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ABSTRACT 
A large and complex software system could contain a large 
number of bugs. It is desirable for developers to understand how 
these bugs are distributed across the system, so they could have a 
better overview of software quality. In this paper, we describe 
BugMap, a tool we developed for visualizing large-scale bug 
location information. Taken source code and bug data as the input, 
BugMap can display bug localizations on a topographic map. By 
examining the topographic map, developers can understand how 
the components and files are affected by bugs. We apply this tool 
to visualize the distribution of Eclipse bugs across 
components/files. The results show that our tool is effective for 
understanding the overall quality status of a large-scale system and 
for identifying the problematic areas of the system. 

Categories and Subject Descriptors 
D.2.7 [Distribution, Maintenance and Enhancement]: 
Restructuring, Reengineering 

General Terms 
Experimentation, Human Factors, Measurement 

Keywords 
Software visualization, bug, topographic map, bug location. 

1. INTRODUCTION 
Although a range of measures have been taken to assure software 
quality, in reality released software systems still contain bugs. For 
a large-scale, widely-used software system, the project team could 
receive a large number of bug reports over time. For example, 
49,422 bugs were reported for the Eclipse system in 2010, on 
average 135 bugs per day. These bugs are typically stored and 
maintained by a bug tracking system such as BugZilla. It is 
interesting for developers to understand how the bugs are 
distributed across the system, so they could identify the 
problematic areas of the system. 

Visualization is an important way to comprehend large amounts of 
information. It has been applied to many areas including software 
engineering. Many software visualization techniques have been 
developed to help developers comprehend software-related 
information, such as bug database [2], code metrics [16], evolution 
history [9], vocabulary [10], dependencies [13], and clones [8]. 

In this paper, we propose to visualize bug location information to 
help developers understand the overall quality status of a 
large-scale software system. Traditional tabular format is not 
suitable for visualizing a large amount of information. We propose 
a novel tool called BugMap, which visualizes bug location 
information on a topographic map. Using BugMap, 
component/files are displayed on a two-dimensional map, where 
the distance between two components/files indicates the 
dependency between them. The bug numbers are visualized using 
contour lines. The “height” of a contour line indicates the number 
of bugs in a component/file. Different colors are also used to 
denote different heights of contours. 

A screenshot of BugMap for Eclipse 2.0 is shown in Figure 1, 
which displays the distribution of Eclipse bugs across all the 
Eclipse components. It enables the users to understand the overall 
quality status of the system. In this paper, we describe the design 
of the BugMap tool and the experiment on Eclipse 2.0.  

 
Figure 1. The bug map of Eclipse 2.0 

2. BUGMAP 

2.1 Topographic Map 
Topographic map is a type of map that uses contour lines to 
visualize geological information. A contour line1 is a curve along 
which all points have equal height. Traditionally, topographic 
maps are applied to areas such as geography and civil engineering. 
Recently, it has been applied to visualize data obtained from 
information retrieval and knowledge discovery [5, 7]. 
                                                                 
1 http://en.wikipedia.org/wiki/Contour_line 
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On a topographic map, each contour line indicates that all the 
points on this line have the same height (z position). On a 
topographic map for displaying geological information, the orange 
color often denotes mountains, while the green color represents 
plains. Therefore, if the color of an area is darker (more orange), it 
is a higher terrain. If the color is lighter (more green), it is a 
lower-lying area. For example, Figure 2 gives a sample 
topographic map. There are 4 points (A, B, C, D) on 3 contour 
lines on the map. The points B and C are on the same contour line, 
therefore these two points have the same height (z position). Based 
on the contour lines, we know that ZA<ZB=ZC<ZD (Zi represents 
the z position of the corresponding point i). 

 

Figure 2. A sample topographic map 

2.2 Visualization of Bug Locations on a 
Topographic Map 
We visualize the bug localization information using a topographic 
map as follows. 

2.2.1 The Layout of Topographic Map 
In our topographic map for bugs, topography is generated from an 
undirected graph G = (V, E), where each vertex v in V is a 
component or a file and each edge eij in E is the dependency 
between two nodes vi and vj.  

We measure the degree of dependency as the number of function 
calls between two components/files. The stronger the dependency, 
the closer the two components/files on a topographic map.  

To depict the dependency relationship, we calculate the (x, y) 
position for each node in the graph G. There are many graph 
layout algorithms. However the computation cost of these 
algorithms is often high for a large-scale graph. In our work, we 
choose the Force-Directed layout algorithm [3], which is a graph 
drawing algorithm based on physical simulations 2 . The 
Force-Directed algorithm assigns forces among the set of E and 
the set of V of graph G, and uses the repulsive forces between any 
vi and vj and attractive forces between adjacent vi and vj. The force 
models can be described using Hooke's law and Coulomb's law as 
follows: 

Hookeᇱs law: ܨ௔ሺ݁௜௝ሻ ൌ  ݀௜௝
ଶ ݇⁄  

Coulombᇱs law: ܨ௥൫݁௜௝൯ ൌ െ ݇ଶ ݀௜௝ൗ  

In the above formula, dij represents the distance between vi and vj, 
and k denotes a constant of the optimal length of E. 

In our work, we use dependency as attractive force and give each 
pair of nodes a relatively large repulsive force to ensure that the 

                                                                 
2 http://en.wikipedia.org/wiki/Force-directed_graph_drawing 

nodes can be dispersed in the entire plane. We calculate the 
relative displacement of each node based on the attractive force 
and repulsive force until its value is no longer changed. 

2.2.2 Visualizing the Number of Bugs  
In our topographic map, we use the contour lines to depict the 
number of bugs in each component/file. The height of a contour 
line (z position) indicates the number of bugs. Like ordinary 
topographic map, our bug map also uses different colors to 
indicate the height of each point. In Figure 1, a point with a darker 
color (more orange) indicates that the component has more bugs, 
and a point with a lighter color (more green) indicates that the 
component has fewer bugs. For example, the highest point in this 
map is the component “org.eclipse.debug.ui”, which has 1155 
bugs. The component “org.eclipse.ui.externaltools” has 71 bugs 
therefore it has a lighter color. Because the distribution of bugs 
could be highly skewed, we transform the bug numbers using a log 
function to fit the height scale.  

After the z position of a component/file is computed, we need to 
calculate the z position of other points. This can be achieved by an 
interpolation algorithm for image processing. In our work, we 
adopt an inverse distance weighting interpolation algorithm [6]:  
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In this formula, z0 represents the estimated value, zi is the z 
position of the ith (i = 1,2,3,...,n) points, di represents the distance 
between z0 and zi. 

2.2.3 Generating a Topography Image 
In our work, we use the CONREC [1] algorithm to generate 
contour lines. Contouring aids in visualizing three dimensional 
surfaces on a two dimensional medium. In the CONREC 
algorithm, line segments that make up a given contour are 
generated from a two-dimensional array, where the z positions are 
stored in array elements and the horizontal (x) and vertical (y) 
coordinates are array indexers. We use the CONREC algorithm to 
generate output as vector shapes [4] and then plot the topography 
image. 

2.3 Tool Development 
We develop BugMap, a tool for visualizing bug location 
information on a topographic map. Figure 3 shows the overall 
structure of BugMap. Given a software project, BugMap acquires 
the dependency data, metric data (such as lines of code), and bug 
data from project repositories. In our implementation, we extract 
the dependency data using the DependencyFinder 3  tool, the 
source code metric data using Eclipse Metrics plugin, and the bug 
data from the Bugzilla bug-tracking system. We store all the data 
into a MySQL database for further analysis and visualization. 

BugMap calculates the map layout using the Force-Directed 
algorithm described in the previous section. After all the 
coordinates of components/files are computed, BugMap uses the 
inverse distance weighting interpolation algorithm to calculate 
other points’ z position in a 900*900 data grid. Finally, BugMap 
uses this data grid to generate a topographic map through the 
CONREC algorithm.  

                                                                 
3 http://depfind.sourceforge.net/ 
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Figure 4. The file-level view of bug map for Eclipse 2.0 

 

 

Figure 3. The structure of BugMap 

BugMap utilizes the HTML5 inline SVG (Scalable Vector 
Graphics)4 as its display platform. It plots the contour lines using 
a JavaScript implementation of the CONREC contouring 

                                                                 
4 http://www.w3.org/TR/SVGTiny12/ 

algorithm5 . BugMap also supports the zooming and panning 
functions. By clicking a component label in the bug map, the 
detailed information about the distribution of bugs across files in 
that component can be displayed.  

3. AN EXPERIMENT ON ECLIPSE 
We use Eclipse version 2.0 as an example to illustrate the usage of 
our tool. The Eclipse bug information is fetched form Bugzilla. 
We collected 8,000 bug reports in 45 Eclipse components and 
6,730 source code files. We extracted 162,387 dependency 
relationships among the components/files using the 
DependencyFinder tool. 

Having collected the data, we visualize it using BugMap. Figure 1 
shows an overview of the topographic map for Eclipse 2.0. Some 
of the problematic components are highlighted on the map. It can 
be found that that the largest component “org.eclipse.swt” (its 
label has the largest font) is not the component having the most of 
the bugs (its color is not the darkest). The color of component 
“org.eclipse.debug.ui” is the darkest among all components, 
meaning that it is the most problematic component. By simply 
examining the bug map, the developers can quickly obtain an 
overview of the quality status of the entire system. 

                                                                 
5 http://paulbourke.net/papers/conrec/ 
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We can also select a component on BugMap and zoom into it. 
Figure 4 shows an enlarged bug map with a file-level view. We 
can see that the four Java source files in the 
“org.eclipse.jdt.debug.ui” component: JDIModelPresentation, 
JavaDebugOptionsManager, JDIDebugUIPlugin, and 
JavaDebugPreferencePage have strong inter-dependencies and 
also have high numbers of bugs. This indicates a potential 
problematic area of source code that should be reviewed. Our 
approach can help developers quickly understand the quality of 
files in a component and identify areas for improvement. 

4. RELATED WORK 
Software visualization is “the use of the crafts of typography, 
graphic design, animation, and cinematography with modern 
human-computer interaction and computer graphics technology to 
facilitate both the human understanding and effective use of 
computer software” [14]. Over the years, many software 
visualization techniques have been proposed. For example, 
D’Ambros et al. [2] proposed a system radiography technique to 
display bug information at the system level. It is a high level 
indicator of the system health. They also proposed a “Bug Watch” 
technique to visualize information about a specific bug. Kuhn et al. 
[10] proposed a “software map”, in which in the position of a 
software artifact reflects its vocabulary, and distance corresponds 
to similarity of vocabularies. Wettel et al. [15, 16] proposed 
CodeCity, which uses a city metaphor to describe large-scale 
software systems (e.g., classes as buildings and packages as 
districts). Design problems (disharmonies) can be identified by 
examining a code city map [16]. Lanza and Ducasse [12] 
presented the concept of polymetric view, which can help 
understand the structure and detect problems of a software system 
in a reverse engineering process. Minelli and Lanza [11] presented 
SAMOA, a web-based visualization tool to comprehend mobile 
apps, leveraging three factors: source code, usage of third-party 
APIs, and historical data. Their results reveal that apps differ 
significantly from traditional software systems in a number of 
ways. In our work, we apply the topography technique to visualize 
bug location information. 

5. DISCUSSIONS 
In this section, we answer the questions specified in the call for 
paper6: 

 What is the new idea? In this paper, we propose to use the 
topographic map to visualize bug location information. 

 Why is it new? Many software visualization techniques 
have been proposed to visualize software data including bug 
data. To our best knowledge, it is novel to visualize bug 
location data on a topographic map. 

 What is the single most related paper by the same 
author(s)? By others? The authors have not yet published 
in the area of software visualization. The single most related 
paper by others is the work on CodeCity [16], which 
visualizes a software system based on a city metaphor. 

 What feedback do the authors expect from the forum? 
We would like to exchange ideas with other researchers and 
explore the applicability of the BugMap in understanding 
software quality. 

6. CONCLUSION 
A large and complex software system could contain a large 
number of bugs. In this paper, we propose a tool called BugMap, 

                                                                 
6 http://esec-fse.inf.ethz.ch/cfp_new_ideas.html 

which can help developers understand how the bugs are 
distributed across the system by visualizing the bug locations on a 
topographic map. By examining the bug map, developers could 
have a better overview of the quality status of the entire system 
and identify problematic areas.  

In future, we will apply BugMap to a variety of open source and 
industrial projects, and evaluate its usefulness in practice by 
obtaining feedback from actual developers. 
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