
Detecting and Preventing the Architectural Roots of Bugs

Lu Xiao
Drexel University

Philadelphia, PA, USA
lx52@drexel.edu

ABSTRACT
Numerous techniques have been proposed to locate buggy
files in a code base, but the problem of fixing one bug un-
expectedly affecting other files is persistent and prevailing.
Our recent study revealed that buggy files are usually archi-
tecturally connected by architecture issues such as unstable
interfaces and modularity violations. We aim to detect and
prevent these architecture issues that are the root causes
of defects. Our contributions include (1) a new architec-
ture model,Design Rule Space (DRSpace), that can express
structural relations, quality, and evolutionary information
simultaneously; (2) a method of automatically extracting
defect-prone architecture roots by combining static architec-
ture analysis with software revision history data mining. The
preliminary application of our approach to dozens of open
source and industry projects has demonstrated its significant
potential to inform developers about how software defects
should be discovered, examined, and handled.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design

Keywords
Software Architecture, Software Quality, Architecture Recov-
ery

1. PROBLEM AND MOTIVATION
Research has shown that bug fixing history is one of the

best predictors of future bug location [5]. The implication
is that it is hard to completely remove bugs from files with
defects. The problem of fixing one bug unexpectedly affecting
other files is persistent and prevailing. Our recent research [3]
has revealed that, in large-scale software systems, defective
files seldom exist alone. On the contrary, defective files are
usually architecturally connected, and their architectural
structures exhibit significant issues that are, we hypothesize,
the root causes of their bugginess. The implication is that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

just examining and fixing individual defective files, as is done
today, will not remove the root causes of bugginess or avoid
the inevitable ripple effects of causing more bugs when fixing
one.

Our motivation is to detect and prevent these architecture
issues that are the root causes of defects (which we call
architecture roots). This is, we claim, the key to reducing the
overall bugginess of a project. We are proposing new models,
methods, and supporting tools that should fundamentally
change the way software defects are discovered, examined,
and handled. In short: 1) defective files should be treated as
architecturally connected groups rather than individual files;
2) to reduce the recurrence of bugs in an architecture, the
architectural roots of the bugginess must be addressed.

2. BACKGROUND AND RELATED WORK
Our work bridges the gap between software architecture

and bug prediction, based on the conceptual framework of
design rule theory [1] and design rule hierarchy [9].

Numerous approaches have been proposed to predict the
location of bugs, by examining complexity metrics [6], or
mining software history [5]. Ostrand et al. [7] built their
prediction model based on a combination of static and history
analysis. The goal of most bug prediction research is to
predict the location of bugs, but all existing work ignores
the architecture relations among these buggy files. In the
field of software architecture, including software architecture
recovery techniques such as Bunch [4] and LDA [2], the focus
is to increase the understandability of a system, but there is
little work investigating the impact of architectural decisions
on software quality.

To bridge the gap between software architecture and qual-
ity, we leverage Design Rule theory proposed by Baldwin and
Clark [1]. A Design Rule is an architecturally important
design decision that dominates and decouples other parts
of the system into independent modules. Wong et al. [9]
proposed a design rule hierarchy algorithm used to identify
design rules and independent modules in software systems.
Next we present our approach based on these concepts.

3. APPROACH AND UNIQUENESS
Our approach features a new architecture model,Design

Rule Space (DRSpace), that can express software structure
relations, quality, and evolutionary information simultane-
ously, paired with an automatic architecture root detection
technique that locates defect-prone architecture issues by
combining static architecture analysis with software revision
history data.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

FSE’14, November 16–21, 2014, Hong Kong, China
ACM 978-1-4503-3056-5/14/11
http://dx.doi.org/10.1145/2635868.2661679

811

Design Rule Space (DRSpace) Modeling. We view
a software architecture as composed of multiple DRSpaces,
each modeling a different aspect of the architecture. Each
DRSpace consists of one or more design rules and indepen-
dent modules that are decoupled by, and depend on, the
design rules. For example, in a system applying a strat-
egy pattern, the strategy interface is an important design
rule that decouples concrete strategies with clients. The DR-
Space is visualized and manipulated using a Design Structure
Matrix (DSM) [1] representation.

Our model is unique in the following aspects. First, a DR-
Space can be formed using different types of dependencies,
including static dependencies, such as “extend”, “implement”
and “call”, and also evolutionary coupling, showing the num-
ber of times two files change together in a project’s revision
history. Second, with our supporting tool, Titan, the user
can flexibly examine different perspectives of the architecture,
by first selecting dependency relations of interest, and then
applying design rule hierarchy algorithm.

For example, if a system applies multiple design patterns,
each pattern forms its own design space that can be examined
separately using a DRSpace. Such a design pattern view can
be generated by selecting the key interfaces of a design pat-
tern, extracting the modules from the software system that
depend on this interface, and clustering them into a design
pattern DRSpace. If the user only chooses evolutionary cou-
pling, then an evolutionary view can be generated to reflect
the groups of files that have frequently changed together.
Similarly, if the user only select “extend” and “implement”, a
polymorphism view can be generated to show the modular
structure formed by base and sub-classes.

A DRSpace formed by multiple structure dependencies
reveals a hybrid view, which can be used to identify architec-
ture issues. Figure 1 demonstrates a polymorphism view of
Hadoop, with the FileSystem class chosen as the base class.
After the dependency relation is selected, an architecture
issue is revealed: the parent class, FileSystem, depends on
its child class, DistributedFileSystem. After adding the
evolutionary dependency relation, shown as the numbers in
each cell, we can see that this issue is associated with 26
co-changes (i.e., the two classes changed together 26 times).
Modularity violations [8] among files, highlighted in red, im-
plies shared secrets even though the classes don’t directly
depend on each other. The analysis of this DRSpace suggests
that, to reduce maintenance costs, the developers need to
better design the polymorphism structure led by FileSystem.

1 2 3 4 5 6 7 8

1 org.apache.hadoop.fs.FileSystem (1) Depend,

2 org.apache.hadoop.fs.RawLocalFileSystem Extend, (2)

3 org.apache.hadoop.fs.InMemoryFileSystem$RawInMemoryFileSystem Extend,7 ,8 (3)

4 org.apache.hadoop.dfs.DistributedFileSystem Extend,26 ,7 (4)

5 org.apache.hadoop.fs.kfs.KosmosFileSystem Extend, (5)

6 org.apache.hadoop.dfs.HttpFileSystem Extend, (6)

7 org.apache.hadoop.fs.FilterFileSystem Extend, (7)

8 org.apache.hadoop.fs.s3.S3FileSystem Extend,8 ,6 (8)

Figure 1: DRSpace from Hadoop

Architecture Root Detection. Considering all the
files with multiple bug fixes as a BugSpace, we created a
novel architecture root detection algorithm that extracts the
set of DRSpaces that covers a specified portion of defective
files from the whole DRSpace of the system. Our approach
works as follows: The first component takes dependency
information extracted from source code and transforms it

into a DSM with just structural dependencies. The second
component takes the revision history of a system as input
and generates a DSM with just evolutionary coupling. The
third component produces a bug space based on the bug
fixing history. The fourth component takes the output of
the first three components as input and computes a group of
DRSpaces that connect the most error-prone files as archi-
tecturally related groups. This approach is unique in that it
is the first to automatically bridge the gap between software
architecture and quality (as measured by bugginess).

4. RESULTS AND CONTRIBUTIONS
We have developed a toolset called Titan to support the

approach introduced above. Titan supports the automatic
generation of architecture roots and the interactive visual-
ization of DRSpaces to aid in various architecture analyses.

In our prior study [3] of three open source projects, we
made the following observations: 1) a project’s buggy files
are architecturally connected and only a few DRSpaces can
cover the majority of buggy files: in all three systems we
studied, 78% to 89% of most error-prone files are captured
by just 5 DRSpaces. We call these DRSpaces architecture
roots. 2) The DRSpaces led by error-prone design rules tend
to be also error-prone. 3) Error-prone DRSpaces, that is,
architecture roots, usually contain architecture issues, such
as inappropriate inheritance, unstable interfaces, modularity
violations, etc. that contribute to the error-proneness.

In our most recent study of ten open source projects and
one industry project, similar observations were made: the
majority of the buggy files were architecturally connected
by only a few DRSpaces. Besides, we also found that most
of the projects have the same set of architecture roots over
different snapshots during the life cycle of the project. More
importantly, as the size of bug space grows over time, the
number of architecture roots required to cover it remain
constant, showing that the impact of architecture roots are
consistent and significant. These results strongly suggest
that when developers are fixing bugs, they should 1) treat
buggy files as architecturally connected groups instead of
single files; 2) examine the architecture issues within each
architecture root and fix these, rather than attempting to fix
a bug in isolation.

5. SUMMARY AND FUTURE WORK
In summary, our research contributes a new architecture

model and an architecture root detection technique, bridg-
ing the gap between architecture and quality by clustering
hundreds of buggy files into just a few DRSpaces. Our Titan
tool provides interactive visualization of DRSpaces, so that
developers can examine the architecture issues behind the
buggy files, and get insights in how to fix them. Buggy files
are usually connected to each other by architectural design
flaws that contribute to the error-proneness. For this rea-
son the developer should treat buggy files as architecturally
connected groups and fix the architecture issues behind the
buggy files to avoid recurring bugs. Our future work is to
further automate the architecture issue detection within DR-
Spaces and to automatically provide refactoring suggestions.
We also plan to leverage Design Rule Spaces to automate the
detection of design patterns and anti-patterns.

812

6. REFERENCES
[1] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:

The Power of Modularity. MIT Press, 2000.

[2] M. Gethers and D. Poshyvanyk. Using relational topic
models to capture coupling amoung classes in
object-oriented software systems. In Proc. 26th IEEE
International Conference on Software Maintenance,
pages 1–10, Sept. 2010.

[3] Y. C. Lu Xiao and R. Kazman. Design rule spaces: A
new form of architecture insight. In Proc. 36rd
International Conference on Software Engineering, 2014.

[4] S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and E. R.
Gansner. Bunch: A clustering tool for the recovery and
maintenance of software system structures. In Proc. 15th
IEEE International Conference on Software
Maintenance, pages 50–59, Aug. 1999.

[5] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc. 27th
International Conference on Software Engineering, pages

284–292, May 2005.

[6] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. In Proc. 28th International
Conference on Software Engineering, pages 452–461,
2006.

[7] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Predicting the location and number of faults in large
software systems. IEEE Transactions on Software
Engineering, 31(4):340–355, 2005.

[8] S. Wong and Y. Cai. Improving the efficiency of
dependency analysis in logical models. In Proc. 24th
IEEE/ACM International Conference on Automated
Software Engineering, pages 173–184, Nov. 2009.

[9] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi.
Design rule hierarchies and parallelism in software
development tasks. In Proc. 24th IEEE/ACM
International Conference on Automated Software
Engineering, pages 197–208, Nov. 2009.

813

