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ABSTRACT In pervasive computing, theontextof a computation task refers

Context-awareness is a key feature of pervasive computing whosd® the circumstances or situation in which the task takes place
environments keep evolving. The support of context-awareness(€--» USer's current location and activit@ontext consistendg
requires comprehensive management including detection andnaintained whe_n there is no con_tradlc_tlon in a computation task’s
resolution of context inconsistency, which occurs naturally in CONteXt; otherwiseontext inconsistenci said to occur. To un-
pervasive computing. In this paper we present a framework forderstaqd the meaning of context contradiction, let us consider a
realizing dynamic context consistency management. The frame-Sce€nario from the healthcare industry:
work supports inconsistency detection based on a semantic matchpeter is a doctor working for Hope Hospital. He carries a Personal
ing and inconsistency triggering model, and inconsistency resolu-pjgjtal Assistant PDA) as his agent for arranging daily activities.
tion with proactive actions to context sources. We further presentpjany kinds of context, such as the environment in which Peter is
an implementation based on t@abotmiddleware. The feasibility  working, the room in which Peter is located, and the condition of
of the framew_ork and its perf_ormance are gvaluated through a casg patient being taken care of by Peter, may affect the agent's sug-
study and a simulated experiment, respectively. gestion for Peter's next activity. Suppose that at some time the
agent acquired three context pieces from different sources:
Categories and Subject Descriptors
D.2.1 [Software Engineerind: Requirements/Specifications —
Methodologies

(1) Peter is in the operating theatre (user location);
(2) An operation is being performed in Room 3504 (room status);
(3) Peter is looking up medical resources (user activity).

From (1) and (2), the agent would probably conclude that Peter is
occupied with an operation based on its pre-obtained information
that Room 3504 is the operating theatre. However, from (3) the
agent might draw another conclusion that Peter is not attending an

General Terms
Algorithms, Design, Management, Performance

Keywords emergency and therefore able to help patient Michael immediately
Pervasive Computing, Context Modeling, Context Consistency if he becomes unconscious at any moment. The two opposite as-
Management, Semantic Matching, Proactive Repairing sessments reflect the contradiction in the current context, i.e., a
conflicting understanding of the surrounding environment. Thus
1. INTRODUCTION the agent might have difficulty in deciding whether to guide Peter

}o Michael to check his condition or forward this request to an-

Pervaswg computing environments €ncompass a Spectrum Ohy, o yoctor, As a result, the agent might fail to function correctly.
computation and communication devices that seamlessly augment

human thoughts and activities [21]. Applications in this type of There are a number of reasons why context inconsistency occurs.
environments are often context-aware, using various kinds ofIn the above scenario, it could be inaccurate location detection
context such as location and time to adapt to the evolving envi-(e.g., Peter is passing by instead of actually staying in the operat-
ronments and provide smarter services. For example, a mobileing theatre) or incorrect activity reasoning (e.g., Peter is walking

phone would vibrate rather than beep in a concert if the systemaround his office desk on which are some medical resources in-
knows the user’s location. Pervasive computing applications needstead of looking up them at that moment). However, regardless of
to be context-aware in order to respond quickly to their dynamic which reason, the agent can hardly detect and resolve such incon-
computing environments. The growing demand of context- sistencies by itself due to the lack of adequate reasoning capabili-
awareness poses an impending requiremegbatext consistency  ties, global situation assessment and effective repairing actions,
management. which typically require considerable computing resources that are

not available for portable pervasive computing agents.

Permission to make digital or hard copies of all or part of this work for An unfortunate observation is that context inconsistency is com-

personal or classroom use is granted without fee provided that copies monly found in real-life system#ctiveCampuss a real-life ex-

are not made or distributed for profit or commercial advantage and that @MPle presented in [8]. When context inconsistency occurs du? to
copies bear this notice and the full citation on the first page. To copy Stale dataActiveCampuss unable to correctly estimate a person’s

otherwise, or republish, to post on servers or to redistribute to lists, location, which could affect the normal functioning of some ser-
requires prior specific permission and/or a fee. vices. Our research shows that the occurrence of context inconsis-

ESEC-FSE'05September 5-9, 2005, Lisbon, Portugal. tency stems from the natural imperfectness of context:
Copyright 2005 ACM 1-59593-014-0/05/0009...$5.00.
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Highly dynamic environments make context easily olmdete
[11]: For example, the location context of a fast-mowdngject
(e.g., a doctor running to an emergency) is proreritors.
Context can be offered by heterogeneous sources wmdif-

ferent standards: Various sensing technologies and standards

may lead to semantically contradicting context.(¢igside the

room” vs. “near the door but outside the room”).

Context reasoning may introduce inaccurate informabn

due to computing-resource limitation: The requirement of

real-time response (i.e., time limitation) may tesn partial
consideration of available context in inferring inilgvel context
such as user activity.

- Network disconnection or failures lead to incomplet context
[11]:
chances of context loss (e.g., “Peter and Michardrehe oper-
ating theatre” vs. “only Peter enters the operatirggtre”).

The natural existence of these imperfect sourcesesnaontext
inconsistency a common phenomenon. It is diffitalguarantee
the correctness, integrity and non-redundancy ofeca in perva-
sive computing. However, this problem has not begplicitly
addressed by existing context-aware systems @oqitext Toolkit
[6], EgoSpacg13], Gaia [21] andAura [25]). To overcome this,
we have identified two key issues:

- Inconsistency detection:Context inconsistency is a semantic

phenomenon rather than a syntactic one, whose tibetee-

quires non-trivial reasoning work. For example oatext piece
“free / not in an emergency” may contradict withefforming

an operation”, while it can coexist with “looking unedical re-
sources”. Usually, the detection is based on comgemse and
user-specified rules.

- Inconsistency resolution:Context evolution in pervasive com-
puting is dynamic and fast, which requires an aatigrincon-
sistency resolution mechanism. Moreover, simpleirégy on
current context is inadequate for maintaining d@lstaunning
environment for applications. Proactive controlfeedback to
context sources is required to prevent future isisiancies.

To the best of our knowledge in the existing work pervasive
computing, a systematic study of these two issuesriot been
conducted. Although it could be argued that theysamilar to the
evidence aggregation problem [24] from the ard@fiéhtelligence
(Al discipline, the similarity only lies in that botf them relate
to information inconsistency. The causes of incstesicy and the
corresponding challenges in resolving it actuallffed a lot
(please refer to Section 2). Moreover, this pajrasat proposing
a consistency management framework using softwageeering
methodology rather than working on sophisticatecbirsistency
detection algorithms usingl techniques.

The remainder of the paper is organized as foll&estions 2 and
3 introduce related work of recent years and piakny concepts
on context modeling, respectively. Section 4 presenr frame-
work for context consistency management by focusingcom-
plex context and constraints modeling, and inceesty detec-
tion and resolution. Section 5 briefly introduche implementa-

tion of Cabot[26] — a middleware that supports context consis-

tency management. This is followed by a case stadection 6
and a simulated experiment in Section 7. SectialisBusses the
feasibility of adapting existing technologies tor ewrk. The last
section concludes the paper.
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The mobility of pervasive computing increases the

2. RELATED WORK

Existing studies on context-awareness are mosthgemed with

either the frameworks that support context abstraar the data
structures that support context queries. Pioneeviodg by Schilit

et al. [22] proposes using environment serversdaage context.
The context model in this work is simple. Schmidéle present in
[23] a layered processing model in which sensoputstare trans-
formed into cues that comprise a set of values wihainty

measurements. Gray et al. in [7] are concerned eéifituring

context meta-information that describes featureh ss represen-
tation, quality, source, transformation and acturatiHarter et al.
in [9] propose a conceptual context model that aastructed

using an entity-relationship based language. Hkseig et al. in

[11] comprehensively analyze context by coveringgeral char-

acteristics, information imperfection, various reggntations and
high interrelation. These works are mostly concéméh context

modeling techniques, while the problem of contexonsistency
is not adequately addressed. Advanced issues afmutsistency
detection and resolution are rarely discussed.

Some research projects, e@aia [21], Aura [25] andEasyLiving

[3], have been proposed to provide middleware sudpo perva-

sive computing. They are mainly concerned aboutafyaniza-
tion of and the collaboration among pervasive caimgudevices
and services. Other infrastructure projects mofilyus on the
context processing, reasoning and programming Stipfip ear-

lier representative work i€ontext Toolkitpresented in [6]. It
assists developers by providing abstract compor(ergs context
widgets, interpreters and aggregators) that cacdomected to-
gether to capture and process context data frommosgiContext

Toolkit falls short in supporting highly-integrated cortapplica-

tions. To overcome this, Griswold et al. in [8] pose to apply a
hybrid mediator-observer pattern in the systemiscture. Hen-
ricksen et al. in [10] present a multi-layer franoekvwhich sup-
ports both branching and triggering programming et®dRanga-
nathan et al. in [19] discuss how to resolve paaergemantic
contradictions in context by reasoning based ast-@irder predi-
cate calculus and Boolean algebra. In [20] thegrkthe work to
reasoning about context uncertainty usitg mechanisms like
fuzzy logic. These works have tackled several ehgis in con-
text processing, reasoning and programming, andwzied pre-
liminary research on context certainty represemtadnd uncer-
tainty reasoning, but inadequate attention has Ipeéd to the
repairing of inconsistent context.

Pervasive computing, a relatively new but fast gnomdiscipline,

shares many observations and technology Withactive data-
bases and software engineering disciplines. InAthdiscipline,

expert systems have been developed to supporiget&l strategy
making. Much effort has been made on the evideggeegation
problem so that the systems are able to make rabkostrategies
based on contradicting evidences or rules, but#uses of incon-
sistency are rarely addressed. Composite eventtigteis an

important issue in the active databases discipianetriggering

pre-defined actions once desired events are ddtdstierokerage
[14] andAmit [1] are two widely known projects aimed at detect-
ing composite event occurrences or situation clamggh com-
plex timing constraints. The difference lies in tiaets that the
former is based on event instance modeling andhtter on event
type modeling. In the software engineering disoiplCARISMA
[4] is proposed as reflective middleware supportfmbile appli-



cations. It focuses on policy conflict resolutidrat is similar to
our work, but it assumes that accurate contextrinédion can be
collected by probing sensors periodically, whicldierent from
the basis on which our work is built. Nentwich &t @opose a
framework for repairing inconsistetML documents based on
the xlinkit technology [15], which generates interactive repgi
options from first order logical formulae that ctmain the docu-
ments being checked [16]. However, the frameworsduot sup-
port dynamic computing environments. Moreover, irgpg docu-
ments alone is inadequate for resolving contexbnsistency in
pervasive computing. Although the above researblk&s provide
similar experience in problem analysis and resoiytiheir tech-
nologies are inadequate for managing context ctamgig in two
aspects:

Inconsistency detection: Complex context constraints (e.g.,
timing, spatial and data constraints) cannot bectly modeled.
For example, the support of generation time, effedime and
freshness requirement for context consistency mamagt is
beyond the modeling capabilities of existing tedbg®s. In
addition, the inconsistency detection algorithmfed§ due to
these new complex constraints.

Inconsistency resolution: Interactive and simple repairing is
unsuitable for dynamic and complex pervasive comguenvi-
ronments. The automatic repairing of current ingginacies
and the proactive preventing of future inconsisencannot be
supported by any of existing technologies.

3. CONTEXT MODELING

Context can be roughly divided infihysical contexandlogical
context The former is like evidence, recording variousres
arising in the physical world (e.g., an object’'svement and lo-
cation), while the latter is typically used forugition assessment,
only existing in logical models (e.g., a user'semmt and mood).
Thus, a general data structure is required forexdmepresenta-
tion. However, we do not adopt a simple represemtdike name-
value pairs or tuple space [13] for the sake of ageability be-
cause it often requires multiple tuples to represesingle context
piece. On the other hand, neither do we want toaliscontext
characteristics as proposed by Henricksen et 4l hecause of
the high management and computation cost.

We define contexttx = (subject predicate object time, area,
certainty, freshnespas a seven-field data structure, where:

- Subject predicate and object give the content of the context,
wheresubjectandobjectare related byredicate(using simple
English sentence structure), e.g., Pegsebjec} enters gredi-
cate) the operating theatrelfjec).

- Timeandarea specify the temporal and spatial constraints rele-
vant to the contextime represents the time or period in which
the context keeps effective (e.g., “10am on JurGQ5” or
“from Apr 1 to Jul 1, 2005")areais the place to which the con-
text relates (e.g., “Hope Hospital”).

- Certaintyis a percentage evaluating the probability levehe
context (e.g., “90%"), andreshnessindicates the generation
time of the context (e.g., “10 seconds ago”).

There are two time-related fields in the structtirae andfresh-
ness The former is a context's effective time, whileetlatter
specifies a context’s generation time. Normallyythee different.
For example, people relation context “Michael iseta care of by
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Peter” may have a long effective time (say, two thepbut its
generation time may have been “two days ago”. Invgsve
computing,freshnesgs a basic requirement for evaluating context
validness because computing environments tend amgeh fast
and the current context may expire quickly. Suchsateration is
not supported in event detection related studies[li] and [14].

For the purpose of complex context recognition, twamcepts
context instanceand context patternare introduced: aontext
instanceis defined by instantiating all fields ofx, while acon-
text pattern(or patternfor short) is defined by instantiating some
of its fields. Each uninstantiated field (if ang)det toany, which

is a special predefined value. Intuitively, eacltgra represents a
family of context instances.

Peter: Subject

!
time = 10am on Jun 7, 2005
area = operating theatre
certainty = 90%

operating

theatre: Object

freshness = 10 seconds ago

Peter: Object

time = from Apr 1 to Jul 1, 2005
area = Hope Hospital

taken care of by

Michael: Subject

certainty = 85%
freshness = two days ago

Figure 1. Two context instances

perating
theatre: Object

any: Subject

time = any

area = Hope Hospital
certainty = 80%
freshness = any

Figure 2. A context pattern

Figure 1 illustrates two context instances itJlslL object dia-
gram, which represents that: (1) Peter enters pleeating theatre,
and (2) Michael is taken care of by Peter. Figurduatrates a
pattern that represents such context instancesrasb®dy enter-
ing the operating theatre.

4. MANAGING CONTEXT CONSISTENCY

A key requirement in context consistency managersetite abil-
ity to bridge the gap between the context recoghizne the mid-
dleware and the inconsistency to which the middteweeeds to
react. This paper aims at bridging the gap by mtésg a com-
prehensive consistency management framework fotegorin

pervasive computing. Three requirements have hdmntified for
this type of computing environments:

- Semantic reasoning:Context inconsistency is a semantic phe-
nomenon, which requires necessary reasoning fengsistency
detection.

- Automatic resolution: Context evolution is dynamic and fast,
which requires an automatic resolution mechanismafty de-
tected inconsistency.

- Feedback control: Repairing on current context is inadequate,
which requires feedback to context sources to prtefegure in-
consistencies.



4.1 Model Complex Context and Constraints
Let us first take a look at an example of complemtext:

A doctor enters the operating theatre, where anraipen is go-
ing to be performed in ten minutes on a patien® whw looks a
little nervous.

This example contains several context pieces, dtel physical
ones (e.g., a doctor’s location) and logical oreeg.( a patient’s
state of mind), and some constraints, includingrniinctonstraints
(e.g., “an operation will be performeéd ten minutey, spatial
constraints (e.g., “the doctor and the patient iarehe same
roont’) and data constraints (e.gthé persorentering the roors
a doctof). To model such complex context, we begin witlsiba
blocks (e.g., context instances and patterns ini®e8) and use
operations (e.ggontext matchingto connect them together.

4.1.1 Semantic Context Matching

A fundamental operationcontext matchingis studied below.
Context matchings a process of checking whether a context in-
stance and a pattern match or not. Unlike otheretspaur con-
text matching connects context instances and patiey seman-
tics. Its goal is to integrate basic reasoning itite underlying
context model.

There are two usages of context matching: (1) gi@etontext
instance, search all matched patteqpet (mat); (2) given a pat-
tern, search all matched context instanges (nat):

pat_mat(ins,rules) =

{ patO Patterng Ofield.match(rules field,ins.field, pat field)}
ins_mat(pat, rules) =

{insO Instanceg¢ Ofield match(rules field,ins. field, pat field)}

The match function is a kernel process of evaluating whether
given field of a context instance matches its cerpdrt of a pat-
tern under somanification rule The notation ofinification rules
is based on concept semantic relationships.B(e} denote the
element set represented by conaepiny two conceptg; andc,
are subject to one of five semantic relationshg¥g:[

- equivalentif E(cy) = E(cy);

- subsumedif E(c;) O E(cy);

- including if E(cy) O E(cy);

- disjoint if E(cy) n E(cy) = ¢;
- intersecting otherwise.

Based on the above five semantic relationshipdjcatibn rules
express the conditions under which a given coritestance and a
pattern can be matched. A matching is recognizezhdh field
(excepttime) valuev; in context instancens is unifiable with its
counterparts, in patternpat as follows:

If v, = any, orv; andv, satisfy one of six conditions: (identical
condition(v; = V), (2) equivalent conditiorfv; andv, are equiva-
lent), (3)plug-in condition(v; andv, are equivalent or subsumed),
(4) covering conditionv; andv, are equivalent or including), (5)
overlapping conditior{v; andv, have a non-disjoint relationship),
or (6) unrelatedcondition (v, andv, are disjoint), thew; is unifi-
able withv,; Otherwisey; is not unifiable withv,.

Timeis a special field following different unificatiomles includ-
ing conditions likeclose tq before after, within and covering
These all have intuitive interpretations.
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freshness = 10 seconds ago
certainty = 90%

area = operating theatre
time = 10am on Jun 7, 2005

operating
theatre: object

Peter: subject

enter
[ ]

plug-in plug-in equivalent plug-in plug-in
| ' : plug-in
’ v ;
X go into 3rd-floor room:
pat | person: subject :
object
time = from Apr 1 to Jul 1, 2005
area = Hope Hospital

certainty = 80%
freshness = 5 mintues ago

Figure 3. A context matching example

Different fields in a pattern can apply differeminditions. Figure
3 illustrates an example, which shows that contestanceins,
“Peter enters the operating theatre”, matches npap&t, “A per-
son goes into a 3rd-floor room”. Note that tertainty field in
pat has an “at least” interpretation. As suckytainty “90%” in
ins is unifiable with certainty “80%” in pat under the plug-in
condition. The same interpretation applies tofthehnesdield.

The above example assumes the following conceparsénrela-
tionships (which can be inferred from an ontologyadbase that is
maintained by the system administrator):

- match(“plug-in”, “Peter”, “person”) = true
- match(“equivalent”, “enter”, “go into”) = true
- match(“plug-in”, “operating theatre”, “3rd-floor room™¥ true

Context matching relates context instances andenattunder
semantic interpretations, supporting higher exjwvesgss in con-
text queries than simple byte-by-byte compariséwsssuch, it is
also known as semantic context matching. In coniesonsis-
tency detection (see Section 4.2), automatic reagooan be
supported by semantic context matching.

4.1.2 Complex Context and Constraints

enter

time = any
@ area = any

equivalent

n person: Subject

place: Object

is

D, person: Subject doctor: Object

time P
within

. any
plug-in X .
,,,,,,,,,,,,,,, plugTin | area = Hope Hospital

performed on .
Subiect verson: Object
Subjec !

time = any |moommmme
+10 minutes close to

equivalent
area

any

equivalent

,,,,,, nervous: Object

L look
person: Subject

close to

. time = any
equivalent

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, area = any

Figure 4. The complex context example

Complex contextcx is defined as a group of pattenpatterns=
{pat;, pat, ... pat} with a group of constraintsonstraints=
{cns, cns, ..., cns}. Constraints are used to express the relation-
ships between these patterns. They are enforcachtine. Each
constraint takes the form ofufe, j, field;, k, field,), meaning that



if there are two context instances matchedpfay andpai, respec-
tively, their values in fielddield, andfield,, respectively, should
satisfy the giverrule (unification rule). To make the whole com-

plex contexiccx assessed to be the current situation, there neust b

a group of context instances matching each paitecex respec-
tively, and these context instances must alsofgatisccxXs con-
straints.

Figure 4 illustrates the complex context exampbruased at the
beginning of Section 4.1. It consists of four patteand eight
constraints between them (including three timinghstraints,

three spatial constraints and two data constrairgpyesented by
dashed lines. We explain three of them for illustra

- Timing constraint (“+10 min close to”, 1, “time”, 3, “time”):
The timewhen a person enters such a pliacg0 minutes before
an operation is performed there.

- Spatial constraint (“equivalent”, 1, “area”, 3, “area”): A
person entera place wherean operation is going to be per-
formed in ten minutes.

- Data constraint (“equivalent”, 1, “subject”, 2, “subject”):
The person whenters some plads a doctor.

The enforcement of constraints over the “tablestivée from
context matching is similar to thegui-joinin relational databases
[18]. Each “table” contains matched context insenéor each
corresponding pattern, and the join “columns” apectfied by
constraints. The difference is that “columns” aated by seman-
tics, in particular when we use the equivalent dord which
connects two field values of similar meaning (e“gnter” and
“go into”). This kind of join is calledemantic-join

The semantic matching and join used in our modd imajor
difference from other models. An advantage is thaimplifies

the task of describing general context inconsistépay., context
“some persolis performing twaunrelated jobsat the same time”
is considered inconsistent).

4.2 Detect and Resolve Context Inconsistency
We regard context inconsistency as a special kihdomplex

context, in which situation assessment is subdénherent con-
tradiction. Based on the previous model preparatiois subsec-

Each pattern should match at least one contexarastin the
context repository such that the whole conditiogassfied.

- Action is a procedure that is executed when the triggercti-
vated and its condition is satisfied.

Figure 5 illustrates how to use inconsistency &gy to describe
the problematic situation discussed in Sectiorh& Action part is
omitted). Please note that constraints also ajptphditions.

4.2.1 Inconsistency Detection Algorithm

Three context types are identified based on theirtext nature:
sensed context@.g., Peter enters the operating theatre) are col
lected by sensor devicedpmain contextée.g., Peter takes care of
Michael / Michelle was born in Jan 1977) are suggblby human
operators; andlerived contextg§e.g., Michael becomes uncon-
scious) are computed by software programs base@xting
contexts. Sensed and derived contexts typicallpgdanore fre-
guently than domain contexts.

The execution of an inconsistency trigger can béddd into
three steps: (1) context detection, (2) conditieal@ation, and (3)
action execution. Step 1 focuses on the monitoah@coming
time-stamped context events (mainly sensederived contexts);
Step 2 performs queries against stored historyestst(mainly
domain contexts).

Context nature is a factor affecting the executtbmconsistency
triggers. The detection buffer (or matching quepésase refer to
the following algorithm) size is decided by theshaess require-
ments of related patterns in Step 1. To save menusyally only

sensed and derived contexts are monitored in tiejg. SThese
contexts often have a strong freshness requirenteading to

short matching queues.

Compared to event detection, inconsistency detedften needs
to consider various types of constraints (e.g.ingnspatial and
data constraints). Even for timing constraintspimistency detec-
tion has to differentiate a context’'s generationetifrom its effec-
tive time, while event detection only focuses oneaant’s occur-
rence time. From the perspective of timing constsaian event's
occurrence time is analogous to a context’s geio@ratme. So
the context inconsistency detection can subsumet eletection.

tion introduces inconsistency triggers

equivalent

ing which provides an effective| caivalent #
mechanism for inconsistency deteg
tion and resolution. Our model of
inconsistency triggers is adapted fron
the Event-Condition-Action HCA)
triggers in active database system
[18]. We define an inconsistency
trigger as tgr (event condition
action):

verson: Subject

operation: Subject

close to

>

Py

D,

place: Object ‘ ‘ person: Subject

person: Subject

- Event is a context-related change
that activates the trigger. It specifie
a complex context descriptioccx
that describes our interested situa
tion. The change occurs wheoxis
assessed to be the current situation.

- Conditionis a context-related query|
that is run when the trigger is acti

close to

P time = any

area = any

Py

- verson: Subject

close to

look up

time = any

area = any

doctor: Object
- within - !
time any : time any
’ I plug-in j
area = any area = any
equivalent s
performed in . - . .
T place: Object person: Sub ject patient: Object
time = any time = any
area = any X area = any
equivalent
become unconscious:
Object

within

!

plug-in

medical resource:
Object

Event Condition

vated. It includes a group of pat-
terns that represent a series of tests.
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Figure 5. An inconsistency trigger



We give the detection algorithm below:
(1) Context Preprocessor Thread (Ti):

wait for any incoming context instance ins
f or each pattern pat matched by ins
add insto pat'smatching queue pat _que
i f insisthe first elementin pat _que

t hen create a timer t for
freshness requirement and
time

(2) Inconsistency Triggering Thread (Ty):

pat basedon pat'’s
i ns's generation

wait for any new context instance insin pat's
matching queue pat _que
f or all other patterns pati, patg, ..., and pat
in pat’s owner trigger tor
if exists ins;in pat_que;, inszin pat_quey,
..., and ins,in pat_que, such that tgr's
constraints on ins, ins;, insy, ..., and ins,
all satisfied
then if tgr’s conditions also satisfied
t hen inconsistency detected
(3) Tinmer Controller Thread (Ts):
wait for any expired timer t
remove the first element from t's related
pattern pat 's matching queue pat _que

i f pat_que empty

then cancel t

el seupdate t basedon pat'’s freshness
requirement and the new first element’s
generation time (in pat _que)

The algorithm consists of three threa@isperforms matching for
each incoming context instance, and attaches a @bjiyto each

matched pattern’s matching queuB monitors all matching
gueues to see whether there is a group of conistdrices able to
activate a trigger with all its conditions and coamts satisfied.

T, andT, work as a producer-consumer pair of context ircgtan
for inconsistency triggering purposes; manages all running
timers and removes expired context instances fioeir focated

matching queues when necessary.

According to the classification froil8noop[5] for instance con-
sumption, the above algorithm adopts twmtinuouspolicy [1],
i.e., maximizing the use of each context instarmmaling to its
relevant freshness requirement (3ge The freshness requirement
of a pattern specifies the period in which a madcbentext in-
stance for this pattern stays valid. Under thiscijation, the
algorithm detects all possible inconsistencies anealid cap-
tured context instances. In implementation, freshneequire-
ments can be enforced by timers.

The continuous policy for event detection is gelyimpractical
because of its unlimited memory cost but such pabcfeasible
for our complex context detection. This is because can control
the memory cost by setting a reasonably strondnfiress require-
ment, i.e., a short time period. The maximum menuast of our
implemented framework is below 23MB (including thevaVM's
memory cost) under the experimental setting iniSedt.

Another consideration is delay time. New contextgento be kept
in matching queues for a period dependent on retepatterns’
freshness requirements. Fortunately, the delayisraéso control-
lable (fully decided in the design phase by spéuifyfreshness
requirement). Users are urged to avoid unreasonabdk fresh-
ness requirements in Step 1. Weak freshness reognts should
be moved to Step 2, which does not affect the diatey. Another
solution is to allow access to these temporaryedrdata (still in
matching queues) at the cost of possible incomsigte
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4.2.2 Inconsistency Resolution

The context matching and inconsistency triggeriragleh contrib-
utes to inconsistency detection by semanticallynitef and dis-
covering: (1) the relationships between contextainses and
patterns, and (2) the relationships between contestances
(Figure 6). Once an inconsistency is detected, @roppairing
actions need be taken to guarantee the accuramntéxt.

User-customized triggers

‘ Pattern pat,

‘ Pattern pat, ‘

Semantic matching Semantic matching

Instance ins,

Constraints

Figure 6. Context matching and inconsistency trigging

Generally, when we detect inconsistency between aed old

data stored in an information repository, commotioas are to
repair the repository based on two types of pddic{@) Accept

policy: Accept new data into the repository and deleterisis-

tent old data for inconsistency-resolution; @8ject policy: Re-

ject new data, and old data remain unchanged. éittext, either
policy solely focuses on the repairing on the répog but pays
little attention to repair the context sources.siish, the environ-
ment may still keep generating inconsistent costext

Recently, a substantial amount of work has beenentedactive
systems, which either react automatically to emrnent changes
(reactive systems) or predict changes in theirrenwments (pro-
active systems) [1]. Concerning inconsistency rggmh, the tra-
ditional accept/reject policies belong to reactigpairing actions,
which work when actual inconsistencies have ocdurre

Reactive repairing actions cannot effectively prevature incon-
sistencies. To overcome this limitation, we propas@echanism
to support both reactive and proactive repairirtgpas:

- Reactive repairing actionare performed to repair context data
in the context repository. This is analogous to dheept/reject
policy except that we also support on-demand conipdate.

- Proactive repairing actionsare performed to repair context
sources, e.g., to control or adjust problematisisgndevices to
avoid further occurrences of inconsistent contexts.

Two policies are supported by reactive repairirtipas:

1. Static policy:

- Delete pre-specified context instances (e.getdethe instance
matched by patterpat).
Primitive: delByPat(patterniD)

2. Dynamic policy:

- Delete most uncertain context instances (e.detel¢he instance
with the lowest uncertainty).
Primitive: deIByUct(LOWEST)

- Re-query relevant context sources to get a nguy éor some
context instances.
Primitive: uptByPat(patternID, queryTime)

By default, all context instances kept in the débecbuffer will
be moved to the context repository automaticallyemwhelevant
timers expire except for those which have to betedel according
to the static policy. In the dynamic policy, theegutime has to
be enforced when executingptByPat . Such time enforcement



is usually reasonable and useful as discussed2h yhere in a
location re-query example, a one-minute time limiticates both
that the user can afford to wait some time for qoery to com-
pleted, and that the user desires the locationigeoto expend a
sufficient amount of effort to locate a certaingmer. Although too
long a time limit is unacceptable for the timelsotution of in-

consistency, multi-thread technology for parallebgessing of
inconsistency can alleviate this problem.

Two policies are supported by proactive repairictioas:

1. Active policy:

- Control the lifecycle of a context source (affefayTime ).
Primitive: srcCtrIByPat(patterniD, PAUSE/
RESUME/RESTART/STOP/START, delayTime)

- Count/get the inconsistency times for/of a cohgaurce.
Primitive: incCntByPat/getCntByPat(patterniD)

2. Passive policy:

- Send feedback to a context source and allowatljast itself.
Primitive: fdbkByPat(patternID)

Most sensor devices and software programs suppextdontrol
from the middleware on their lifecycles, which malgossible for
them to stop generating contexts or restart atex kime when
necessary. The passive policy is based on the \aliger that
some advanced context sources can adjust errorfaimtg by
changing algorithm parameters (e.g., a locatiorivihey algo-
rithm). A practical example is MicrosoRADAR[2] with a 50%
uncertainty on its location calculation and a maximerror of 3
meters. The uncertainty can be lower if a greater és allowed.

The following gives example repairing actions fbe thospital
scenario we discussed earlier (see Figure 5):

Step 1: repairing context data

(1) uptByPat(1,500)

(2) uptByPat(4,500)

(3) int pid = delByUct(LOWEST {1,4})

Step 2: repairing context sources

(4) incCntByPat(pid)

(5) int t = getCntByPat(pid)

(6) if (t>2) fdbkByPat(pid)

(7) if (t>5) srcCtrIByPat(pid, RESTART,1000)
(8) if (t>10) srcCtrIByPat(pid,STOP,200)

The above code tries to update the context inssanched for

patternsp; and p;, and decide which one has the lower uncer-

tainty. For the context source which generates toistext in-
stance, its inconsistency counter is increased,ted some ac-
tion (e.g., feedback sending, restarting or stogpis taken ac-
cording to the counter value.

Supporting proactive repairing actions is non-giviDifferent

context sources may vary in the support of incaestsy repair-
ing, and a designer may have no knowledge aboutonéext

sources involved at runtime. Currently, illegal agmg actions
are ignored automatically. For future extension,ane investigat-
ing a negotiation-based repairing mechanism whitegrates the
consideration of learning supported repairing axiat runtime.

5. IMPLEMENTATION

The consistency management framework assumes #ikalzlity
of an underlying context middleware. We have impated the
framework based on one of our research proje@sbot Cabot
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is a software infrastructure supportingr@ext-aware_Aplica-
tions Built on Ontology Technology developed byDK 1.4.2.
From Cabots point of view, a pervasive computing environment
is composed of amapplication layer a middleware layerand a
context source laygiFigure 7).

Application
Layer Default Framework / Application Logic
User Space APIs H Context APLs
‘ Communication Support ‘
[
7 i /
Middlevare ] A Lo
Layer Context Application @ ; Services
Dispatcher gement 1 M t
Context Collector Context Context Matchin Concept Semantics
& Controller Reposi tory xt M € Reasoning
i)
Context Source B 9
Ontext Source <] Sensor Devices / Software Services / Human Operators
Layer <

Figure 7. TheCabot system architecture

The middleware layer is the kernel partGdbot It includes five
fundamental functionalities: application managemeobntext
management, context matching, semantic reasonimy tlaind-
party services management. A more detailed intrbdiudo these
functionalities can be found in [26].

Our consistency management framework is realizec #sird-
party service plugged int@abot When a new context instance
arrives, all plug-in services are invoked one by dor context
filtering purposes such that management tasks iker ¢ontext
consistency can be achieved. An editor in the fraonk enables
application developers to customize their incoesisy triggers.
Repairing actions are also specified in the degigase. Cur-
rently, they are implemented through a callback heaism in
terms of user-designed java classes that use ahefork primi-
tives (see Section 4.2.2). The framework is resiptsm$or main-
taining a consistent context repository. Applicaticaccess con-
text of interest via queries or topic subscription.

To support effective context matching and incoesisy detection,
the Cabot kernel has been rewritte@abots early version was
built on thexlinkit technology in which computationally expen-
sive checking consumed much processing time. M@ ®eman-
tic-join and complex context detection were notmued in that
version.Cabots current version has increased expressive power
for context capture and inconsistency detectiore fibw detec-
tion algorithm is based on tiamit technology (see Section 8).

6. CASE STUDY

This section takes an automatic vehid&/Y system based on the
Radio Frequency ldentificationRFID) technology as a case
study. AV system is one of our ongoing projects on context-
awareness with a goal to provide continuous rercotgrol on
intelligent vehicles working for humans in an adbesenviron-
ment (e.g., too dark, dangerous, hot or noisy).

To facilitate the location estimation of vehiclemme reference
sites are chosen and installed WRRID tags. These tags together
with those attached to vehicles are used for tgaeiach vehicle,
routing them to perform designated tasks at diffedestinations.
AV system is context-aware in that it controls vedscbased on



the environmental context and each vehicle's caoitits typical
tasks include automatic path selection and cotlisieoidance.

In practice, certain conditions may introduce imeot data toAV
system. For example, a fast moviRgID tag attached to a vehicle
might be missed bRFID antennae (e.g., “detected” vs. “not de-
tected”); overlappedRFID tags due to the close proximity of two
vehicles could not be always distinguished (eigg A detected”
vs. “tagB detected”); metal and electromagnetic goods wiadd
to reduced detection sensitivity (e.g., “no tagvacty; and high-
level context reasoning services for inferring eahdded context
(e.g., “vehicleC enters arel or “vehicle D is stopped in areld”)
might generate incorrect context (e.g., “leave” Vsnter” or
“moving” vs. “stopped”).

As a result, context inconsistency naturally ocdarseality and
affects the correct functioning @V system. For example, auto-
matic collision avoidance of multiple vehicles wouil if the
existence of somRFID tags cannot be correctly identified or the
current position of a moving vehicle cannot be fs&ly com-
puted. In practice, multiple sensing technologig.( infrared or
ultrasonic) can be used for providing multiple dsdairces. How-
ever, this increases the probability of contexturethncy and
inconsistency because these technologies useeatiffapproaches
and standards to compute related context dataystem’s strate-
gies may be unexpectedly affected by inconsistemtext and
possibly generate incorrect control on vehicles.

Suppose that the following context sources have lse¢ up &
sensor devices;: software programg]: human operators (Figure

8):

Cabot Middleware

Figure 8. AV system and context sources deployment

S1: FourRFID detection systems provide signal strength informa-
tion for theRFID tags detected in their sensing ranges.

S2: The ultrasonic sensor installed in each vehicleviges the
distance information to its adjacent barriers (ewghicles and
goods).

S3: The accelerometer installed in each vehicle pewithe tilt
and vibration measurements of the vehicle.

F1: The LANDMARCalgorithm [17] computes the real-time loca-
tion of each vehicle (frorgl).

F2: A collision avoidance service reports possibldigion when
two vehicles are too close (frofi).

F3: Another collision avoidance service reports pdssibllision
between a vehicle and its adjacent barriers (f&@in

F4: A vehicle status service provides each vehiclaisent activ-
ity information (e.g., moving, loading or stoppéfipm S3).

F5: A task management program arranges everyday pestated
goods conveying tasks.
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H1: A console interface accepts user’s inputs and rgéee on-
the-fly goods conveying tasks.

We consider two major functions Al system:

SELT: According to each vehicle's current location antivdy,
select the most suitable vehicle (e.g., close ¢oghods and free
of tasks) to carry out a given task.

CTRL: According to the environmental context feedbacly.(e
the distance to other vehicles), adjust the cositbol each moving
vehicle to avoid collisions.

The SELT function may be affected by the precision of vihic
location computation, which is not always accuréteg., the
LANDMARCalgorithm has an average error of 1 meter under th
experimental setting discussed in [17]). TB€RL function de-
pends much on the reports from two collision avo@aservices,
but sometimes they may report inconsistent sitanati@.g., “vehi-
cle C is close to vehicl®” vs. “vehiclesC andD are in different
areas”). To alleviate the impact of possible contegonsistency,
the following two inconsistency triggers are design

SELT: If a vehicle’s continuously computed locations war
largely (e.g., more than 2 meters) over a shoiibdesf time (e.g.,
1 second), a possible location inconsistency ocdliosrespond-
ing repairing actions: update the latest locatienf¢rce query
time < 1 second) and delete the old one if theya@oaifferent.
CTRL: If two collision reports fronRFID-based and ultrasonic-
based technologies are inconsistent, update ttex,laind if they
are still different, choose the former and increds® inconsis-
tency counter for the latter. If the counter vateaches 5, restart
the relevant ultrasonic sensor, and if the valug been already
larger than 10, stop it and write system logs faygested mainte-
nance (possible damage).

Currently, the project is still under developmértie feasibility of
our consistency management framework needs fueth&uation
through practical studies.

7. PERFORMANCE MEASUREMENTS

The goal of performance measurement is to estithaténcoming
context rate thaCabotcan handle. Inspired by the scenario classi-
fications in [1], we have designed four test scersar

Standby world: This is an empty scenario that does not define
any inconsistency trigger. It gives an upper boandhe perform-
ance ofCabots context processing.

Noisy world: This is a light scenario in which only a low perten
age (12%) of the incoming context activates pasténninconsis-
tency triggers. The inconsistency triggers arecootplex, i.e., no
conditions or constraints.

Filtered world: This is a filtering scenario in which a high per-
centage (35%) of the incoming context activates gagerns in
inconsistency triggers. However, the conditions dfigh percent-
age (66%) of the activated inconsistency triggeesnat satisfied.
The inconsistency triggers are relatively compliex. ( conditions
are tested without constraints).

Complex world: This is a heavy scenario in which a quite high
percentage (50%) of the incoming context activiitespatterns in
inconsistency triggers, and the conditions of ahhigrcentage
(66%) of these activated inconsistency triggerssatésfied. The
inconsistency triggers are very complex (i.e., ¢ools are tested
with constraints).



Experiments were designed for comparidgbots performance
in the four simulated worlds. They were performedaoPentium
IV 3.20-GHz machine running Windows XP Professiodaton-
text source thread sent 2000 context instanceSatmot at 2 in-
stances per second. Example contexts were genexatethcon-
sistency triggers (3) were designed according &rdguirement
of each scenario (except the standby world). Eacbrisistency
trigger contains 4 or 6 patterns and 11 constrdifitany). For
contrast, the repository contained fixed numberO{16f history
context instances for condition testing for actatnconsistency
triggers. All freshness requirements of patternsnionsistency
triggers were set to 10 seconds. Three parametesmonitored:

(1) Number of incoming context instances, activdtegbers (i.e.,
all event patterns are matched) and triggered sistencies (i.e.,
all conditions are satisfied with constraint en@anent)

(2) Total time (sec), event pattern matching tirsecyf, condition
pattern matching time (sec), constraint enforcertierg (sec) and
other overhead time (sec)

(3) Processed context instances (per min) and @eteécconsis-
tency number (per min)

Table 1. Performance measurement results

Sta. Noi. Fil. Com.
World  World World World
Incoming Ctx. 2000 2000 2000 2000
Activated Tgr. 0 39 974 1310
Triggered Inc. 0 69 1632 2250
Total (s) 1.92 23.96 594.59 809.41
Event (s) 0 22.01 65.50 69.33
Condition (s) 0 0 526.04 677.39
Constraint (s) 0 0 0 59.39
Overhead (s) 1.92 1.95 3.05 3.30
Contexts / m 62565 5008.35 201.82 148.26
Inconsistencies / m 0 172.79 164.69 166.79

Table 1 presents the average results of performaieesurements
of five executions with little difference among thewhich show:

(1) Cabots upper bound was about 62500 context instances pe

minute. This rate was achieved when none of thenmiieg con-
text instances takes part in any inconsistencyctiete

(2) The lower bound was about 150 context instapegsminute.
This happened when quite complex inconsistencygerg were
activated and evaluated frequently. This kind afecis unlikely to
occur in reality.

(3) A relatively high percentage (88.5% for théefied world and
83.7% for the complex world) of the total time veent on con-
dition pattern matching. This indicates that thediton evalua-
tion (needs to query all history contexts) is cotapianally ex-
pensive. The reason is that our current implemiamtatannot
utilize mature database technologies that do nppet semantic
matching and join.

8. DISCUSSION

E-brokeragd14] andAmit [1] present two interesting solutions to
the problem of event detection. Their solutionsebasn event
modeling are similar to ours in that all three $iolus focus on
constraint specification and situation detectiBrbrokerage[14]

is based on event instance modeling. Although iinjgractical to
adopt the continuous policy for event instance oomgion be-

cause of the lack of controllable constraints stance freshness
requirements (leading to unlimited memory co&)brokerage
[14] utilizes restricted instance relationshipgy(ethe time inter-
val between thé-th E; andE, instances) to limit the number of
available event instances. However, context detectieeds to
maximize the use of each context instance withdrvélid period
(specified by freshness requirement) in order teateany possi-
ble inconsistency. The index of an available coniestance,
which is decided dynamically by its generation tiamel the rele-
vant pattern’s freshness requirement, cannot beetadddirectly
using restricted instance relationships which asetially static.

The approach adopted Bynit [1] is closer to ours. It is based on
event type modeling since any event instance béigng a rele-
vant event type can participate in the target sdnadetection. In
order to adapt to complex context detection in gsife comput-
ing, Amit [1] system’s underlying data structures have tonogli-
fied to allow for more attributes such efective timeandarea
such that complex timing, spatial and data condsacan be
modeled. Moreover, the detection algorithm haseenodified to
enforce new complex constraints such as freshrezgsrement.
Such adaptation work is non-trivial, and the adémtaresult
(plus our semantic matching and join for reasorpngooses) is
equivalent to our proposed context model.

In inconsistency resolutiorxlinkit [15] is an excellent tool for
XML document integrity checking. The major reason wiiykit
is not suitable for context consistency manageriettiat it can-
not adequately support the regular and frequergctien of in-
formation inconsistency. A direct application xinkit to incon-
sistency detection in dynamic pervasive computingrenments
requires repeatedly checking the entire contexosigpry, which
is computationally expensive. Our past experierfcasing it in
Cabots early version exhibited unsatisfactory perforemrbe-
cause of the great amount of expensive checkiadpots current
version outperforms its previous version by 370@%0%, 130%
and 150% under the four simulated worlds, respelstiv

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the natural impéréss of context
in pervasive computing environments, and analybedhtardness
of context consistency management from two aspéutsinsis-
tency detection and resolution. A formal semantatahing and
inconsistency triggering model is proposed to capinconsistent
contexts. Then a proactive repairing mechanismripgsed to
realize automatic inconsistency repairing. The whivhmework
has been implemented based onGladotmiddleware.

Our framework still has limitations in performand&e are con-
sidering more efficient matching algorithms buift mature data-
base technologies. Moreover, the enumeration ofnaginable
inconsistencies is somewhat impractical. So weatse working
on incremental violation checking techniques fomsistency
constraints that are more feasible in practiceeOisues such as
negotiation-based repairing mechanisms and sciéjatdnsidera-
tions will be incorporated into our improved franak:
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