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ABSTRACT  
Context-awareness is a key feature of pervasive computing whose 
environments keep evolving. The support of context-awareness 
requires comprehensive management including detection and 
resolution of context inconsistency, which occurs naturally in 
pervasive computing. In this paper we present a framework for 
realizing dynamic context consistency management. The frame-
work supports inconsistency detection based on a semantic match-
ing and inconsistency triggering model, and inconsistency resolu-
tion with proactive actions to context sources. We further present 
an implementation based on the Cabot middleware. The feasibility 
of the framework and its performance are evaluated through a case 
study and a simulated experiment, respectively. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 
Methodologies 

General Terms 
Algorithms, Design, Management, Performance 

Keywords 
Pervasive Computing, Context Modeling, Context Consistency 
Management, Semantic Matching, Proactive Repairing 

1. INTRODUCTION 
Pervasive computing environments encompass a spectrum of 
computation and communication devices that seamlessly augment 
human thoughts and activities [21]. Applications in this type of 
environments are often context-aware, using various kinds of 
context such as location and time to adapt to the evolving envi-
ronments and provide smarter services. For example, a mobile 
phone would vibrate rather than beep in a concert if the system 
knows the user’s location. Pervasive computing applications need 
to be context-aware in order to respond quickly to their dynamic 
computing environments. The growing demand of context-
awareness poses an impending requirement on context consistency 
management. 

In pervasive computing, the context of a computation task refers 
to the circumstances or situation in which the task takes place 
(e.g., user’s current location and activity). Context consistency is 
maintained when there is no contradiction in a computation task’s 
context; otherwise context inconsistency is said to occur. To un-
derstand the meaning of context contradiction, let us consider a 
scenario from the healthcare industry: 

Peter is a doctor working for Hope Hospital. He carries a Personal 
Digital Assistant (PDA) as his agent for arranging daily activities. 
Many kinds of context, such as the environment in which Peter is 
working, the room in which Peter is located, and the condition of 
a patient being taken care of by Peter, may affect the agent’s sug-
gestion for Peter’s next activity. Suppose that at some time the 
agent acquired three context pieces from different sources: 

(1) Peter is in the operating theatre (user location); 
(2) An operation is being performed in Room 3504 (room status); 
(3) Peter is looking up medical resources (user activity). 

From (1) and (2), the agent would probably conclude that Peter is 
occupied with an operation based on its pre-obtained information 
that Room 3504 is the operating theatre. However, from (3) the 
agent might draw another conclusion that Peter is not attending an 
emergency and therefore able to help patient Michael immediately 
if he becomes unconscious at any moment. The two opposite as-
sessments reflect the contradiction in the current context, i.e., a 
conflicting understanding of the surrounding environment. Thus 
the agent might have difficulty in deciding whether to guide Peter 
to Michael to check his condition or forward this request to an-
other doctor. As a result, the agent might fail to function correctly. 

There are a number of reasons why context inconsistency occurs. 
In the above scenario, it could be inaccurate location detection 
(e.g., Peter is passing by instead of actually staying in the operat-
ing theatre) or incorrect activity reasoning (e.g., Peter is walking 
around his office desk on which are some medical resources in-
stead of looking up them at that moment). However, regardless of 
which reason, the agent can hardly detect and resolve such incon-
sistencies by itself due to the lack of adequate reasoning capabili-
ties, global situation assessment and effective repairing actions, 
which typically require considerable computing resources that are 
not available for portable pervasive computing agents. 

An unfortunate observation is that context inconsistency is com-
monly found in real-life systems. ActiveCampus is a real-life ex-
ample presented in [8]. When context inconsistency occurs due to 
stale data, ActiveCampus is unable to correctly estimate a person’s 
location, which could affect the normal functioning of some ser-
vices. Our research shows that the occurrence of context inconsis-
tency stems from the natural imperfectness of context: 
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- Highly dynamic environments make context easily obsolete 
[11]: For example, the location context of a fast-moving subject 
(e.g., a doctor running to an emergency) is prone to errors. 

- Context can be offered by heterogeneous sources under dif-
ferent standards: Various sensing technologies and standards 
may lead to semantically contradicting context (e.g., “inside the 
room” vs. “near the door but outside the room”). 

- Context reasoning may introduce inaccurate information 
due to computing-resource limitation: The requirement of 
real-time response (i.e., time limitation) may result in partial 
consideration of available context in inferring high-level context 
such as user activity. 

- Network disconnection or failures lead to incomplete context 
[11]: The mobility of pervasive computing increases the 
chances of context loss (e.g., “Peter and Michael enter the oper-
ating theatre” vs. “only Peter enters the operating theatre”). 

The natural existence of these imperfect sources makes context 
inconsistency a common phenomenon. It is difficult to guarantee 
the correctness, integrity and non-redundancy of context in perva-
sive computing. However, this problem has not been explicitly 
addressed by existing context-aware systems (e.g., Context Toolkit 
[6], EgoSpace [13], Gaia [21] and Aura [25]). To overcome this, 
we have identified two key issues: 

- Inconsistency detection: Context inconsistency is a semantic 
phenomenon rather than a syntactic one, whose detection re-
quires non-trivial reasoning work. For example, a context piece 
“free / not in an emergency” may contradict with “performing 
an operation”, while it can coexist with “looking up medical re-
sources”. Usually, the detection is based on common sense and 
user-specified rules. 

- Inconsistency resolution: Context evolution in pervasive com-
puting is dynamic and fast, which requires an automatic incon-
sistency resolution mechanism. Moreover, simple repairing on 
current context is inadequate for maintaining a stable running 
environment for applications. Proactive control or feedback to 
context sources is required to prevent future inconsistencies. 

To the best of our knowledge in the existing work on pervasive 
computing, a systematic study of these two issues has not been 
conducted. Although it could be argued that they are similar to the 
evidence aggregation problem [24] from the artificial intelligence 
(AI) discipline, the similarity only lies in that both of them relate 
to information inconsistency. The causes of inconsistency and the 
corresponding challenges in resolving it actually differ a lot 
(please refer to Section 2). Moreover, this paper aims at proposing 
a consistency management framework using software engineering 
methodology rather than working on sophisticated inconsistency 
detection algorithms using AI techniques. 

The remainder of the paper is organized as follows. Sections 2 and 
3 introduce related work of recent years and preliminary concepts 
on context modeling, respectively. Section 4 presents our frame-
work for context consistency management by focusing on com-
plex context and constraints modeling, and inconsistency detec-
tion and resolution. Section 5 briefly introduces the implementa-
tion of Cabot [26] – a middleware that supports context consis-
tency management. This is followed by a case study in Section 6 
and a simulated experiment in Section 7. Section 8 discusses the 
feasibility of adapting existing technologies to our work. The last 
section concludes the paper. 

2. RELATED WORK 
Existing studies on context-awareness are mostly concerned with 
either the frameworks that support context abstraction or the data 
structures that support context queries. Pioneering work by Schilit 
et al. [22] proposes using environment servers to manage context. 
The context model in this work is simple. Schmidt et al. present in 
[23] a layered processing model in which sensor outputs are trans-
formed into cues that comprise a set of values with certainty 
measurements. Gray et al. in [7] are concerned with capturing 
context meta-information that describes features such as represen-
tation, quality, source, transformation and actuation. Harter et al. 
in [9] propose a conceptual context model that is constructed 
using an entity-relationship based language. Henricksen et al. in 
[11] comprehensively analyze context by covering temporal char-
acteristics, information imperfection, various representations and 
high interrelation. These works are mostly concerned with context 
modeling techniques, while the problem of context inconsistency 
is not adequately addressed. Advanced issues about inconsistency 
detection and resolution are rarely discussed. 

Some research projects, e.g., Gaia [21], Aura [25] and EasyLiving 
[3], have been proposed to provide middleware support for perva-
sive computing. They are mainly concerned about the organiza-
tion of and the collaboration among pervasive computing devices 
and services. Other infrastructure projects mostly focus on the 
context processing, reasoning and programming support. An ear-
lier representative work is Context Toolkit presented in [6]. It 
assists developers by providing abstract components (e.g., context 
widgets, interpreters and aggregators) that can be connected to-
gether to capture and process context data from sensors. Context 
Toolkit falls short in supporting highly-integrated context applica-
tions. To overcome this, Griswold et al. in [8] propose to apply a 
hybrid mediator-observer pattern in the system architecture. Hen-
ricksen et al. in [10] present a multi-layer framework which sup-
ports both branching and triggering programming models. Ranga-
nathan et al. in [19] discuss how to resolve potential semantic 
contradictions in context by reasoning based on first-order predi-
cate calculus and Boolean algebra. In [20] they extend the work to 
reasoning about context uncertainty using AI mechanisms like 
fuzzy logic. These works have tackled several challenges in con-
text processing, reasoning and programming, and conducted pre-
liminary research on context certainty representation and uncer-
tainty reasoning, but inadequate attention has been paid to the 
repairing of inconsistent context. 

Pervasive computing, a relatively new but fast growing discipline, 
shares many observations and technology with AI, active data-
bases and software engineering disciplines. In the AI discipline, 
expert systems have been developed to support intelligent strategy 
making. Much effort has been made on the evidence aggregation 
problem so that the systems are able to make reasonable strategies 
based on contradicting evidences or rules, but the causes of incon-
sistency are rarely addressed. Composite event detection is an 
important issue in the active databases discipline for triggering 
pre-defined actions once desired events are detected. E-brokerage 
[14] and Amit [1] are two widely known projects aimed at detect-
ing composite event occurrences or situation changes with com-
plex timing constraints. The difference lies in the facts that the 
former is based on event instance modeling and the latter on event 
type modeling. In the software engineering discipline, CARISMA 
[4] is proposed as reflective middleware support for mobile appli-
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cations. It focuses on policy conflict resolution that is similar to 
our work, but it assumes that accurate context information can be 
collected by probing sensors periodically, which is different from 
the basis on which our work is built. Nentwich et al. propose a 
framework for repairing inconsistent XML documents based on 
the xlinkit technology [15], which generates interactive repairing 
options from first order logical formulae that constrain the docu-
ments being checked [16]. However, the framework does not sup-
port dynamic computing environments. Moreover, repairing docu-
ments alone is inadequate for resolving context inconsistency in 
pervasive computing. Although the above researches help provide 
similar experience in problem analysis and resolution, their tech-
nologies are inadequate for managing context consistency in two 
aspects: 

- Inconsistency detection: Complex context constraints (e.g., 
timing, spatial and data constraints) cannot be directly modeled. 
For example, the support of generation time, effective time and 
freshness requirement for context consistency management is 
beyond the modeling capabilities of existing technologies. In 
addition, the inconsistency detection algorithm differs due to 
these new complex constraints. 

- Inconsistency resolution: Interactive and simple repairing is 
unsuitable for dynamic and complex pervasive computing envi-
ronments. The automatic repairing of current inconsistencies 
and the proactive preventing of future inconsistencies cannot be 
supported by any of existing technologies. 

3. CONTEXT MODELING 
Context can be roughly divided into physical context and logical 
context. The former is like evidence, recording various events 
arising in the physical world (e.g., an object’s movement and lo-
cation), while the latter is typically used for situation assessment, 
only existing in logical models (e.g., a user’s intent and mood). 
Thus, a general data structure is required for context representa-
tion. However, we do not adopt a simple representation like name-
value pairs or tuple space [13] for the sake of manageability be-
cause it often requires multiple tuples to represent a single context 
piece. On the other hand, neither do we want to list all context 
characteristics as proposed by Henricksen et al. [11] because of 
the high management and computation cost. 

We define context ctx = (subject, predicate, object, time, area, 
certainty, freshness) as a seven-field data structure, where: 

- Subject, predicate and object give the content of the context, 
where subject and object are related by predicate (using simple 
English sentence structure), e.g., Peter (subject) enters (predi-
cate) the operating theatre (object). 

- Time and area specify the temporal and spatial constraints rele-
vant to the context: time represents the time or period in which 
the context keeps effective (e.g., “10am on Jun 7, 2005” or 
“from Apr 1 to Jul 1, 2005”); area is the place to which the con-
text relates (e.g., “Hope Hospital”). 

- Certainty is a percentage evaluating the probability level of the 
context (e.g., “90%”), and freshness indicates the generation 
time of the context (e.g., “10 seconds ago”). 

There are two time-related fields in the structure: time and fresh-
ness. The former is a context’s effective time, while the latter 
specifies a context’s generation time. Normally they are different. 
For example, people relation context “Michael is taken care of by 

Peter” may have a long effective time (say, two months) but its 
generation time may have been “two days ago”. In pervasive 
computing, freshness is a basic requirement for evaluating context 
validness because computing environments tend to change fast 
and the current context may expire quickly. Such consideration is 
not supported in event detection related studies like [1] and [14]. 

For the purpose of complex context recognition, two concepts 
context instance and context pattern are introduced: a context 
instance is defined by instantiating all fields of ctx, while a con-
text pattern (or pattern for short) is defined by instantiating some 
of its fields. Each uninstantiated field (if any) is set to any, which 
is a special predefined value. Intuitively, each pattern represents a 
family of context instances. 

 

Figure 1. Two context instances 

 

Figure 2. A context pattern 

Figure 1 illustrates two context instances in a UML object dia-
gram, which represents that: (1) Peter enters the operating theatre, 
and (2) Michael is taken care of by Peter. Figure 2 illustrates a 
pattern that represents such context instances as somebody enter-
ing the operating theatre. 

4. MANAGING CONTEXT CONSISTENCY 
A key requirement in context consistency management is the abil-
ity to bridge the gap between the context recognized by the mid-
dleware and the inconsistency to which the middleware needs to 
react. This paper aims at bridging the gap by presenting a com-
prehensive consistency management framework for context in 
pervasive computing. Three requirements have been identified for 
this type of computing environments: 

- Semantic reasoning: Context inconsistency is a semantic phe-
nomenon, which requires necessary reasoning for inconsistency 
detection. 

- Automatic resolution: Context evolution is dynamic and fast, 
which requires an automatic resolution mechanism for any de-
tected inconsistency. 

- Feedback control: Repairing on current context is inadequate, 
which requires feedback to context sources to prevent future in-
consistencies. 

338



4.1 Model Complex Context and Constraints 
Let us first take a look at an example of complex context: 

A doctor enters the operating theatre, where an operation is go-
ing to be performed in ten minutes on a patient, who now looks a 
little nervous. 

This example contains several context pieces, including physical 
ones (e.g., a doctor’s location) and logical ones (e.g., a patient’s 
state of mind), and some constraints, including timing constraints 
(e.g., “an operation will be performed in ten minutes”), spatial 
constraints (e.g., “the doctor and the patient are in the same 
room”) and data constraints (e.g., “the person entering the room is 
a doctor”). To model such complex context, we begin with basic 
blocks (e.g., context instances and patterns in Section 3) and use 
operations (e.g., context matching) to connect them together. 

4.1.1 Semantic Context Matching 
A fundamental operation, context matching, is studied below. 
Context matching is a process of checking whether a context in-
stance and a pattern match or not. Unlike other models, our con-
text matching connects context instances and patterns by seman-
tics. Its goal is to integrate basic reasoning into the underlying 
context model. 

There are two usages of context matching: (1) given a context 
instance, search all matched patterns (pat_mat); (2) given a pat-
tern, search all matched context instances (ins_mat): 

=),( rulesinspat_mat  

)}.,.,.(.|{ fieldpatfieldinsfieldrulesfieldPatternspat match∀∈  

=),( rulespatins_mat  

)}.,.,.(.|{ fieldpatfieldinsfieldrulesfieldInstancesins match∀∈  

The match function is a kernel process of evaluating whether a 
given field of a context instance matches its counterpart of a pat-
tern under some unification rule. The notation of unification rules 
is based on concept semantic relationships. Let E(c) denote the 
element set represented by concept c. Any two concepts c1 and c2 
are subject to one of five semantic relationships [27]: 

- equivalent: if E(c1) = E(c2); 
- subsumed: if E(c1) ⊂  E(c2); 
- including: if E(c1) ⊃  E(c2); 
- disjoint: if E(c1) ∩  E(c2) = φ ; 
- intersecting: otherwise. 

Based on the above five semantic relationships, unification rules 
express the conditions under which a given context instance and a 
pattern can be matched. A matching is recognized if each field 
(except time) value v1 in context instance ins is unifiable with its 
counterpart v2 in pattern pat as follows: 

If v2 = any, or v1 and v2 satisfy one of six conditions: (1) identical 
condition (v1 = v2), (2) equivalent condition (v1 and v2 are equiva-
lent), (3) plug-in condition (v1 and v2 are equivalent or subsumed), 
(4) covering condition (v1 and v2 are equivalent or including), (5) 
overlapping condition (v1 and v2 have a non-disjoint relationship), 
or (6) unrelated condition (v1 and v2 are disjoint), then v1 is unifi-
able with v2; Otherwise, v1 is not unifiable with v2. 

Time is a special field following different unification rules includ-
ing conditions like close to, before, after, within and covering. 
These all have intuitive interpretations. 

 
Figure 3. A context matching example 

Different fields in a pattern can apply different conditions. Figure 
3 illustrates an example, which shows that context instance ins, 
“Peter enters the operating theatre”, matches pattern pat, “A per-
son goes into a 3rd-floor room”. Note that the certainty field in 
pat has an “at least” interpretation. As such, certainty “90%” in 
ins is unifiable with certainty “80%” in pat under the plug-in 
condition. The same interpretation applies to the freshness field. 

The above example assumes the following concept semantic rela-
tionships (which can be inferred from an ontology database that is 
maintained by the system administrator): 

- match(“plug-in”, “Peter”, “person”) = true 
- match(“equivalent”, “enter”, “go into”) = true 
- match(“plug-in”, “operating theatre”, “3rd-floor room”) = true 

Context matching relates context instances and patterns under 
semantic interpretations, supporting higher expressiveness in con-
text queries than simple byte-by-byte comparisons. As such, it is 
also known as semantic context matching. In context inconsis-
tency detection (see Section 4.2), automatic reasoning can be 
supported by semantic context matching. 

4.1.2 Complex Context and Constraints 

 

Figure 4. The complex context example 

Complex context ccx is defined as a group of patterns patterns = 
{ pat1, pat2, … patm} with a group of constraints constraints = 
{ cns1, cns2, …, cnsn}. Constraints are used to express the relation-
ships between these patterns. They are enforced at runtime. Each 
constraint takes the form of (rule, j, fieldj, k, fieldk), meaning that 
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if there are two context instances matched for patj and patk respec-
tively, their values in fields fieldj and fieldk, respectively, should 
satisfy the given rule (unification rule). To make the whole com-
plex context ccx assessed to be the current situation, there must be 
a group of context instances matching each pattern in ccx respec-
tively, and these context instances must also satisfy all ccx’s con-
straints. 

Figure 4 illustrates the complex context example discussed at the 
beginning of Section 4.1. It consists of four patterns and eight 
constraints between them (including three timing constraints, 
three spatial constraints and two data constraints), represented by 
dashed lines. We explain three of them for illustration: 

- Timing constraint (“+10 min close to”, 1, “time”, 3, “time”): 
The time when a person enters such a place is 10 minutes before 
an operation is performed there. 

- Spatial constraint (“equivalent”, 1, “area”, 3, “ar ea”): A 
person enters a place where an operation is going to be per-
formed in ten minutes. 

- Data constraint (“equivalent”, 1, “subject”, 2, “subject”) : 
The person who enters some place is a doctor. 

The enforcement of constraints over the “tables” derived from 
context matching is similar to the equi-join in relational databases 
[18]. Each “table” contains matched context instances for each 
corresponding pattern, and the join “columns” are specified by 
constraints. The difference is that “columns” are related by seman-
tics, in particular when we use the equivalent condition which 
connects two field values of similar meaning (e.g., “enter” and 
“go into”). This kind of join is called semantic-join. 

The semantic matching and join used in our model is a major 
difference from other models. An advantage is that it simplifies 
the task of describing general context inconsistency (e.g., context 
“some person is performing two unrelated jobs at the same time” 
is considered inconsistent). 

4.2 Detect and Resolve Context Inconsistency 
We regard context inconsistency as a special kind of complex 
context, in which situation assessment is subject to inherent con-
tradiction. Based on the previous model preparation, this subsec-
tion introduces inconsistency trigger-
ing which provides an effective 
mechanism for inconsistency detec-
tion and resolution. Our model of 
inconsistency triggers is adapted from 
the Event-Condition-Action (ECA) 
triggers in active database systems 
[18]. We define an inconsistency 
trigger as tgr = (event, condition, 
action): 

- Event is a context-related change 
that activates the trigger. It specifies 
a complex context description ccx 
that describes our interested situa-
tion. The change occurs when ccx is 
assessed to be the current situation. 

- Condition is a context-related query 
that is run when the trigger is acti-
vated. It includes a group of pat-
terns that represent a series of tests. 

Each pattern should match at least one context instance in the 
context repository such that the whole condition is satisfied. 

- Action is a procedure that is executed when the trigger is acti-
vated and its condition is satisfied. 

Figure 5 illustrates how to use inconsistency triggering to describe 
the problematic situation discussed in Section 1 (the Action part is 
omitted). Please note that constraints also apply to conditions. 

4.2.1 Inconsistency Detection Algorithm 
Three context types are identified based on their context nature: 
sensed contexts (e.g., Peter enters the operating theatre) are col-
lected by sensor devices; domain contexts (e.g., Peter takes care of 
Michael / Michelle was born in Jan 1977) are supplied by human 
operators; and derived contexts (e.g., Michael becomes uncon-
scious) are computed by software programs based on existing 
contexts. Sensed and derived contexts typically change more fre-
quently than domain contexts. 

The execution of an inconsistency trigger can be divided into 
three steps: (1) context detection, (2) condition evaluation, and (3) 
action execution. Step 1 focuses on the monitoring of incoming 
time-stamped context events (mainly sensed or derived contexts); 
Step 2 performs queries against stored history contexts (mainly 
domain contexts). 

Context nature is a factor affecting the execution of inconsistency 
triggers. The detection buffer (or matching queues, please refer to 
the following algorithm) size is decided by the freshness require-
ments of related patterns in Step 1. To save memory, usually only 
sensed and derived contexts are monitored in this step. These 
contexts often have a strong freshness requirement, leading to 
short matching queues. 

Compared to event detection, inconsistency detection often needs 
to consider various types of constraints (e.g., timing, spatial and 
data constraints). Even for timing constraints, inconsistency detec-
tion has to differentiate a context’s generation time from its effec-
tive time, while event detection only focuses on an event’s occur-
rence time. From the perspective of timing constraints, an event’s 
occurrence time is analogous to a context’s generation time. So 
the context inconsistency detection can subsume event detection. 

Figure 5. An inconsistency trigger 
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We give the detection algorithm below: 

(1) Context Preprocessor Thread (T1): 
    wait for any incoming context instance ins 
    for each pattern pat matched by ins 
      add ins to pat's matching queue pat_que 
      if ins is the first element in pat_que 
        then create a timer t for pat based on pat’s 
          freshness requirement and ins's generation  
          time 
(2) Inconsistency Triggering Thread (T2): 
    wait for any new context instance ins in pat's 
      matching queue pat_que 
    for all other patterns pat1, pat2, ..., and patn 

in pat’s owner trigger tgr 
      if exists ins1 in pat_que1, ins2 in pat_que2, 
        ..., and insn in pat_quen such that tgr's 
        constraints on ins, ins1, ins2, ..., and insn 

all satisfied 
        then if tgr’s conditions also satisfied 
          then inconsistency detected 
(3) Timer Controller Thread (T3): 
    wait for any expired timer t 
    remove the first element from t’s related 
      pattern pat’s matching queue pat_que 
    if pat_que empty 
      then cancel t 
      else update t based on pat’s freshness 
        requirement and the new first element’s 
        generation time (in pat_que) 

The algorithm consists of three threads: T1 performs matching for 
each incoming context instance, and attaches a copy of it to each 
matched pattern’s matching queue. T2 monitors all matching 
queues to see whether there is a group of context instances able to 
activate a trigger with all its conditions and constraints satisfied. 
T1 and T2 work as a producer-consumer pair of context instances 
for inconsistency triggering purposes. T3 manages all running 
timers and removes expired context instances from their located 
matching queues when necessary. 

According to the classification from Snoop [5] for instance con-
sumption, the above algorithm adopts the continuous policy [1], 
i.e., maximizing the use of each context instance according to its 
relevant freshness requirement (see T2). The freshness requirement 
of a pattern specifies the period in which a matched context in-
stance for this pattern stays valid. Under this specification, the 
algorithm detects all possible inconsistencies among valid cap-
tured context instances. In implementation, freshness require-
ments can be enforced by timers. 

The continuous policy for event detection is generally impractical 
because of its unlimited memory cost but such policy is feasible 
for our complex context detection. This is because one can control 
the memory cost by setting a reasonably strong freshness require-
ment, i.e., a short time period. The maximum memory cost of our 
implemented framework is below 23MB (including the Java VM’s 
memory cost) under the experimental setting in Section 7. 

Another consideration is delay time. New contexts have to be kept 
in matching queues for a period dependent on relevant patterns’ 
freshness requirements. Fortunately, the delay time is also control-
lable (fully decided in the design phase by specifying freshness 
requirement). Users are urged to avoid unreasonably weak fresh-
ness requirements in Step 1. Weak freshness requirements should 
be moved to Step 2, which does not affect the delay time. Another 
solution is to allow access to these temporary context data (still in 
matching queues) at the cost of possible inconsistency. 

4.2.2 Inconsistency Resolution 
The context matching and inconsistency triggering model contrib-
utes to inconsistency detection by semantically defining and dis-
covering: (1) the relationships between context instances and 
patterns, and (2) the relationships between context instances 
(Figure 6). Once an inconsistency is detected, proper repairing 
actions need be taken to guarantee the accuracy of context. 

 

Figure 6. Context matching and inconsistency triggering 

Generally, when we detect inconsistency between new and old 
data stored in an information repository, common actions are to 
repair the repository based on two types of policies: (1) Accept 
policy: Accept new data into the repository and delete inconsis-
tent old data for inconsistency-resolution; (2) Reject policy: Re-
ject new data, and old data remain unchanged. For context, either 
policy solely focuses on the repairing on the repository, but pays 
little attention to repair the context sources. As such, the environ-
ment may still keep generating inconsistent contexts. 

Recently, a substantial amount of work has been made on active 
systems, which either react automatically to environment changes 
(reactive systems) or predict changes in their environments (pro-
active systems) [1]. Concerning inconsistency resolution, the tra-
ditional accept/reject policies belong to reactive repairing actions, 
which work when actual inconsistencies have occurred. 

Reactive repairing actions cannot effectively prevent future incon-
sistencies. To overcome this limitation, we propose a mechanism 
to support both reactive and proactive repairing actions: 

- Reactive repairing actions are performed to repair context data 
in the context repository. This is analogous to the accept/reject 
policy except that we also support on-demand context update. 

- Proactive repairing actions are performed to repair context 
sources, e.g., to control or adjust problematic sensing devices to 
avoid further occurrences of inconsistent contexts. 

Two policies are supported by reactive repairing actions: 

1. Static policy: 
- Delete pre-specified context instances (e.g., delete the instance 

matched by pattern pat1). 
Primitive: delByPat(patternID) 

2. Dynamic policy: 
- Delete most uncertain context instances (e.g., delete the instance 

with the lowest uncertainty). 
Primitive: delByUct(LOWEST) 

- Re-query relevant context sources to get a new copy for some 
context instances. 
Primitive: uptByPat(patternID, queryTime) 

By default, all context instances kept in the detection buffer will 
be moved to the context repository automatically when relevant 
timers expire except for those which have to be deleted according 
to the static policy. In the dynamic policy, the query time has to 
be enforced when executing uptByPat . Such time enforcement 
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is usually reasonable and useful as discussed in [12], where in a 
location re-query example, a one-minute time limit indicates both 
that the user can afford to wait some time for the query to com-
pleted, and that the user desires the location provider to expend a 
sufficient amount of effort to locate a certain person. Although too 
long a time limit is unacceptable for the timely resolution of in-
consistency, multi-thread technology for parallel processing of 
inconsistency can alleviate this problem. 

Two policies are supported by proactive repairing actions: 

1. Active policy: 
- Control the lifecycle of a context source (after delayTime ). 

Primitive: srcCtrlByPat(patternID, PAUSE/ 
RESUME/RESTART/STOP/START, delayTime) 

- Count/get the inconsistency times for/of a context source. 
Primitive: incCntByPat/getCntByPat(patternID) 

2. Passive policy: 
- Send feedback to a context source and allow it to adjust itself. 

Primitive: fdbkByPat(patternID) 

Most sensor devices and software programs support direct control 
from the middleware on their lifecycles, which makes possible for 
them to stop generating contexts or restart at a later time when 
necessary. The passive policy is based on the observation that 
some advanced context sources can adjust error/uncertainty by 
changing algorithm parameters (e.g., a location deriving algo-
rithm). A practical example is Microsoft RADAR [2] with a 50% 
uncertainty on its location calculation and a maximum error of 3 
meters. The uncertainty can be lower if a greater error is allowed. 

The following gives example repairing actions for the hospital 
scenario we discussed earlier (see Figure 5): 

Step 1: repairing context data 
(1) uptByPat(1,500) 
(2) uptByPat(4,500) 
(3) int pid = delByUct(LOWEST,{1,4}) 

Step 2: repairing context sources 
(4) incCntByPat(pid) 
(5) int t = getCntByPat(pid) 
(6) if (t>2) fdbkByPat(pid) 
(7) if (t>5) srcCtrlByPat(pid,RESTART,1000) 
(8) if (t>10) srcCtrlByPat(pid,STOP,200) 

The above code tries to update the context instances matched for 
patterns p1 and p4, and decide which one has the lower uncer-
tainty. For the context source which generates this context in-
stance, its inconsistency counter is increased, and then some ac-
tion (e.g., feedback sending, restarting or stopping) is taken ac-
cording to the counter value. 

Supporting proactive repairing actions is non-trivial. Different 
context sources may vary in the support of inconsistency repair-
ing, and a designer may have no knowledge about the context 
sources involved at runtime. Currently, illegal repairing actions 
are ignored automatically. For future extension, we are investigat-
ing a negotiation-based repairing mechanism which integrates the 
consideration of learning supported repairing actions at runtime. 

5. IMPLEMENTATION 
The consistency management framework assumes the availability 
of an underlying context middleware. We have implemented the 
framework based on one of our research projects – Cabot. Cabot 

is a software infrastructure supporting Context-aware Applica-
tions Built on Ontology Technology developed by JDK 1.4.2. 
From Cabot’s point of view, a pervasive computing environment 
is composed of an application layer, a middleware layer and a 
context source layer (Figure 7). 

 

Figure 7. The Cabot system architecture 

The middleware layer is the kernel part of Cabot. It includes five 
fundamental functionalities: application management, context 
management, context matching, semantic reasoning and third-
party services management. A more detailed introduction to these 
functionalities can be found in [26]. 

Our consistency management framework is realized as a third-
party service plugged into Cabot. When a new context instance 
arrives, all plug-in services are invoked one by one for context 
filtering purposes such that management tasks for like context 
consistency can be achieved. An editor in the framework enables 
application developers to customize their inconsistency triggers. 
Repairing actions are also specified in the design phase. Cur-
rently, they are implemented through a callback mechanism in 
terms of user-designed java classes that use the framework primi-
tives (see Section 4.2.2). The framework is responsible for main-
taining a consistent context repository. Applications access con-
text of interest via queries or topic subscription. 

To support effective context matching and inconsistency detection, 
the Cabot kernel has been rewritten. Cabot’s early version was 
built on the xlinkit technology in which computationally expen-
sive checking consumed much processing time. Moreover, seman-
tic-join and complex context detection were not supported in that 
version. Cabot’s current version has increased expressive power 
for context capture and inconsistency detection. The new detec-
tion algorithm is based on the Amit technology (see Section 8). 

6. CASE STUDY 
This section takes an automatic vehicle (AV) system based on the 
Radio Frequency Identification (RFID) technology as a case 
study. AV system is one of our ongoing projects on context-
awareness with a goal to provide continuous remote control on 
intelligent vehicles working for humans in an adverse environ-
ment (e.g., too dark, dangerous, hot or noisy). 

To facilitate the location estimation of vehicles, some reference 
sites are chosen and installed with RFID tags. These tags together 
with those attached to vehicles are used for tracing each vehicle, 
routing them to perform designated tasks at different destinations. 
AV system is context-aware in that it controls vehicles based on 
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the environmental context and each vehicle’s condition. Its typical 
tasks include automatic path selection and collision avoidance. 

In practice, certain conditions may introduce incorrect data to AV 
system. For example, a fast moving RFID tag attached to a vehicle 
might be missed by RFID antennae (e.g., “detected” vs. “not de-
tected”); overlapped RFID tags due to the close proximity of two 
vehicles could not be always distinguished (e.g., “tag A detected” 
vs. “tag B detected”); metal and electromagnetic goods would lead 
to reduced detection sensitivity (e.g., “no tag active”); and high-
level context reasoning services for inferring value-added context 
(e.g., “vehicle C enters area I” or “vehicle D is stopped in area II ”) 
might generate incorrect context (e.g., “leave” vs. “enter” or 
“moving” vs. “stopped”). 

As a result, context inconsistency naturally occurs in reality and 
affects the correct functioning of AV system. For example, auto-
matic collision avoidance of multiple vehicles would fail if the 
existence of some RFID tags cannot be correctly identified or the 
current position of a moving vehicle cannot be precisely com-
puted. In practice, multiple sensing technologies (e.g., infrared or 
ultrasonic) can be used for providing multiple data sources. How-
ever, this increases the probability of context redundancy and 
inconsistency because these technologies use different approaches 
and standards to compute related context data. AV system’s strate-
gies may be unexpectedly affected by inconsistent context and 
possibly generate incorrect control on vehicles. 

Suppose that the following context sources have been set up (S: 
sensor devices, F: software programs, H: human operators (Figure 
8): 

 

Figure 8. AV system and context sources deployment 

S1: Four RFID detection systems provide signal strength informa-
tion for the RFID tags detected in their sensing ranges. 
S2: The ultrasonic sensor installed in each vehicle provides the 
distance information to its adjacent barriers (e.g., vehicles and 
goods). 
S3: The accelerometer installed in each vehicle provides the tilt 
and vibration measurements of the vehicle. 
F1: The LANDMARC algorithm [17] computes the real-time loca-
tion of each vehicle (from S1). 
F2: A collision avoidance service reports possible collision when 
two vehicles are too close (from F1). 
F3: Another collision avoidance service reports possible collision 
between a vehicle and its adjacent barriers (from S2). 
F4: A vehicle status service provides each vehicle’s current activ-
ity information (e.g., moving, loading or stopped) (from S3). 
F5: A task management program arranges everyday pre-scheduled 
goods conveying tasks. 

H1: A console interface accepts user’s inputs and generates on-
the-fly goods conveying tasks. 

We consider two major functions of AV system: 

SELT: According to each vehicle's current location and activity, 
select the most suitable vehicle (e.g., close to the goods and free 
of tasks) to carry out a given task. 
CTRL: According to the environmental context feedback (e.g., 
the distance to other vehicles), adjust the controls on each moving 
vehicle to avoid collisions. 

The SELT function may be affected by the precision of vehicle 
location computation, which is not always accurate (e.g., the 
LANDMARC algorithm has an average error of 1 meter under the 
experimental setting discussed in [17]). The CTRL function de-
pends much on the reports from two collision avoidance services, 
but sometimes they may report inconsistent situations (e.g., “vehi-
cle C is close to vehicle D” vs. “vehicles C and D are in different 
areas”). To alleviate the impact of possible context inconsistency, 
the following two inconsistency triggers are designed: 

SELT: If a vehicle’s continuously computed locations vary 
largely (e.g., more than 2 meters) over a short period of time (e.g., 
1 second), a possible location inconsistency occurs. Correspond-
ing repairing actions: update the latest location (enforce query 
time < 1 second) and delete the old one if they are too different. 
CTRL: If two collision reports from RFID-based and ultrasonic-
based technologies are inconsistent, update the latter, and if they 
are still different, choose the former and increase the inconsis-
tency counter for the latter. If the counter value reaches 5, restart 
the relevant ultrasonic sensor, and if the value has been already 
larger than 10, stop it and write system logs for suggested mainte-
nance (possible damage). 

Currently, the project is still under development. The feasibility of 
our consistency management framework needs further evaluation 
through practical studies. 

7. PERFORMANCE MEASUREMENTS 
The goal of performance measurement is to estimate the incoming 
context rate that Cabot can handle. Inspired by the scenario classi-
fications in [1], we have designed four test scenarios: 

Standby world: This is an empty scenario that does not define 
any inconsistency trigger. It gives an upper bound on the perform-
ance of Cabot’s context processing. 
Noisy world: This is a light scenario in which only a low percent-
age (12%) of the incoming context activates patterns in inconsis-
tency triggers. The inconsistency triggers are not complex, i.e., no 
conditions or constraints. 
Filtered world: This is a filtering scenario in which a high per-
centage (35%) of the incoming context activates the patterns in 
inconsistency triggers. However, the conditions of a high percent-
age (66%) of the activated inconsistency triggers are not satisfied. 
The inconsistency triggers are relatively complex (i.e., conditions 
are tested without constraints). 
Complex world: This is a heavy scenario in which a quite high 
percentage (50%) of the incoming context activates the patterns in 
inconsistency triggers, and the conditions of a high percentage 
(66%) of these activated inconsistency triggers are satisfied. The 
inconsistency triggers are very complex (i.e., conditions are tested 
with constraints). 
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Experiments were designed for comparing Cabot’s performance 
in the four simulated worlds. They were performed on a Pentium 
IV 3.20-GHz machine running Windows XP Professional. A con-
text source thread sent 2000 context instances to Cabot at 2 in-
stances per second. Example contexts were generated and incon-
sistency triggers (3) were designed according to the requirement 
of each scenario (except the standby world). Each inconsistency 
trigger contains 4 or 6 patterns and 11 constraints (if any). For 
contrast, the repository contained fixed number (100) of history 
context instances for condition testing for activated inconsistency 
triggers. All freshness requirements of patterns in inconsistency 
triggers were set to 10 seconds. Three parameters were monitored: 

(1) Number of incoming context instances, activated triggers (i.e., 
all event patterns are matched) and triggered inconsistencies (i.e., 
all conditions are satisfied with constraint enforcement) 
(2) Total time (sec), event pattern matching time (sec), condition 
pattern matching time (sec), constraint enforcement time (sec) and 
other overhead time (sec) 
(3) Processed context instances (per min) and detected inconsis-
tency number (per min) 

Table 1. Performance measurement results 

 
Sta. 

World 
Noi. 

World 
Fil. 

World 
Com. 
World 

Incoming Ctx. 2000 2000 2000 2000 
Activated Tgr. 0 39 974 1310 
Triggered Inc. 0 69 1632 2250 

Total (s) 1.92 23.96 594.59 809.41 
Event (s) 0 22.01 65.50 69.33 

Condition (s) 0 0 526.04 677.39 
Constraint (s) 0 0 0 59.39 
Overhead (s) 1.92 1.95 3.05 3.30 
Contexts / m 62565 5008.35 201.82 148.26 

Inconsistencies / m 0 172.79 164.69 166.79 

 
Table 1 presents the average results of performance measurements 
of five executions with little difference among them, which show: 

(1) Cabot’s upper bound was about 62500 context instances per 
minute. This rate was achieved when none of the incoming con-
text instances takes part in any inconsistency detection. 
(2) The lower bound was about 150 context instances per minute. 
This happened when quite complex inconsistency triggers were 
activated and evaluated frequently. This kind of case is unlikely to 
occur in reality. 
(3) A relatively high percentage (88.5% for the filtered world and 
83.7% for the complex world) of the total time was spent on con-
dition pattern matching. This indicates that the condition evalua-
tion (needs to query all history contexts) is computationally ex-
pensive. The reason is that our current implementation cannot 
utilize mature database technologies that do not support semantic 
matching and join. 

8. DISCUSSION 
E-brokerage [14] and Amit [1] present two interesting solutions to 
the problem of event detection. Their solutions based on event 
modeling are similar to ours in that all three solutions focus on 
constraint specification and situation detection. E-brokerage [14] 
is based on event instance modeling. Although it is impractical to 
adopt the continuous policy for event instance consumption be-

cause of the lack of controllable constraints on instance freshness 
requirements (leading to unlimited memory cost), E-brokerage 
[14] utilizes restricted instance relationships (e.g., the time inter-
val between the i-th E1 and E2 instances) to limit the number of 
available event instances. However, context detection needs to 
maximize the use of each context instance within its valid period 
(specified by freshness requirement) in order to detect any possi-
ble inconsistency. The index of an available context instance, 
which is decided dynamically by its generation time and the rele-
vant pattern’s freshness requirement, cannot be modeled directly 
using restricted instance relationships which are essentially static. 

The approach adopted by Amit [1] is closer to ours. It is based on 
event type modeling since any event instance belonging to a rele-
vant event type can participate in the target situation detection. In 
order to adapt to complex context detection in pervasive comput-
ing, Amit [1] system’s underlying data structures have to be modi-
fied to allow for more attributes such as effective time and area 
such that complex timing, spatial and data constraints can be 
modeled. Moreover, the detection algorithm has to be modified to 
enforce new complex constraints such as freshness requirement. 
Such adaptation work is non-trivial, and the adaptation result 
(plus our semantic matching and join for reasoning purposes) is 
equivalent to our proposed context model. 

In inconsistency resolution, xlinkit [15] is an excellent tool for 
XML document integrity checking. The major reason why xlinkit 
is not suitable for context consistency management is that it can-
not adequately support the regular and frequent detection of in-
formation inconsistency. A direct application of xlinkit to incon-
sistency detection in dynamic pervasive computing environments 
requires repeatedly checking the entire context repository, which 
is computationally expensive. Our past experience of using it in 
Cabot’s early version exhibited unsatisfactory performance be-
cause of the great amount of expensive checking. Cabot’s current 
version outperforms its previous version by 3700%, 450%, 130% 
and 150% under the four simulated worlds, respectively. 

9. CONCLUSIONS AND FUTURE WORK 
In this paper, we have studied the natural imperfectness of context 
in pervasive computing environments, and analyzed the hardness 
of context consistency management from two aspects: inconsis-
tency detection and resolution. A formal semantic matching and 
inconsistency triggering model is proposed to capture inconsistent 
contexts. Then a proactive repairing mechanism is proposed to 
realize automatic inconsistency repairing. The whole framework 
has been implemented based on the Cabot middleware. 

Our framework still has limitations in performance. We are con-
sidering more efficient matching algorithms built on mature data-
base technologies. Moreover, the enumeration of all imaginable 
inconsistencies is somewhat impractical. So we are also working 
on incremental violation checking techniques for consistency 
constraints that are more feasible in practice. Other issues such as 
negotiation-based repairing mechanisms and scalability considera-
tions will be incorporated into our improved framework. 
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