
Using Topic Models to Understand

the Evolution of a Software Ecosystem
Nicolas Lopez

Department of Informatics
University of California, Irvine
Irvine, CA 92627-3440 U.S.A.

nlopezgi@uci.edu

ABSTRACT

The development of a software system is now ever more frequent-

ly a part of a larger development effort, including multiple soft-

ware systems that co-exist in the same environment: a software

ecosystem. Though most studies of the evolution of software have

focused on a single software system, there is much that we can

learn from the analysis of a set of interrelated systems. Topic

modeling techniques show promise for mining the data stored in

software repositories to understand the evolution of a system. In

my research I seek to explore how topic modeling techniques can

aid in understanding the evolution of a software ecosystem. The

results of this research have the potential to improve how topic

modeling techniques are used to predict, plan, and understand the

evolution of software, and will inform the design of tools that

support software engineering activities such as feature location,

expertise identification, and bug detection.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – restructuring, reverse engineering, and reengi-

neering

General Terms

Design, Experimentation, Measurement, Theory

Keywords

Mining software repositories, software evolution, software ecosys-

tems, topic modeling, Latent Dirichlet Allocation

1. INTRODUCTION
Most modern software systems are no longer developed in isola-

tion. Instead, they are composed of large sets of interrelated librar-

ies, applications, and frameworks, each of which is usually devel-

oped and maintained by a separate team [5]. These complex envi-

ronments that span multiple systems, developers, and organiza-

tions are commonly referred to as software ecosystems [8]. Ana-

lyzing the evolution of a software ecosystem can enable the iden-

tification of global properties of the code such as reuse patterns

[16], provide new insights into their organization and governance

[7], and shed light on the complexity of current software devel-

opment practices [5].

Topic modeling techniques have emerged as a promising ap-

proach to understand the evolution of a software system [10, 18].

A particularly popular class of techniques, collectively referred to

as LDA, uses machine learning algorithms to produce Latent Di-

richlet Allocation models [3]. Taking as input a code base, these

algorithms generate a set of topics, each a collection of words that

commonly show up together in the code.

LDA models have been used to analyze a single version of a code

base [2, 13, 14]. However, these techniques had to be extended to

enable the analysis of the evolution of software. Particularly, the

development of topic evolution models have enabled analysis of

an evolving document corpus [15, 18]. To date, the application of

topic evolution models in the case of software has fallen short in

two ways: (1) it has relied on models in which the topics them-

selves do not evolve, limiting analysis of the system to a constant

set of terms for each topic, and (2) the analysis has been limited to

a very small set of unrelated systems [10, 18], not an ecosystem.

This proposal contributes a new strategy to create fine-grained

topic evolution models in which topics can evolve. Furthermore, it

stands out in its use of topic evolution models to explore the evo-

lution of a software ecosystem.

The main goals of this research are: (1) to contribute to the open

discussion on how to use topic modeling to understand the evolu-

tion of software; (2) to identify trends and patterns in the evolu-

tion of topics that span the boundaries of a single software system;

(3) to identify interesting phenomena regarding how developers

impact the evolution of the topics of a software ecosystem; and,

(4) to provide insight that informs the design and development of

tools that leverage topic modeling, such as tools that support fea-

ture location, expertise identification and bug detection.

1.1 Research Question
The main research question explored in this proposal is as fol-

lows:

How can topic models be leveraged to provide insight into the

evolution of a software ecosystem?

In order to explore this research question, I plan on performing a

series of studies that aim at observing specific aspects of the evo-

lution of the code, for a set of interrelated systems that are part of

a software ecosystem, from the perspective of the topics located

using LDA. The first study aims at identifying topic evolution

models that can characterize at a fine grain how the topics for a

given software system have evolved over time. To do this, it is

necessary to generate different topic models for each version of

the code. The key challenge, then, is to identify links between the

topics, particularly because of the non-deterministic nature of the

LDA algorithms [1].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia.

Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2492402

723

The second study takes a set of relevant projects from a software

ecosystem and applies our fine-grained topic evolution model to

look at issues regarding the evolution of the topics. The objective

is to observe how topics manifest across the software ecosystem

over time. For instance, are certain topics well modularized? As

another example, are there similarities between some crosscutting

concerns across several projects? The third study, rather than

looking at the code and topics in isolation, broadens our analysis

to consider how developers have worked with the topics. For

instance, are there similarities among the topics that a developer

works on across several projects? Are there differences between

the topics that core developers work on and the topics that less

experienced developers work on?

2. BACKGROUND
Latent Dirichlet Allocation (LDA) is a generative statistical model

that allows for inference of topics, with the objective of optimiz-

ing the distribution of the topics found over the set of documents

from which they were derived [3]. The result of applying LDA to

a set of documents is a model that defines a set of topics, as well

as an associated probability matrix that maps those topics to the

source documents. Each topic is defined as a set of terms, with the

terms ordered high-to-low in their probability of co-occurring.

Using the probability matrix, relationships among the documents

can be identified and measured, according to the extent to which

two or more documents have high probabilities associated to the

same topics.

LDA was developed for natural language corpora, but has gained

traction as a promising technique in software. For instance, LDA

has been used to assist developers in diverse activities such as

code comprehension [14], bug localization [13], feature location

[2], and expertise identification [11].

Figure 1 shows an example of a subset of topics for a hypothetical

software system. Each topic is defined by several terms; their size

indicates their relative relevance. Topics in an LDA model can be

manually labeled with the assistance of a developer with appro-

priate domain expertise [14]. The topics in Figure 1, for instance,

could be labeled as being related to versioning (orange), GUI

(green) and file management (pink), respectively.

Figure 1. Example set of topics and terms.

The topics produced by LDA can be used to improve comprehen-

sion and assist developers in several ways. For instance, Joe, an

experienced developer, is performing some maintenance activities.

A development tool suggests Joe look at the file management

topic of Figure 1 since it is related to the files he is currently mod-

ifying. The tool shows him other files that are related to this topic.

Joe notices there is another file that is also impacted by the cur-

rent change which he had missed.

As a second example, consider Jill, a developer exploring some

code she is unfamiliar with in order to find parts to reuse in a new

project. She finds that the versioning topic of Figure 1 might be

related to one of the features she needs to build in her new system.

She decides to explore some classes related to this topic and finds

some snippets of code to reuse.

3. PRELIMINARY RESEARCH
As an initial step to explore the usefulness of topics in under-

standing the evolution of software, we set out to explore whether

LDA could be valuable from the perspective of changing a system

[12]. That is, while most previous research focused on using top-

ics to characterize classes (or methods, or modules), our objective

was to find out if they could also be used to characterize the set of

classes being changed as part of a single commit.

To find out if topics characterize changes, we performed a study

analyzing the change history of an open source system, Mylyn. In

this study, we measured the extent to which the classes changed

together as part of a commit can be characterized by a small sub-

set of the topics. We defined metrics for this characterization and

compared values for the actual changes (the set of classes includ-

ed in each commit) with equivalent sets of randomly selected

classes.

Results from our study demonstrate that topics indeed characterize

changes. Figure 2 compares values of our metric (M(TCm,

TMnαβ)), that quantifies the extent to which topics characterize a

set of classes, corresponding to over 3000 commits (blue) versus

random sets of classes (red). The x axis corresponds to variations

in the number of classes included as part of a commit/random set.

As the figure indicates, our metric results in higher values for

commit data regardless of the size of the set.

Figure 2. Match between topics and files committed together

(blue) and topics and random sets of files (red) with varying

size of the set (x axis)

In addition, we made other findings regarding the application of

LDA to software. We found that: (1) having access to additional

information regarding how developers made the changes, such as

which files they opened and examined, but did not actually modi-

fy, did not have an impact on the results; (2) the results of the

algorithm were highly sensitive to the values of the configuration

parameters of LDA; and (3), the settings recommended for topic

models when applied to NL document corpora [6] yielded very

sub-optimal results.

This study represents an important stepping stone in our research.

As we look at the evolution of software, we need to look at the

changes. This study provides evidence of the potential of topic

location for the analysis of the evolution of software, as LDA can

be useful beyond capturing a static version of the topics for a

snapshot of the code.

4. PLANNED WORK
This section introduces a series of studies that we are planning to

embark upon to address the main research question.

724

4.1 Fine-grained Topic Evolution Models
Now that we have established that topics are also represented in

the changes that developers make, we can go one step further to

look at the evolution of the topics for a software ecosystem. The

key challenge is that LDA algorithms are non-deterministic [1],

which means that running topic location with different versions of

the code (in fact, even with the same version of the code), may

result in a different set of topics.

This can be problematic if we consider, for instance, what hap-

pens if we look at two versions of the same file at different points

in time, and at the changes that impacted this file to get from one

version to the other. Even though the topics that characterize the

different versions of the file might be similar (they might have

some matching terms), they are most likely not going to be exactly

the same. The challenge is that it is difficult to decide if the varia-

tions in the topics are the result of the changes made to the file, or

if they are caused by the non-deterministic nature of the LDA

algorithm. Moreover, even if the results were deterministic, what

level of difference indicates really different topics versus topics

that simply evolved somewhat? We need to define an approach to

create equivalences among the topics corresponding to the differ-

ent versions of the code.

In this first study, we will identify fine-grained topic evolution

models that characterize how each topic has progressively

changed as a result of changes in the code. Our approach differs

from previous research regarding the use of topic evolution mod-

els for software [10, 18] in several ways: (1) we extend the Link

topic evolution model, originally devised for NL document corpo-

ra [15], for use on code; (2) we build on recent research regard-

ing the stability of topics in LDA models [1]; and (3), we bring

this previous research together with the approach from our previ-

ous study, indicating how changes are related to topics.

To create our fine-grained topic evolution models we need to

identify topics for each consecutive version of the code and then

establish links between these topics. To deal with the non-

determinism of LDA, we will run the algorithm multiple times on

each version of the code. This will allow us to identify stable top-

ics produced by the algorithm and reduce the impact of topics that

show up randomly. To include the impact of changes on the topics

found version to version, we will quantify the extent to which a

topic should change according to the topics that characterize the

changes made in the code, and use this information to fine-tune

how we create links between the topics.

To evaluate our fine-grained models we will run a comparative

study of the performance of our topic evolution model versus

previous topic evolution models [18]. We will quantify their per-

formance by using as gold set the evolution of a system previously

studied in [17].

4.2 Finding Patterns in Topic Evolution Mod-

els
Using the results from the previous study, we can now look at a

software ecosystem from the perspective of topics and change.

Our second study will be an exploratory study, one in which what

we find initially will shape what we look at in more depth. We

will start by opportunistically selecting a subset of projects that

are part of a software ecosystem, and analyzing them using our

fine-grained topic evolution model described in Section 4.1.

In this study, we are particularly interested in observing patterns

related to topics, in an analogous way to how CodeCity [19] was

used to find patterns in the evolution of software in terms of clas-

ses and packages (God class, stable/unstable packages, function-

ality that moves around constantly, etc.). That is, we will use our

lens of changes and topics to design and build visualizations, and

through the visualizations identify possible patterns.

At the same time, we won't go into this analysis blindly, but have

identified a preliminary set of questions that we want to study. In

ecosystems, as an example, how topics are present in parts of the

ecosystem and not in other parts might matter. Some topics may

be isolated to a single system (or even to a part of this system),

while others may be spread over several parts of the ecosystem.

This might be indicative of aspects related to the modularization

of the system, and might highlight key differences between topics

that are well isolated, versus topics that cut across projects in the

ecosystem.

We are also interested in looking at instances in which some of

the topics change drastically; as these might highlight interesting

aspects of the evolution. For example, topics that change when an

underlying technology or framework is replaced or updated might

be representative of what some experts have labeled as “imple-

mentation level topics” [14]. Furthermore, we are interested in

looking at which topics change as a result of possible large scale

refactoring efforts. Our lens of topic evolution could even serve as

tool to assess the effectiveness of a refactoring effort. For in-

stance, we could quantify if the changes before, versus after the

refactoring, have a higher match with the topics that were affected

by the refactoring (i.e., if the refactoring was successful, we would

expect changes that occur afterward to match more closely to the

topics that were refactored).

4.3 Developers and Topics
In the last study, we take a different look at the evolution of topics

by additionally considering how developers are related to the

topics in terms of the code they have changed. While previous

research has looked at how developers are related to each other in

terms of the topics they have changed [11], our perspective in this

study is much broader. We are interested in finding patterns re-

garding the topics that a developer works on, considering changes

that span multiple projects in the ecosystems.

We again have identified a set of possible questions, this time

focusing on how developers work with topics in an ecosystem.

For instance, research shows that developers often contribute

work to several of the projects that are part of an ecosystem [9].

Our intuition dictates that it would be beneficial for a developer to

gain expertise working with code related to certain topics, and to

reuse this expertise throughout the ecosystem. We might find

evidence of this phenomenon if we observe that developers recur-

rently make changes to code related to the same topics throughout

the ecosystem.

We are also interested in exploring how a developer’s expertise

influences the topics they work on. Open source communities are

usually described as having a hierarchical structure made up of

different types of contributors according to their level of participa-

tion [9]. Core developers, for instance, are those that have been

active for the longest and that contribute most of the changes to a

project. We are interested in finding out if core developers tend to

focus their work on certain topics, while other types of develop-

ers, for instance active developers (borrowing terminology from

the onion model) work on other topics. The topics that core de-

velopers work on might be related to concerns that developers

would consider to be more critical to the system, or perhaps more

725

complex to modify and maintain. Conversely, the topics on which

active developers work on might be related to concerns that are

simpler, of less relevance to core of the system, or more appropri-

ate for less experienced developers.

As a final example of our initial directions in this study, we are

interested in observing how social features that support the inter-

action between developers might impact the evolution of topics.

For instance, software ecosystem hosting sites such as GitHub go

beyond project hosting to provide a social network of developers

and their projects. In this network, previous research has identi-

fied the presence of highly influential developers, or “rock star”

developers [4]. These developers are highly followed in the com-

munity, and any changes they make to the code are observed and

analyzed by the community. We are interested in finding out how

the topics in a system change when a highly influential developer

starts contributing code. Moreover, will other developers adopt

these topics, and to what extent? By answering these questions,

we will be able to provide insight as to how expertise and

knowledge is shared in these complex environments.

5. CONCLUSIONS
This work aims to explore the role of topic location techniques in

understanding the evolution of a software ecosystem. To do so we

will perform a series of studies using a novel fine-grained topic

evolution model to observe patterns in the evolution of topics, and

explore how developers have worked with these topics.

The patterns we identify will yield new insight into the design of

tools that leverage topic location. Our results, for instance, could

provide lessons for the development of tools that recommend

related artifacts according to document to topic relationships.

Most current tools that use topic modeling assume all topics to be

equal. A novel recommendation tool could behave differently if a

developer is modifying code related to a modularized topic versus

one that cuts across the ecosystem. For modularized concerns,

other parts of the code related to the same topic within the scope

of a single project would perhaps be most useful. But for crosscut-

ting topics it may be useful to recommend parts of the code, relat-

ed to the same topic, from several other projects that are also part

of the software ecosystem.

Moreover, the identification of interesting phenomena regarding

how developers work with topics can also inform the design of

better tools. For instance, recent work regarding development

practices in GitHub [4] refers to new ways in which developers

leverage social information to find projects of interest and identify

useful technical knowledge that they want to bring to their project.

The results of our research can support the development of tools

that search and recommend related projects and code to a devel-

oper according to the topics similar to those they usually work on.

Expanding on this idea, the tool could also help in onboarding by

incrementally recommending projects and tasks that slowly drift

from what the developers knows best, thereby continuously chal-

lenging them and broadening their skills and familiarity with the

code base.

6. ACKNOWLEDGMENTS
This work is partially supported by the National Science Founda-

tion under grant number IIS-1111446.

7. REFERENCES
[1] Balagopalan, A. 2012. Improving topic reproducibility in

topic models. University of California Irvine.

[2] Biggers, L.R. et al. 2012. Configuring latent dirichlet

allocation based feature location. Empirical Software

Engineering. 17, (Aug. 2012), 1–36.

[3] Blei, D.M. et al. 2003. Latent Dirichlet Allocation. Journal

of Machine Learning Research. 3, (2003), 993–1022.

[4] Dabbish, L. et al. 2013. Leveraging Transparency. IEEE

Software. 30, 1 (Jan. 2013), 37–43.

[5] Gonzalez-Barahona, J.M. et al. 2009. Macro-level software

evolution: a case study of a large software compilation.

Empirical Software Engineering. 14, 3 (Nov. 2009), 262–

285.

[6] Griffiths, T.L. and Steyvers, M. 2004. Finding scientific

topics. Proceedings of the National Academy of Sciences of

the United States of America. 101, Suppl 1 (Apr. 2004),

5228–5235.

[7] Iansiti, M. and Levien, R. 2004. The keystone advantage:

what the new dynamics of business ecosystems mean for

strategy, innovation, and sustainability. Harvard Business

Review Press. (2004), 255.

[8] Jansen, S. and Cusumano, M. 2012. Defining software

ecosystems: a survey of software platforms and business

network governance. International Workshop on Software

Ecosystems (Cambridge, MA, 2012), 40–58.

[9] Jergensen, C. et al. 2011. The Onion Patch : Migration in

Open Source Ecosystems. 19th symposium and 13th

European conference on Foundations of software

engineering (Szeged, Hungary, 2011), 70–80.

[10] Linstead, E. et al. 2008. An application of latent dirichlet

allocation to analyzing software evolution. 7th International

Conference on Machine Learning and Applications (San

Diego, CA, 2008), 813–818.

[11] Linstead, E. et al. 2007. Mining eclipse developer

contributions via author-topic models. 4th International

Workshop on Mining Software Repositories (Minneapolis,

MN, May. 2007), 30–30.

[12] Lopez, N. and Hoek, A. Van Der 2013. Do topics

characterize development tasks? Submitted to WCRE 2013

(2013).

[13] Lukins, S.K. et al. 2010. Bug localization using latent

dirichlet allocation. Information and Software Technology.

52, 9 (Sep. 2010), 972–990.

[14] Maskeri, G. et al. 2008. Mining business topics in source

code using latent dirichlet allocation. 1st India Software

Engineering Conference (Hyderabad, India, 2008), 113–121.

[15] Mei, Q. 2005. Discovering evolutionary theme patterns from

text - an exploration of temporal text mining. 11th

Conference on Knowledge Discovery in Data Mining (2005),

198–207.

[16] Mockus, A. 2009. Amassing and indexing a large sample of

version control systems: Towards the census of public source

code history. 6th International Conference on Mining

Software Repositories (Vancouver, Canada, May. 2009), 11–

20.

[17] Nistor, E.C. and Van der Hoek, A. 2009. Explicit concern-

driven development with ArchEvol. International

Conference on Automated Software Engineering (Aukland,

New Zealand, 2009), 185–196.

[18] Thomas, S.W. et al. 2011. Modeling the evolution of topics

in source code histories. 8th working conference on Mining

software repositories (Honolulu, HI, 2011), 173.

[19] Wettel, R. and Lanza, M. 2008. Visual Exploration of Large-

Scale System Evolution. 15th Working Conference on

Reverse Engineering (2008), 219 – 228.

726

