
Inconsistency Detection and Resolution for Context-Aware
Middleware Support

Chang Xu
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong, China

changxu@cs.ust.hk

S.C. Cheung
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong, China

scc@cs.ust.hk

ABSTRACT
Context-awareness is a key feature of pervasive computing whose
environments keep evolving. The support of context-awareness
requires comprehensive management including detection and
resolution of context inconsistency, which occurs naturally in
pervasive computing. In this paper we present a framework for
realizing dynamic context consistency management. The frame-
work supports inconsistency detection based on a semantic match-
ing and inconsistency triggering model, and inconsistency resolu-
tion with proactive actions to context sources. We further present
an implementation based on the Cabot middleware. The feasibility
of the framework and its performance are evaluated through a case
study and a simulated experiment, respectively.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
Methodologies

General Terms
Algorithms, Design, Management, Performance

Keywords
Pervasive Computing, Context Modeling, Context Consistency
Management, Semantic Matching, Proactive Repairing

1. INTRODUCTION
Pervasive computing environments encompass a spectrum of
computation and communication devices that seamlessly augment
human thoughts and activities [21]. Applications in this type of
environments are often context-aware, using various kinds of
context such as location and time to adapt to the evolving envi-
ronments and provide smarter services. For example, a mobile
phone would vibrate rather than beep in a concert if the system
knows the user’s location. Pervasive computing applications need
to be context-aware in order to respond quickly to their dynamic
computing environments. The growing demand of context-
awareness poses an impending requirement on context consistency
management.

In pervasive computing, the context of a computation task refers
to the circumstances or situation in which the task takes place
(e.g., user’s current location and activity). Context consistency is
maintained when there is no contradiction in a computation task’s
context; otherwise context inconsistency is said to occur. To un-
derstand the meaning of context contradiction, let us consider a
scenario from the healthcare industry:

Peter is a doctor working for Hope Hospital. He carries a Personal
Digital Assistant (PDA) as his agent for arranging daily activities.
Many kinds of context, such as the environment in which Peter is
working, the room in which Peter is located, and the condition of
a patient being taken care of by Peter, may affect the agent’s sug-
gestion for Peter’s next activity. Suppose that at some time the
agent acquired three context pieces from different sources:

(1) Peter is in the operating theatre (user location);
(2) An operation is being performed in Room 3504 (room status);
(3) Peter is looking up medical resources (user activity).

From (1) and (2), the agent would probably conclude that Peter is
occupied with an operation based on its pre-obtained information
that Room 3504 is the operating theatre. However, from (3) the
agent might draw another conclusion that Peter is not attending an
emergency and therefore able to help patient Michael immediately
if he becomes unconscious at any moment. The two opposite as-
sessments reflect the contradiction in the current context, i.e., a
conflicting understanding of the surrounding environment. Thus
the agent might have difficulty in deciding whether to guide Peter
to Michael to check his condition or forward this request to an-
other doctor. As a result, the agent might fail to function correctly.

There are a number of reasons why context inconsistency occurs.
In the above scenario, it could be inaccurate location detection
(e.g., Peter is passing by instead of actually staying in the operat-
ing theatre) or incorrect activity reasoning (e.g., Peter is walking
around his office desk on which are some medical resources in-
stead of looking up them at that moment). However, regardless of
which reason, the agent can hardly detect and resolve such incon-
sistencies by itself due to the lack of adequate reasoning capabili-
ties, global situation assessment and effective repairing actions,
which typically require considerable computing resources that are
not available for portable pervasive computing agents.

An unfortunate observation is that context inconsistency is com-
monly found in real-life systems. ActiveCampus is a real-life ex-
ample presented in [8]. When context inconsistency occurs due to
stale data, ActiveCampus is unable to correctly estimate a person’s
location, which could affect the normal functioning of some ser-
vices. Our research shows that the occurrence of context inconsis-
tency stems from the natural imperfectness of context:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009...$5.00.

336

- Highly dynamic environments make context easily obsolete
[11]: For example, the location context of a fast-moving subject
(e.g., a doctor running to an emergency) is prone to errors.

- Context can be offered by heterogeneous sources under dif-
ferent standards: Various sensing technologies and standards
may lead to semantically contradicting context (e.g., “inside the
room” vs. “near the door but outside the room”).

- Context reasoning may introduce inaccurate information
due to computing-resource limitation: The requirement of
real-time response (i.e., time limitation) may result in partial
consideration of available context in inferring high-level context
such as user activity.

- Network disconnection or failures lead to incomplete context
[11]: The mobility of pervasive computing increases the
chances of context loss (e.g., “Peter and Michael enter the oper-
ating theatre” vs. “only Peter enters the operating theatre”).

The natural existence of these imperfect sources makes context
inconsistency a common phenomenon. It is difficult to guarantee
the correctness, integrity and non-redundancy of context in perva-
sive computing. However, this problem has not been explicitly
addressed by existing context-aware systems (e.g., Context Toolkit
[6], EgoSpace [13], Gaia [21] and Aura [25]). To overcome this,
we have identified two key issues:

- Inconsistency detection: Context inconsistency is a semantic
phenomenon rather than a syntactic one, whose detection re-
quires non-trivial reasoning work. For example, a context piece
“free / not in an emergency” may contradict with “performing
an operation”, while it can coexist with “looking up medical re-
sources”. Usually, the detection is based on common sense and
user-specified rules.

- Inconsistency resolution: Context evolution in pervasive com-
puting is dynamic and fast, which requires an automatic incon-
sistency resolution mechanism. Moreover, simple repairing on
current context is inadequate for maintaining a stable running
environment for applications. Proactive control or feedback to
context sources is required to prevent future inconsistencies.

To the best of our knowledge in the existing work on pervasive
computing, a systematic study of these two issues has not been
conducted. Although it could be argued that they are similar to the
evidence aggregation problem [24] from the artificial intelligence
(AI) discipline, the similarity only lies in that both of them relate
to information inconsistency. The causes of inconsistency and the
corresponding challenges in resolving it actually differ a lot
(please refer to Section 2). Moreover, this paper aims at proposing
a consistency management framework using software engineering
methodology rather than working on sophisticated inconsistency
detection algorithms using AI techniques.

The remainder of the paper is organized as follows. Sections 2 and
3 introduce related work of recent years and preliminary concepts
on context modeling, respectively. Section 4 presents our frame-
work for context consistency management by focusing on com-
plex context and constraints modeling, and inconsistency detec-
tion and resolution. Section 5 briefly introduces the implementa-
tion of Cabot [26] – a middleware that supports context consis-
tency management. This is followed by a case study in Section 6
and a simulated experiment in Section 7. Section 8 discusses the
feasibility of adapting existing technologies to our work. The last
section concludes the paper.

2. RELATED WORK
Existing studies on context-awareness are mostly concerned with
either the frameworks that support context abstraction or the data
structures that support context queries. Pioneering work by Schilit
et al. [22] proposes using environment servers to manage context.
The context model in this work is simple. Schmidt et al. present in
[23] a layered processing model in which sensor outputs are trans-
formed into cues that comprise a set of values with certainty
measurements. Gray et al. in [7] are concerned with capturing
context meta-information that describes features such as represen-
tation, quality, source, transformation and actuation. Harter et al.
in [9] propose a conceptual context model that is constructed
using an entity-relationship based language. Henricksen et al. in
[11] comprehensively analyze context by covering temporal char-
acteristics, information imperfection, various representations and
high interrelation. These works are mostly concerned with context
modeling techniques, while the problem of context inconsistency
is not adequately addressed. Advanced issues about inconsistency
detection and resolution are rarely discussed.

Some research projects, e.g., Gaia [21], Aura [25] and EasyLiving
[3], have been proposed to provide middleware support for perva-
sive computing. They are mainly concerned about the organiza-
tion of and the collaboration among pervasive computing devices
and services. Other infrastructure projects mostly focus on the
context processing, reasoning and programming support. An ear-
lier representative work is Context Toolkit presented in [6]. It
assists developers by providing abstract components (e.g., context
widgets, interpreters and aggregators) that can be connected to-
gether to capture and process context data from sensors. Context
Toolkit falls short in supporting highly-integrated context applica-
tions. To overcome this, Griswold et al. in [8] propose to apply a
hybrid mediator-observer pattern in the system architecture. Hen-
ricksen et al. in [10] present a multi-layer framework which sup-
ports both branching and triggering programming models. Ranga-
nathan et al. in [19] discuss how to resolve potential semantic
contradictions in context by reasoning based on first-order predi-
cate calculus and Boolean algebra. In [20] they extend the work to
reasoning about context uncertainty using AI mechanisms like
fuzzy logic. These works have tackled several challenges in con-
text processing, reasoning and programming, and conducted pre-
liminary research on context certainty representation and uncer-
tainty reasoning, but inadequate attention has been paid to the
repairing of inconsistent context.

Pervasive computing, a relatively new but fast growing discipline,
shares many observations and technology with AI, active data-
bases and software engineering disciplines. In the AI discipline,
expert systems have been developed to support intelligent strategy
making. Much effort has been made on the evidence aggregation
problem so that the systems are able to make reasonable strategies
based on contradicting evidences or rules, but the causes of incon-
sistency are rarely addressed. Composite event detection is an
important issue in the active databases discipline for triggering
pre-defined actions once desired events are detected. E-brokerage
[14] and Amit [1] are two widely known projects aimed at detect-
ing composite event occurrences or situation changes with com-
plex timing constraints. The difference lies in the facts that the
former is based on event instance modeling and the latter on event
type modeling. In the software engineering discipline, CARISMA
[4] is proposed as reflective middleware support for mobile appli-

337

cations. It focuses on policy conflict resolution that is similar to
our work, but it assumes that accurate context information can be
collected by probing sensors periodically, which is different from
the basis on which our work is built. Nentwich et al. propose a
framework for repairing inconsistent XML documents based on
the xlinkit technology [15], which generates interactive repairing
options from first order logical formulae that constrain the docu-
ments being checked [16]. However, the framework does not sup-
port dynamic computing environments. Moreover, repairing docu-
ments alone is inadequate for resolving context inconsistency in
pervasive computing. Although the above researches help provide
similar experience in problem analysis and resolution, their tech-
nologies are inadequate for managing context consistency in two
aspects:

- Inconsistency detection: Complex context constraints (e.g.,
timing, spatial and data constraints) cannot be directly modeled.
For example, the support of generation time, effective time and
freshness requirement for context consistency management is
beyond the modeling capabilities of existing technologies. In
addition, the inconsistency detection algorithm differs due to
these new complex constraints.

- Inconsistency resolution: Interactive and simple repairing is
unsuitable for dynamic and complex pervasive computing envi-
ronments. The automatic repairing of current inconsistencies
and the proactive preventing of future inconsistencies cannot be
supported by any of existing technologies.

3. CONTEXT MODELING
Context can be roughly divided into physical context and logical
context. The former is like evidence, recording various events
arising in the physical world (e.g., an object’s movement and lo-
cation), while the latter is typically used for situation assessment,
only existing in logical models (e.g., a user’s intent and mood).
Thus, a general data structure is required for context representa-
tion. However, we do not adopt a simple representation like name-
value pairs or tuple space [13] for the sake of manageability be-
cause it often requires multiple tuples to represent a single context
piece. On the other hand, neither do we want to list all context
characteristics as proposed by Henricksen et al. [11] because of
the high management and computation cost.

We define context ctx = (subject, predicate, object, time, area,
certainty, freshness) as a seven-field data structure, where:

- Subject, predicate and object give the content of the context,
where subject and object are related by predicate (using simple
English sentence structure), e.g., Peter (subject) enters (predi-
cate) the operating theatre (object).

- Time and area specify the temporal and spatial constraints rele-
vant to the context: time represents the time or period in which
the context keeps effective (e.g., “10am on Jun 7, 2005” or
“from Apr 1 to Jul 1, 2005”); area is the place to which the con-
text relates (e.g., “Hope Hospital”).

- Certainty is a percentage evaluating the probability level of the
context (e.g., “90%”), and freshness indicates the generation
time of the context (e.g., “10 seconds ago”).

There are two time-related fields in the structure: time and fresh-
ness. The former is a context’s effective time, while the latter
specifies a context’s generation time. Normally they are different.
For example, people relation context “Michael is taken care of by

Peter” may have a long effective time (say, two months) but its
generation time may have been “two days ago”. In pervasive
computing, freshness is a basic requirement for evaluating context
validness because computing environments tend to change fast
and the current context may expire quickly. Such consideration is
not supported in event detection related studies like [1] and [14].

For the purpose of complex context recognition, two concepts
context instance and context pattern are introduced: a context
instance is defined by instantiating all fields of ctx, while a con-
text pattern (or pattern for short) is defined by instantiating some
of its fields. Each uninstantiated field (if any) is set to any, which
is a special predefined value. Intuitively, each pattern represents a
family of context instances.

Figure 1. Two context instances

Figure 2. A context pattern

Figure 1 illustrates two context instances in a UML object dia-
gram, which represents that: (1) Peter enters the operating theatre,
and (2) Michael is taken care of by Peter. Figure 2 illustrates a
pattern that represents such context instances as somebody enter-
ing the operating theatre.

4. MANAGING CONTEXT CONSISTENCY
A key requirement in context consistency management is the abil-
ity to bridge the gap between the context recognized by the mid-
dleware and the inconsistency to which the middleware needs to
react. This paper aims at bridging the gap by presenting a com-
prehensive consistency management framework for context in
pervasive computing. Three requirements have been identified for
this type of computing environments:

- Semantic reasoning: Context inconsistency is a semantic phe-
nomenon, which requires necessary reasoning for inconsistency
detection.

- Automatic resolution: Context evolution is dynamic and fast,
which requires an automatic resolution mechanism for any de-
tected inconsistency.

- Feedback control: Repairing on current context is inadequate,
which requires feedback to context sources to prevent future in-
consistencies.

338

4.1 Model Complex Context and Constraints
Let us first take a look at an example of complex context:

A doctor enters the operating theatre, where an operation is go-
ing to be performed in ten minutes on a patient, who now looks a
little nervous.

This example contains several context pieces, including physical
ones (e.g., a doctor’s location) and logical ones (e.g., a patient’s
state of mind), and some constraints, including timing constraints
(e.g., “an operation will be performed in ten minutes”), spatial
constraints (e.g., “the doctor and the patient are in the same
room”) and data constraints (e.g., “the person entering the room is
a doctor”). To model such complex context, we begin with basic
blocks (e.g., context instances and patterns in Section 3) and use
operations (e.g., context matching) to connect them together.

4.1.1 Semantic Context Matching
A fundamental operation, context matching, is studied below.
Context matching is a process of checking whether a context in-
stance and a pattern match or not. Unlike other models, our con-
text matching connects context instances and patterns by seman-
tics. Its goal is to integrate basic reasoning into the underlying
context model.

There are two usages of context matching: (1) given a context
instance, search all matched patterns (pat_mat); (2) given a pat-
tern, search all matched context instances (ins_mat):

=),(rulesinspat_mat

)}.,.,.(.|{ fieldpatfieldinsfieldrulesfieldPatternspat match∀∈

=),(rulespatins_mat

)}.,.,.(.|{ fieldpatfieldinsfieldrulesfieldInstancesins match∀∈

The match function is a kernel process of evaluating whether a
given field of a context instance matches its counterpart of a pat-
tern under some unification rule. The notation of unification rules
is based on concept semantic relationships. Let E(c) denote the
element set represented by concept c. Any two concepts c1 and c2
are subject to one of five semantic relationships [27]:

- equivalent: if E(c1) = E(c2);
- subsumed: if E(c1) ⊂ E(c2);
- including: if E(c1) ⊃ E(c2);
- disjoint: if E(c1) ∩ E(c2) = φ ;
- intersecting: otherwise.

Based on the above five semantic relationships, unification rules
express the conditions under which a given context instance and a
pattern can be matched. A matching is recognized if each field
(except time) value v1 in context instance ins is unifiable with its
counterpart v2 in pattern pat as follows:

If v2 = any, or v1 and v2 satisfy one of six conditions: (1) identical
condition (v1 = v2), (2) equivalent condition (v1 and v2 are equiva-
lent), (3) plug-in condition (v1 and v2 are equivalent or subsumed),
(4) covering condition (v1 and v2 are equivalent or including), (5)
overlapping condition (v1 and v2 have a non-disjoint relationship),
or (6) unrelated condition (v1 and v2 are disjoint), then v1 is unifi-
able with v2; Otherwise, v1 is not unifiable with v2.

Time is a special field following different unification rules includ-
ing conditions like close to, before, after, within and covering.
These all have intuitive interpretations.

Figure 3. A context matching example

Different fields in a pattern can apply different conditions. Figure
3 illustrates an example, which shows that context instance ins,
“Peter enters the operating theatre”, matches pattern pat, “A per-
son goes into a 3rd-floor room”. Note that the certainty field in
pat has an “at least” interpretation. As such, certainty “90%” in
ins is unifiable with certainty “80%” in pat under the plug-in
condition. The same interpretation applies to the freshness field.

The above example assumes the following concept semantic rela-
tionships (which can be inferred from an ontology database that is
maintained by the system administrator):

- match(“plug-in”, “Peter”, “person”) = true
- match(“equivalent”, “enter”, “go into”) = true
- match(“plug-in”, “operating theatre”, “3rd-floor room”) = true

Context matching relates context instances and patterns under
semantic interpretations, supporting higher expressiveness in con-
text queries than simple byte-by-byte comparisons. As such, it is
also known as semantic context matching. In context inconsis-
tency detection (see Section 4.2), automatic reasoning can be
supported by semantic context matching.

4.1.2 Complex Context and Constraints

Figure 4. The complex context example

Complex context ccx is defined as a group of patterns patterns =
{ pat1, pat2, … patm} with a group of constraints constraints =
{ cns1, cns2, …, cnsn}. Constraints are used to express the relation-
ships between these patterns. They are enforced at runtime. Each
constraint takes the form of (rule, j, fieldj, k, fieldk), meaning that

339

if there are two context instances matched for patj and patk respec-
tively, their values in fields fieldj and fieldk, respectively, should
satisfy the given rule (unification rule). To make the whole com-
plex context ccx assessed to be the current situation, there must be
a group of context instances matching each pattern in ccx respec-
tively, and these context instances must also satisfy all ccx’s con-
straints.

Figure 4 illustrates the complex context example discussed at the
beginning of Section 4.1. It consists of four patterns and eight
constraints between them (including three timing constraints,
three spatial constraints and two data constraints), represented by
dashed lines. We explain three of them for illustration:

- Timing constraint (“+10 min close to”, 1, “time”, 3, “time”):
The time when a person enters such a place is 10 minutes before
an operation is performed there.

- Spatial constraint (“equivalent”, 1, “area”, 3, “ar ea”): A
person enters a place where an operation is going to be per-
formed in ten minutes.

- Data constraint (“equivalent”, 1, “subject”, 2, “subject”) :
The person who enters some place is a doctor.

The enforcement of constraints over the “tables” derived from
context matching is similar to the equi-join in relational databases
[18]. Each “table” contains matched context instances for each
corresponding pattern, and the join “columns” are specified by
constraints. The difference is that “columns” are related by seman-
tics, in particular when we use the equivalent condition which
connects two field values of similar meaning (e.g., “enter” and
“go into”). This kind of join is called semantic-join.

The semantic matching and join used in our model is a major
difference from other models. An advantage is that it simplifies
the task of describing general context inconsistency (e.g., context
“some person is performing two unrelated jobs at the same time”
is considered inconsistent).

4.2 Detect and Resolve Context Inconsistency
We regard context inconsistency as a special kind of complex
context, in which situation assessment is subject to inherent con-
tradiction. Based on the previous model preparation, this subsec-
tion introduces inconsistency trigger-
ing which provides an effective
mechanism for inconsistency detec-
tion and resolution. Our model of
inconsistency triggers is adapted from
the Event-Condition-Action (ECA)
triggers in active database systems
[18]. We define an inconsistency
trigger as tgr = (event, condition,
action):

- Event is a context-related change
that activates the trigger. It specifies
a complex context description ccx
that describes our interested situa-
tion. The change occurs when ccx is
assessed to be the current situation.

- Condition is a context-related query
that is run when the trigger is acti-
vated. It includes a group of pat-
terns that represent a series of tests.

Each pattern should match at least one context instance in the
context repository such that the whole condition is satisfied.

- Action is a procedure that is executed when the trigger is acti-
vated and its condition is satisfied.

Figure 5 illustrates how to use inconsistency triggering to describe
the problematic situation discussed in Section 1 (the Action part is
omitted). Please note that constraints also apply to conditions.

4.2.1 Inconsistency Detection Algorithm
Three context types are identified based on their context nature:
sensed contexts (e.g., Peter enters the operating theatre) are col-
lected by sensor devices; domain contexts (e.g., Peter takes care of
Michael / Michelle was born in Jan 1977) are supplied by human
operators; and derived contexts (e.g., Michael becomes uncon-
scious) are computed by software programs based on existing
contexts. Sensed and derived contexts typically change more fre-
quently than domain contexts.

The execution of an inconsistency trigger can be divided into
three steps: (1) context detection, (2) condition evaluation, and (3)
action execution. Step 1 focuses on the monitoring of incoming
time-stamped context events (mainly sensed or derived contexts);
Step 2 performs queries against stored history contexts (mainly
domain contexts).

Context nature is a factor affecting the execution of inconsistency
triggers. The detection buffer (or matching queues, please refer to
the following algorithm) size is decided by the freshness require-
ments of related patterns in Step 1. To save memory, usually only
sensed and derived contexts are monitored in this step. These
contexts often have a strong freshness requirement, leading to
short matching queues.

Compared to event detection, inconsistency detection often needs
to consider various types of constraints (e.g., timing, spatial and
data constraints). Even for timing constraints, inconsistency detec-
tion has to differentiate a context’s generation time from its effec-
tive time, while event detection only focuses on an event’s occur-
rence time. From the perspective of timing constraints, an event’s
occurrence time is analogous to a context’s generation time. So
the context inconsistency detection can subsume event detection.

Figure 5. An inconsistency trigger

340

We give the detection algorithm below:

(1) Context Preprocessor Thread (T1):
 wait for any incoming context instance ins
 for each pattern pat matched by ins
 add ins to pat's matching queue pat_que
 if ins is the first element in pat_que
 then create a timer t for pat based on pat’s
 freshness requirement and ins's generation
 time
(2) Inconsistency Triggering Thread (T2):
 wait for any new context instance ins in pat's
 matching queue pat_que
 for all other patterns pat1, pat2, ..., and patn

in pat’s owner trigger tgr
 if exists ins1 in pat_que1, ins2 in pat_que2,
 ..., and insn in pat_quen such that tgr's
 constraints on ins, ins1, ins2, ..., and insn

all satisfied
 then if tgr’s conditions also satisfied
 then inconsistency detected
(3) Timer Controller Thread (T3):
 wait for any expired timer t
 remove the first element from t’s related
 pattern pat’s matching queue pat_que
 if pat_que empty
 then cancel t
 else update t based on pat’s freshness
 requirement and the new first element’s
 generation time (in pat_que)

The algorithm consists of three threads: T1 performs matching for
each incoming context instance, and attaches a copy of it to each
matched pattern’s matching queue. T2 monitors all matching
queues to see whether there is a group of context instances able to
activate a trigger with all its conditions and constraints satisfied.
T1 and T2 work as a producer-consumer pair of context instances
for inconsistency triggering purposes. T3 manages all running
timers and removes expired context instances from their located
matching queues when necessary.

According to the classification from Snoop [5] for instance con-
sumption, the above algorithm adopts the continuous policy [1],
i.e., maximizing the use of each context instance according to its
relevant freshness requirement (see T2). The freshness requirement
of a pattern specifies the period in which a matched context in-
stance for this pattern stays valid. Under this specification, the
algorithm detects all possible inconsistencies among valid cap-
tured context instances. In implementation, freshness require-
ments can be enforced by timers.

The continuous policy for event detection is generally impractical
because of its unlimited memory cost but such policy is feasible
for our complex context detection. This is because one can control
the memory cost by setting a reasonably strong freshness require-
ment, i.e., a short time period. The maximum memory cost of our
implemented framework is below 23MB (including the Java VM’s
memory cost) under the experimental setting in Section 7.

Another consideration is delay time. New contexts have to be kept
in matching queues for a period dependent on relevant patterns’
freshness requirements. Fortunately, the delay time is also control-
lable (fully decided in the design phase by specifying freshness
requirement). Users are urged to avoid unreasonably weak fresh-
ness requirements in Step 1. Weak freshness requirements should
be moved to Step 2, which does not affect the delay time. Another
solution is to allow access to these temporary context data (still in
matching queues) at the cost of possible inconsistency.

4.2.2 Inconsistency Resolution
The context matching and inconsistency triggering model contrib-
utes to inconsistency detection by semantically defining and dis-
covering: (1) the relationships between context instances and
patterns, and (2) the relationships between context instances
(Figure 6). Once an inconsistency is detected, proper repairing
actions need be taken to guarantee the accuracy of context.

Figure 6. Context matching and inconsistency triggering

Generally, when we detect inconsistency between new and old
data stored in an information repository, common actions are to
repair the repository based on two types of policies: (1) Accept
policy: Accept new data into the repository and delete inconsis-
tent old data for inconsistency-resolution; (2) Reject policy: Re-
ject new data, and old data remain unchanged. For context, either
policy solely focuses on the repairing on the repository, but pays
little attention to repair the context sources. As such, the environ-
ment may still keep generating inconsistent contexts.

Recently, a substantial amount of work has been made on active
systems, which either react automatically to environment changes
(reactive systems) or predict changes in their environments (pro-
active systems) [1]. Concerning inconsistency resolution, the tra-
ditional accept/reject policies belong to reactive repairing actions,
which work when actual inconsistencies have occurred.

Reactive repairing actions cannot effectively prevent future incon-
sistencies. To overcome this limitation, we propose a mechanism
to support both reactive and proactive repairing actions:

- Reactive repairing actions are performed to repair context data
in the context repository. This is analogous to the accept/reject
policy except that we also support on-demand context update.

- Proactive repairing actions are performed to repair context
sources, e.g., to control or adjust problematic sensing devices to
avoid further occurrences of inconsistent contexts.

Two policies are supported by reactive repairing actions:

1. Static policy:
- Delete pre-specified context instances (e.g., delete the instance

matched by pattern pat1).
Primitive: delByPat(patternID)

2. Dynamic policy:
- Delete most uncertain context instances (e.g., delete the instance

with the lowest uncertainty).
Primitive: delByUct(LOWEST)

- Re-query relevant context sources to get a new copy for some
context instances.
Primitive: uptByPat(patternID, queryTime)

By default, all context instances kept in the detection buffer will
be moved to the context repository automatically when relevant
timers expire except for those which have to be deleted according
to the static policy. In the dynamic policy, the query time has to
be enforced when executing uptByPat . Such time enforcement

341

is usually reasonable and useful as discussed in [12], where in a
location re-query example, a one-minute time limit indicates both
that the user can afford to wait some time for the query to com-
pleted, and that the user desires the location provider to expend a
sufficient amount of effort to locate a certain person. Although too
long a time limit is unacceptable for the timely resolution of in-
consistency, multi-thread technology for parallel processing of
inconsistency can alleviate this problem.

Two policies are supported by proactive repairing actions:

1. Active policy:
- Control the lifecycle of a context source (after delayTime).

Primitive: srcCtrlByPat(patternID, PAUSE/
RESUME/RESTART/STOP/START, delayTime)

- Count/get the inconsistency times for/of a context source.
Primitive: incCntByPat/getCntByPat(patternID)

2. Passive policy:
- Send feedback to a context source and allow it to adjust itself.

Primitive: fdbkByPat(patternID)

Most sensor devices and software programs support direct control
from the middleware on their lifecycles, which makes possible for
them to stop generating contexts or restart at a later time when
necessary. The passive policy is based on the observation that
some advanced context sources can adjust error/uncertainty by
changing algorithm parameters (e.g., a location deriving algo-
rithm). A practical example is Microsoft RADAR [2] with a 50%
uncertainty on its location calculation and a maximum error of 3
meters. The uncertainty can be lower if a greater error is allowed.

The following gives example repairing actions for the hospital
scenario we discussed earlier (see Figure 5):

Step 1: repairing context data
(1) uptByPat(1,500)
(2) uptByPat(4,500)
(3) int pid = delByUct(LOWEST,{1,4})

Step 2: repairing context sources
(4) incCntByPat(pid)
(5) int t = getCntByPat(pid)
(6) if (t>2) fdbkByPat(pid)
(7) if (t>5) srcCtrlByPat(pid,RESTART,1000)
(8) if (t>10) srcCtrlByPat(pid,STOP,200)

The above code tries to update the context instances matched for
patterns p1 and p4, and decide which one has the lower uncer-
tainty. For the context source which generates this context in-
stance, its inconsistency counter is increased, and then some ac-
tion (e.g., feedback sending, restarting or stopping) is taken ac-
cording to the counter value.

Supporting proactive repairing actions is non-trivial. Different
context sources may vary in the support of inconsistency repair-
ing, and a designer may have no knowledge about the context
sources involved at runtime. Currently, illegal repairing actions
are ignored automatically. For future extension, we are investigat-
ing a negotiation-based repairing mechanism which integrates the
consideration of learning supported repairing actions at runtime.

5. IMPLEMENTATION
The consistency management framework assumes the availability
of an underlying context middleware. We have implemented the
framework based on one of our research projects – Cabot. Cabot

is a software infrastructure supporting Context-aware Applica-
tions Built on Ontology Technology developed by JDK 1.4.2.
From Cabot’s point of view, a pervasive computing environment
is composed of an application layer, a middleware layer and a
context source layer (Figure 7).

Figure 7. The Cabot system architecture

The middleware layer is the kernel part of Cabot. It includes five
fundamental functionalities: application management, context
management, context matching, semantic reasoning and third-
party services management. A more detailed introduction to these
functionalities can be found in [26].

Our consistency management framework is realized as a third-
party service plugged into Cabot. When a new context instance
arrives, all plug-in services are invoked one by one for context
filtering purposes such that management tasks for like context
consistency can be achieved. An editor in the framework enables
application developers to customize their inconsistency triggers.
Repairing actions are also specified in the design phase. Cur-
rently, they are implemented through a callback mechanism in
terms of user-designed java classes that use the framework primi-
tives (see Section 4.2.2). The framework is responsible for main-
taining a consistent context repository. Applications access con-
text of interest via queries or topic subscription.

To support effective context matching and inconsistency detection,
the Cabot kernel has been rewritten. Cabot’s early version was
built on the xlinkit technology in which computationally expen-
sive checking consumed much processing time. Moreover, seman-
tic-join and complex context detection were not supported in that
version. Cabot’s current version has increased expressive power
for context capture and inconsistency detection. The new detec-
tion algorithm is based on the Amit technology (see Section 8).

6. CASE STUDY
This section takes an automatic vehicle (AV) system based on the
Radio Frequency Identification (RFID) technology as a case
study. AV system is one of our ongoing projects on context-
awareness with a goal to provide continuous remote control on
intelligent vehicles working for humans in an adverse environ-
ment (e.g., too dark, dangerous, hot or noisy).

To facilitate the location estimation of vehicles, some reference
sites are chosen and installed with RFID tags. These tags together
with those attached to vehicles are used for tracing each vehicle,
routing them to perform designated tasks at different destinations.
AV system is context-aware in that it controls vehicles based on

342

the environmental context and each vehicle’s condition. Its typical
tasks include automatic path selection and collision avoidance.

In practice, certain conditions may introduce incorrect data to AV
system. For example, a fast moving RFID tag attached to a vehicle
might be missed by RFID antennae (e.g., “detected” vs. “not de-
tected”); overlapped RFID tags due to the close proximity of two
vehicles could not be always distinguished (e.g., “tag A detected”
vs. “tag B detected”); metal and electromagnetic goods would lead
to reduced detection sensitivity (e.g., “no tag active”); and high-
level context reasoning services for inferring value-added context
(e.g., “vehicle C enters area I” or “vehicle D is stopped in area II ”)
might generate incorrect context (e.g., “leave” vs. “enter” or
“moving” vs. “stopped”).

As a result, context inconsistency naturally occurs in reality and
affects the correct functioning of AV system. For example, auto-
matic collision avoidance of multiple vehicles would fail if the
existence of some RFID tags cannot be correctly identified or the
current position of a moving vehicle cannot be precisely com-
puted. In practice, multiple sensing technologies (e.g., infrared or
ultrasonic) can be used for providing multiple data sources. How-
ever, this increases the probability of context redundancy and
inconsistency because these technologies use different approaches
and standards to compute related context data. AV system’s strate-
gies may be unexpectedly affected by inconsistent context and
possibly generate incorrect control on vehicles.

Suppose that the following context sources have been set up (S:
sensor devices, F: software programs, H: human operators (Figure
8):

Figure 8. AV system and context sources deployment

S1: Four RFID detection systems provide signal strength informa-
tion for the RFID tags detected in their sensing ranges.
S2: The ultrasonic sensor installed in each vehicle provides the
distance information to its adjacent barriers (e.g., vehicles and
goods).
S3: The accelerometer installed in each vehicle provides the tilt
and vibration measurements of the vehicle.
F1: The LANDMARC algorithm [17] computes the real-time loca-
tion of each vehicle (from S1).
F2: A collision avoidance service reports possible collision when
two vehicles are too close (from F1).
F3: Another collision avoidance service reports possible collision
between a vehicle and its adjacent barriers (from S2).
F4: A vehicle status service provides each vehicle’s current activ-
ity information (e.g., moving, loading or stopped) (from S3).
F5: A task management program arranges everyday pre-scheduled
goods conveying tasks.

H1: A console interface accepts user’s inputs and generates on-
the-fly goods conveying tasks.

We consider two major functions of AV system:

SELT: According to each vehicle's current location and activity,
select the most suitable vehicle (e.g., close to the goods and free
of tasks) to carry out a given task.
CTRL: According to the environmental context feedback (e.g.,
the distance to other vehicles), adjust the controls on each moving
vehicle to avoid collisions.

The SELT function may be affected by the precision of vehicle
location computation, which is not always accurate (e.g., the
LANDMARC algorithm has an average error of 1 meter under the
experimental setting discussed in [17]). The CTRL function de-
pends much on the reports from two collision avoidance services,
but sometimes they may report inconsistent situations (e.g., “vehi-
cle C is close to vehicle D” vs. “vehicles C and D are in different
areas”). To alleviate the impact of possible context inconsistency,
the following two inconsistency triggers are designed:

SELT: If a vehicle’s continuously computed locations vary
largely (e.g., more than 2 meters) over a short period of time (e.g.,
1 second), a possible location inconsistency occurs. Correspond-
ing repairing actions: update the latest location (enforce query
time < 1 second) and delete the old one if they are too different.
CTRL: If two collision reports from RFID-based and ultrasonic-
based technologies are inconsistent, update the latter, and if they
are still different, choose the former and increase the inconsis-
tency counter for the latter. If the counter value reaches 5, restart
the relevant ultrasonic sensor, and if the value has been already
larger than 10, stop it and write system logs for suggested mainte-
nance (possible damage).

Currently, the project is still under development. The feasibility of
our consistency management framework needs further evaluation
through practical studies.

7. PERFORMANCE MEASUREMENTS
The goal of performance measurement is to estimate the incoming
context rate that Cabot can handle. Inspired by the scenario classi-
fications in [1], we have designed four test scenarios:

Standby world: This is an empty scenario that does not define
any inconsistency trigger. It gives an upper bound on the perform-
ance of Cabot’s context processing.
Noisy world: This is a light scenario in which only a low percent-
age (12%) of the incoming context activates patterns in inconsis-
tency triggers. The inconsistency triggers are not complex, i.e., no
conditions or constraints.
Filtered world: This is a filtering scenario in which a high per-
centage (35%) of the incoming context activates the patterns in
inconsistency triggers. However, the conditions of a high percent-
age (66%) of the activated inconsistency triggers are not satisfied.
The inconsistency triggers are relatively complex (i.e., conditions
are tested without constraints).
Complex world: This is a heavy scenario in which a quite high
percentage (50%) of the incoming context activates the patterns in
inconsistency triggers, and the conditions of a high percentage
(66%) of these activated inconsistency triggers are satisfied. The
inconsistency triggers are very complex (i.e., conditions are tested
with constraints).

343

Experiments were designed for comparing Cabot’s performance
in the four simulated worlds. They were performed on a Pentium
IV 3.20-GHz machine running Windows XP Professional. A con-
text source thread sent 2000 context instances to Cabot at 2 in-
stances per second. Example contexts were generated and incon-
sistency triggers (3) were designed according to the requirement
of each scenario (except the standby world). Each inconsistency
trigger contains 4 or 6 patterns and 11 constraints (if any). For
contrast, the repository contained fixed number (100) of history
context instances for condition testing for activated inconsistency
triggers. All freshness requirements of patterns in inconsistency
triggers were set to 10 seconds. Three parameters were monitored:

(1) Number of incoming context instances, activated triggers (i.e.,
all event patterns are matched) and triggered inconsistencies (i.e.,
all conditions are satisfied with constraint enforcement)
(2) Total time (sec), event pattern matching time (sec), condition
pattern matching time (sec), constraint enforcement time (sec) and
other overhead time (sec)
(3) Processed context instances (per min) and detected inconsis-
tency number (per min)

Table 1. Performance measurement results

Sta.

World
Noi.

World
Fil.

World
Com.
World

Incoming Ctx. 2000 2000 2000 2000
Activated Tgr. 0 39 974 1310
Triggered Inc. 0 69 1632 2250

Total (s) 1.92 23.96 594.59 809.41
Event (s) 0 22.01 65.50 69.33

Condition (s) 0 0 526.04 677.39
Constraint (s) 0 0 0 59.39
Overhead (s) 1.92 1.95 3.05 3.30
Contexts / m 62565 5008.35 201.82 148.26

Inconsistencies / m 0 172.79 164.69 166.79

Table 1 presents the average results of performance measurements
of five executions with little difference among them, which show:

(1) Cabot’s upper bound was about 62500 context instances per
minute. This rate was achieved when none of the incoming con-
text instances takes part in any inconsistency detection.
(2) The lower bound was about 150 context instances per minute.
This happened when quite complex inconsistency triggers were
activated and evaluated frequently. This kind of case is unlikely to
occur in reality.
(3) A relatively high percentage (88.5% for the filtered world and
83.7% for the complex world) of the total time was spent on con-
dition pattern matching. This indicates that the condition evalua-
tion (needs to query all history contexts) is computationally ex-
pensive. The reason is that our current implementation cannot
utilize mature database technologies that do not support semantic
matching and join.

8. DISCUSSION
E-brokerage [14] and Amit [1] present two interesting solutions to
the problem of event detection. Their solutions based on event
modeling are similar to ours in that all three solutions focus on
constraint specification and situation detection. E-brokerage [14]
is based on event instance modeling. Although it is impractical to
adopt the continuous policy for event instance consumption be-

cause of the lack of controllable constraints on instance freshness
requirements (leading to unlimited memory cost), E-brokerage
[14] utilizes restricted instance relationships (e.g., the time inter-
val between the i-th E1 and E2 instances) to limit the number of
available event instances. However, context detection needs to
maximize the use of each context instance within its valid period
(specified by freshness requirement) in order to detect any possi-
ble inconsistency. The index of an available context instance,
which is decided dynamically by its generation time and the rele-
vant pattern’s freshness requirement, cannot be modeled directly
using restricted instance relationships which are essentially static.

The approach adopted by Amit [1] is closer to ours. It is based on
event type modeling since any event instance belonging to a rele-
vant event type can participate in the target situation detection. In
order to adapt to complex context detection in pervasive comput-
ing, Amit [1] system’s underlying data structures have to be modi-
fied to allow for more attributes such as effective time and area
such that complex timing, spatial and data constraints can be
modeled. Moreover, the detection algorithm has to be modified to
enforce new complex constraints such as freshness requirement.
Such adaptation work is non-trivial, and the adaptation result
(plus our semantic matching and join for reasoning purposes) is
equivalent to our proposed context model.

In inconsistency resolution, xlinkit [15] is an excellent tool for
XML document integrity checking. The major reason why xlinkit
is not suitable for context consistency management is that it can-
not adequately support the regular and frequent detection of in-
formation inconsistency. A direct application of xlinkit to incon-
sistency detection in dynamic pervasive computing environments
requires repeatedly checking the entire context repository, which
is computationally expensive. Our past experience of using it in
Cabot’s early version exhibited unsatisfactory performance be-
cause of the great amount of expensive checking. Cabot’s current
version outperforms its previous version by 3700%, 450%, 130%
and 150% under the four simulated worlds, respectively.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the natural imperfectness of context
in pervasive computing environments, and analyzed the hardness
of context consistency management from two aspects: inconsis-
tency detection and resolution. A formal semantic matching and
inconsistency triggering model is proposed to capture inconsistent
contexts. Then a proactive repairing mechanism is proposed to
realize automatic inconsistency repairing. The whole framework
has been implemented based on the Cabot middleware.

Our framework still has limitations in performance. We are con-
sidering more efficient matching algorithms built on mature data-
base technologies. Moreover, the enumeration of all imaginable
inconsistencies is somewhat impractical. So we are also working
on incremental violation checking techniques for consistency
constraints that are more feasible in practice. Other issues such as
negotiation-based repairing mechanisms and scalability considera-
tions will be incorporated into our improved framework.

ACKNOWLEDGMENTS
The work is supported by a grant of the Research Grants Council
of Hong Kong (Project No. HKUST6167/04E). The authors
would also like to thank Michael Liu (lrcomp@cs.ust.hk) for the
case study from his led AV team.

344

10. REFERENCES
[1] Asaf Adi, Opher Etzion. Amit – The Situation Manager.

VLDB Journal (13), pp. 177-203, 2004.

[2] P. Bahl, V. N. Padmanabhan, A. Balachandran. Enhance-
ments to the RADAR User Location and Tracking System.
Microsoft Research Technical Report, Feb 2000.

[3] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer. Easy-
Living: Technologies for Intelligent Environments. Proceed-
ing of the 2nd International Symposium on Handheld and
Ubiquitous Computing (HUC 2000), Bristol, England, 2000.

[4] Licia Capra, Wolfgang Emmerich, Cecilia Mascolo.
CARISMA: Context-Aware Reflective Middleware System
for Mobile Applications. IEEE Transactions on Software
Engineering 29(10): pp. 929-944, Oct 2003.

[5] S. Chakravarthy, D. Mishra. Snoop: An Expressive Event
Specification Language for Active Databases. Data Knowl
Eng 14.1: pp. 1–26, 1994.

[6] Anind K. Dey, Gregory D. Abowd, Daniel Salber. A Con-
text-Based Infrastructure for Smart Environments. Proceed-
ings of the 1st International Workshop on Managing Interac-
tions in Smart Environments, Dublin, Ireland, Dec 1999.

[7] Philip D. Gray, Daniel Salber. Modeling and Using Sensed
Context Information in the Design of Interactive Applica-
tions. Proceedings of the 8th IFIP International Conference
on Engineering for Human-Computer Interaction (EHCI
2001), Toronto, Canada, May 2001.

[8] William G. Griswold, Robert Boyer, Steven W. Brown, Tan
Minh Truong. A Component Architecture for an Extensible,
Highly Integrated Context-Aware Computing Infrastructure.
Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE 2003), Portland, USA, May 2003.

[9] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Paul
Webster. The Anatomy of a Context-Aware Application.
Mobile Computing and Networking, pp. 59-68, 1999.

[10] Karen Henricksen, Jadwiga Indulska. A Software Engineer-
ing Framework for Context-Aware Pervasive Computing.
Proceedings of the 2nd IEEE Conference on Pervasive Com-
puting and Communications (PerCom 2004), Orlando, USA,
Mar 2004.

[11] Karen Henricksen, Jadwiga Indulska, Andry Rakotonirainy.
Modeling Context Information in Pervasive Computing Sys-
tems. Proceedings of the 1st International Conference on
Pervasive Computing, Zurich, Switzerland, Aug 2002.

[12] Glenn Judd, Peter Steenkiste. Providing Contextual Informa-
tion to Pervasive Computing Applications. Proceedings of
the 1st IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 2003), Dallas, USA,
Mar, 2003.

[13] Christine Julien, Gruia-Catalin Roman. Egocentric Context-
Aware Programming in Ad Hoc Mobile Environments. Pro-
ceedings of the 10th International Symposium on the Foun-
dations of Software Engineering (FSE 2002), Charleston,
USA, Nov 2002.

[14] Aloysius K. Mok, Prabhudev Konana, Guangtian Liu, Chan-
Gun Lee, Honguk Woo. Specifying Timing Constraints and

Composite Events: An Application in the Design of Elec-
tronic Brokerages. IEEE Transactions on Software Engineer-
ing 30(12): pp. 841-858, Dec 2004.

[15] C. Nentwich, L. Capra, W. Emmerich, A. Finkelstein.
xlinkit: A Consistency Checking and Smart Link Generation
Service. ACM Transactions on Internet Technology 2(2): pp.
151-185, May 2002.

[16] C. Nentwich, W. Emmerich, A. Finkelstein. Consistency
Management with Repair Actions. Proceedings of the 25th
International Conference on Software Engineering (ICSE
2003), Portland, USA, May 2003.

[17] L.M. Ni, Y. Liu. Y.C. Lau, A.P. Patil. LANDMARC: Indoor
Location Sensing Using Active RFID. Proceedings of the 1st
IEEE International Conference on Pervasive Computing and
Communications (PerCom 2003), Dallas, USA, March 2003.

[18] Raghu Ramakrishnan, Johannes Gehrke. Database Manage-
ment Systems (Third Edition), McGraw-Hill Higher Educa-
tion.

[19] A. Ranganathan, R. H. Campbell, A. Ravi, A. Mahajan.
ConChat: A Context-Aware Chat Program. IEEE Pervasive
Computing (vol. 1, no. 3), pp. 51-57, Jul-Sep 2002.

[20] A. Ranganathan, J. Al-Muhtadi, RH. Campbell. Reasoning
about Uncertain Contexts in Pervasive Computing Environ-
ments. IEEE Pervasive Computing (vol. 3, no. 2), pp. 62-70,
Apr-Jun 2004.

[21] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, K. Nahrstedt. A Middleware Infrastructure for Ac-
tive Spaces. IEEE Pervasive Computing (vol. 1, no. 4), pp.
74-83, Oct-Dec 2002.

[22] Bill N. Schilit, Marvin M. Theimer, Brent B. Welch. Cus-
tomizing Mobile Applications. Proceedings of USENIX Mo-
bile & Location-Independent Computing Symposium, Cam-
bridge, USA, Aug 1993.

[23] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma,
Urpo Tuomela, Kristof Van Laerhoven, Walter Van de
Velde. Advanced Interaction in Context. Proceedings of the
1st International Symposium on Handheld and Ubiquitous
Computing (HUC 1999), Karlsruhe, Germany, Sep 1999.

[24] Bryan Scotney, Sally McClean. Database Aggregation of
Imprecise and Uncertain Evidence. Information Sciences—
Informatics and Computer Science: An International Journal
(Vol. 155, Iss. 3-4), pp. 245-263, Oct 2003.

[25] J. P. Sousa, D. Garlan. Aura: An Architectural Framework
for User Mobility in Ubiquitous Computing Environments.
Proceedings of the 3rd Working IEEE/IFIP Conference on
Software Architecture, Montreal, Canada, Aug 2002.

[26] Chang Xu, S.C. Cheung, Cindy Lo, K.C. Leung, Jun Wei.
Cabot: On the Ontology for the Middleware Support of Con-
text-Aware Pervasive Applications. Proceedings of the IFIP
Workshop on Building Intelligent Sensor Networks (BISON
2004), Wuhan, China, Oct 2004.

[27] Chang Xu, S.C. Cheung, Xiangye Xiao. Semantic Interpreta-
tion and Matching of Web Services. Proceedings of the 23rd
International Conference on Conceptual Modeling (ER
2004), Shanghai, China, Nov 2004.

345

