocabularies. Wettel et al. [15, 16] proposed
CodeCity, which uses a city metaphor to describe large-scale
software systems (e.g., classes as buildings and packages as
districts). Design problems (disharmonies) can be identified by
examining a code city map [16]. Lanza and Ducasse [12]
presented the concept of polymetric view, which can help
understand the structure and detect problems of a software system
in a reverse engineering process. Minelli and Lanza [11] presented
SAMOA, a web-based visualization tool to comprehend mobile
apps, leveraging three factors: source code, usage of third-party
APIs, and historical data. Their results reveal that apps differ
significantly from traditional software systems in a number of
ways. In our work, we apply the topography technique to visualize
bug location information.

5. DISCUSSIONS
In this section, we answer the questions specified in the call for
paper6:

 What is the new idea? In this paper, we propose to use the
topographic map to visualize bug location information.

 Why is it new? Many software visualization techniques
have been proposed to visualize software data including bug
data. To our best knowledge, it is novel to visualize bug
location data on a topographic map.

 What is the single most related paper by the same
author(s)? By others? The authors have not yet published
in the area of software visualization. The single most related
paper by others is the work on CodeCity [16], which
visualizes a software system based on a city metaphor.

 What feedback do the authors expect from the forum?
We would like to exchange ideas with other researchers and
explore the applicability of the BugMap in understanding
software quality.

6. CONCLUSION
A large and complex software system could contain a large
number of bugs. In this paper, we propose a tool called BugMap,

6 http://esec-fse.inf.ethz.ch/cfp_new_ideas.html

which can help developers understand how the bugs are
distributed across the system by visualizing the bug locations on a
topographic map. By examining the bug map, developers could
have a better overview of the quality status of the entire system
and identify problematic areas.

In future, we will apply BugMap to a variety of open source and
industrial projects, and evaluate its usefulness in practice by
obtaining feedback from actual developers.

7. ACKNOWLEDGMENTS
This research is supported by the NSFC projects 61073006 and
61272089.

8. REFERENCES
[1] P. Bourke, Contouring Algorithm. Byte, Volume 12 Issue 6,

pp 143-, July 1987.

[2] M. D'Ambros, M. Lanza, M. Pinzger: "A Bug's Life"
Visualizing a Bug Database. Proc. VISSOFT 2007: 113-120

[3] T. Fruchterman and E. Reingold, Graph drawing by
force-directed placement. Software - Pract. Exp., 21,
1129–1164, 1991.

[4] J. Foley, A. van Dam, S. Feiner, J. Hughes, Computer
Graphics: Principles and Practice in C (2nd ed.),
Addison-Wesley, 1995

[5] K. Fujimura, S. Fujimura, T. Matsubayashi, T. Yamada, and
H. Okuda. 2008. Topigraphy: visualization for large-scale
tag clouds. Proc. WWW '08, ACM, 1087-1088.

[6] P. Longley, Geographic Information Systems and Science,
John Wiley & Sons, 2005.

[7] T. Matsubayashi and K. Ishiguro, Mobile topigraphy:
large-scale tag cloud visualization for mobiles. Proc. WWW
'11, ACM, 89-90.

[8] F. Hermans, B. Sedee, M. Pinzger, A. van Deursen: Data
clone detection and visualization in spreadsheets. Proc.
ICSE 2013: 292-301

[9] R. Koschke. Software visualization in software maintenance,
reverse engineering, and re-engineering: a research survey.
Journal of Software Maintenance, 15(2):87–109, 2003.

[10] A. Kuhn, P. Loretan, and O. Nierstrasz, Consistent Layout
for Thematic Software Maps, Proc. WCRE'08, pp. 209—218,
October 2008.

[11] R. Minelli, M. Lanza, Software Analytics for Mobile
Applications—Insights and Lessons Learned, Proc. CSMR
2013, pp. 144-153.

[12] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003.

[13] M. Pinzger, K. Grafenhain, P. Knab, H. Gall: A Tool for
Visual Understanding of Source Code Dependencies. Proc.
ICPC 2008: 254-259

[14] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors. Software Visualization. The MIT Press, 1998.

[15] R. Wettel, M. Lanza, and R. Robbes, Software Systems as
Cities: A Controlled Experiment, Proc. ICSE 2011, pp. 51 -
560, ACM Press, 2011.

[16] R. Wettel and M. Lanza. Visually localizing design
problems with disharmony maps. Proc. Softvis 2008, pp.
155–164. ACM Press, 2008.

650

