
Duplication, Insertion and Lossiness errors in unreliable communication

Channels

G6rard C6C6 Alain Finkel

LIFAC, ENS de Cachan,

61 av. du Pdt. Wilson

94235 C!AC!HAN Cedex, France

Abstract

We consider the problem of verifying correctness of finite
state machines that communicate with each other over un-
bounded FIFO eharmels that are unreliable. Various prob-

lems regarding verification of FIFO channels that can lose

messages have been considered by Finkel [10], and by Ab-
dulla and Johnson [1, 2]. We consider, in this paper} other

possible unreliable behaviors of communication channels,
via. (a) duplication and (b) insertion errors. Furthermore,

we also consider various combinations of duplication, inser-
tion and lossiness errors.

Finite state machines that communicate over unbounded
FIFO btiers is a model of computation that forms the back-

bone of ISO standard protocol specification languages Es-
telle and SDL. While an assumption of a perfect communi-

cation medium is reasonable at the higher levels of the 0S1
protocol stack, the lower levels have to deal with an unreli-
able communication medium; hence our motivation for the
present work.

The verification problems that are of interest are reacha-
bility, unfoundedness, deadlock, and model-checking against

CTL *. All of these problems are undecidable for machines

communicating over reliable unbounded FIFO channels. So,

it is perhaps surprising that some of these problems become

decidable when unreliable channels are modeled. The contri-

butions of this paper are: (a) An investigation of solutions

to these problems for machines with insertion errors, du-

plication errors, or a combination of duplication, insertion

and lossiness errors, and (b) A comparison of the relative

expressive power of the various errors.

Keywords: Finite State Machines; Communication Chan-

nels; Duplication, Insertion and Lossiness errors; Verifica-

tion problems; model-checking against CTL*; Decidabilit y.

1 Introduction

Finite state machines which communicate over unbounded

channels have been used as an abstract model of compu-

tation for reasoning about communication protocols [4, 11]

and form the backbone of 1S0 protocol specification lan-

guages Estelle [8] and SDL [7]. Ever since the publication
—.

S. Purushothaman Iyer

Dept of Computer Science,

North Carolina State University,

Raleigh, NC 27695-8206, USA

of the Alternating bit protocol [3] (the fist ever computer

communication protocol) it has been customary to assume,

while modeling a protocol, that the communication channels

bet ween the processes are free of errors. Possible errors in

the communication channels are treated separately, or are

completely ignored. In [IO] Finkel considered a model of

errors, called completely specified protocols, in which mes-

sages from the fkont of a queue can be lost. He showed that

the termination problem is solvable for this class, In [1, 2]

Abdulla and Jonsson consider a slightly more general no-

tion of message Iossiness: they assume that messages from

anywhere in the queue can be lost. They considered the

reachability y problem [1] and the model-cheeking problem [2]

against specifications in the branching time temporal logic

CTL* [9]. They show that the reachability y problem is de-

cidable and that the model-checking problem is undecidable.

This is in sharp contrast to finite state machines communi-

cating over perfect channels, which are equivalent to turing

machines [5].

In this paper we consider two other sources of errors in

unreliable channels: duplication and arbitrary insertion of

messages. We show that duplication of messages, waiting in

the queue to be delivered, does not decrease the power of

these communicating finite state machines; they indeed are

equivalent to turing machines. On the other hand, in the

case of communicating finite state machines that have nrbl-

trary insertion errors, we show that the entire state space of

such machines can be expressed as regular languages. Fur-

thermore, we show how to compute a description of this

regular language. Based on this description, problems such

as reachability and boundedness are immediately shown to

be decidable. We also consider machines that can have a

combination of these errors. The contributions of this paper

are:

1. A complementary view, on errors, to what has already

been proposed in the literature. In particular we con-

sider insert ion errors, duplication errors and combina-

tions of the three (insertion, duplication and Iossiness)

errors.

2, A comparison of the relative expressive power of these

errors. Our findings are that insertion errors decrease

the expressive power of the communication finite state

machines the most, followed by lossiness; in sharp con-

trast we find that the duplication errors do not de-

crease the power of communicating finite state ma-

chines,

The presentation is structured as follows: In Section 2 we

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
ancf/or specific permission.
SIGSOIT ’94- 12/94 New Orleans LA USA

Q 1994 ACM 0-89791 -691 -319410012..$3.50

35

recall the necessary mathematical definitions. In Section 3

we offer an overview of past work. We present our results

for arbitrary insertion errors in Section 4, our results for

duplication in Section 5 and the various combinations in

Section 6. In the conclusion we offer a comparison of the

relative expressive power of these errors.

2 DAnitions and Preliminaries

2.1 The model of communicating finite state machines

While it is customary to think of a network of communicat-

ing fsnite state machines as made up of a set of finite state

processes, we will talk about a single tinite state control

(which could be a product of the component machines) act-

ing on a set of channels. Consider, for example, the two

machines PI and Pz communicating over channels c1 and

C2, shown in Figure 1. We could as well consider the sin-

gle machine acting on two channels c1 and cz, as shown in

Figure 2, instead. This is possible as this single machine

contains a shuffle of the actions of the two machines. It has

been shown that this model is as powerful as turing ma-

chines [5]. Formally, we have

Definition 1 A machine M = (S, C, UCGC E., SO, 6) where

S is a finite set of states, C = {cl,.. ., c=} is a finite set of
channels, 2. the alphabet of channel c ~ c, iso c S is the

distinguished initial state and

S$g S X (U{c?a, c!ala C X=}) x S

ccc

is the transition relation. ■

Notations 1 We will use z . y to emphasize the concatena-

tion of strings z and y. Let Zc = U=ec X.. ❑

III the following c!a denotes the act of sending a mes-

sage a on channel c and c?a denotes the act of receiving the

message a horn channel c. As we are dealing with asyn-

chronous communication any message that has been sent

will be queued in the buffer to be picked up later by the

receiver. The queue itself has a FIFO behavior.

Definition 2 Given a machine M = (S, C, Xc, 6) the set of

reachable states of the machine M is the least set R(M) ~

SXE: X... x X; defined inductively by the following rules:

. . .
● (uutlal state =om (.90, e, ..., e) E R(M) - the initial

state.

● Ifu=(s, z~,..., zn)ER(M) then

- (output rule) If (s, ci!a, s’) c 6 then

U’=(s’, q,... ,Zi —l, Zi. UtZi+lj. ..j ZJ E R(M).

This defines the semantics of an output action.

Furthermore, u’ is said to be a successor of u.

- (input rule) If(s, c;?a, s’) E 6 and zi = a,z~ then

U“=(s’, zl,. ... Z,-,, z:, z,+,,..., zm)E R(M).

This defines the semantics of an input action.

Furthermore, u“ is said to be a successor of u.

1We use the words processes and machines synonymously

In the future we call such machines which do not model

errors as normal machines.

Notations 2 Let ~~ = X; x . . . x:, the set of all rz-tuple

of words over the channel alphabets. ■

The set of words that are in the buifers can be identified

with various languages classes. To that end we define the

notion of channel languages as follows:

Definition 3 Given a machine M with a set of states S and

the reachability y set R(M), detine the channel language of a

state .s c S to be

-qs)=={(zl,..., Z?J E ~:l(s, zl, ..., z.) E R(M)}

The set R(lkf) captures the semantics of a machine M

when it is acting normally, without any errors. Given a

machine M, we wouId like to study various properties of

this machine.

Definition 4 Given a machine M with the reachability set

R(M), the following properties are of importance:

Reachability: Does a particular state (s, Z1,..., z~) belong

to R(M)?

Deadlock: Does a state u = (s, c,. . . . E) belong to R(M)

such that there are no successors for u?

Boundedness: Is the set R(M) finite?

Computation of R(M): There are two questions here. The

first question is: is the set I?(M) regular? If so, then

the second question is: is there an algorithm which

when given M would construct either a finite state

machine (or a regular expression) for R(M)?

Model-Checking againat CTL*: Given a CTL* formula +,

over an appropriate set of atomic propositions, does a

reachable state u satisfy the formula ~?

■

Given that a normal machine has at least one FIFO

queue it can be used to simulate a turing machine. Con-

sequently, we have:

Theorem 1 (Brand et al [5]) AU o~ the problems of in-

terest are undecidable for normal machines.

2.2 &rbword Ordering

Our technical treatment of unreliable channels critically de-

pends upon the notion of the subword relation, and its prop-

erties, which we now recall.

Definition 5 Let z, g E X*. z < u (i.e., z is a subword
of y) provided z = al . . . an and g = yoalyl . . . any~ where

Y; c X* and ai ~ Z. ❑

The relation < is a reflexive and a transitive relation.

Furthermore, it has the following property (due to Higman)

Theorem 2 (Higman [12, 13]) If a set of words W con-

sists of mutually incomparable elements according to ~ then

W is finite.

36

PROCESS PI PROCESS P2

Figure 1: Two communicating machines

Figure 2: Alternative view: One machine acting on two btiers

37

We can, without loss of generality, also use 5 for n-tuples

of words; define (zl, ..., zn) < (91, . . . ,v~) provided for ev-

ery i, such that 1 < i < n, we have zi < vi. Given a set

W C ~~, we will say that W is upward closed provided for

each w E W every element w’ such that w 5 W’ is also in

W. Formally,

Definition 6 Let W Q ~~. Define closure(W) = {w’ c

~:lw<w’A w E W}. Consequently, a set of n-tuples of

words W is said to be upward closed provided

W = clo8ure(W)

■

Consider the minimal elements of an upward closed set.

Since any two minimal elements are mutually incomparable,

we have, by I&man’s lema, that the set of minimal ele-

ments of any upward closed set is necessarily finite. Given

a minimal element w = al, an, it is easy to see that if

w is in a upward closed set W then X“alz” . . .X”anz” is

also included in the set W. Consequently, we can look upon

these minimal elements as a representation of that set. For

a upward closed set W we will write rnin(W) for the mini-

mal elements of W. As there is a finite set of generators for

every upward closed, we have:

Lemma 1 Every upward cio~ed set is regular. ❑

Consider two related upward closed sets, then there is a

relation between the minimal elements of those two sets:

Lemma 2 Let A ~ B and let both sets be upward closed.

W. then hawe

Vu c rnin(A) Vb E rnin(B) either b < a or (a ~ b and b 8a)

■

Notations 3 A ~ B provided A is a subset of B, and A C

B provided A is properly contained in B. ■

A consequence of the above lemma is that given an up-

ward closed set A there is no infinite sequence of successively

larger sets (that are all bigger than A). Formally, we have

Lemma 3 Let A be an upward cloged set. There is no infi-

nite sequence of upward closed sets {Ai}i20 such that

AcAoc AI...

Proofl Given an upward closed set A assume that there

is an infinite sequence, { Ai }i>o, of successively larger sets.

Now consider the sequence P–= {wi}i20 formed as follows:

(a) initially populate p with elements from rnin(A), (b) suc-

cessively consider each of the Ai, i ~ O, and add to p those

elements of mi~(Ai) which are not related to any element

added to p thus far. By construction, this sequence contains

mutually incomparable elements. By Higman’s Lemma, this

sequence is necessarily finite. Without loss of generality, as-

sume that p t errninat es when elements from rnin(AI) are

being added to p. By our previous lemma all elements in

fi~iZ(Ai), i > 1, have to be less than some ciem.ent in p. Since

b < a implies that the length of b is less than or equal to the

length of a, there is a finite J ~ 1 such that all A,l i ~], are

the same, contradicting our assumpticr..

Consequently, given an upward closed set A the sequence

AC AOCAI C...

of upward closed sets is tide. ❑

3 Previous results on Lossy Machines

In thissection we will recall existing results from the lit-

erature so that we can compare the various kinds of errors

in an uniform fhrnework. In this process we will also show

some new results. In the literature two models completely

apecijied protocols [10] and machines capable of losainess

errors [1] have been considered. They differ in that com-

pletely specified protocols can only lose messages from the

fkont of the queue where as the machines capable of lossiness

errors can lose messages anywhere fkom the queue. Though

the two models are not equivalent (in that their reachability

sets are not the same) they are related. We fist recall their

definitions:

Definition 7 A completely specified protocol is a machine

M = (S, C, XC, ~0, 6) whose reachability y set is the least set

R..P(M) ~ S x ~~ detined by the following rules:

The initial state axiom, output rule and input rule are

as for normal machine.

Vi:l<i< nand VaEX.. we have— —
ifu=(s,zl, . . . ,Zi-i, UZi_, Zi+l, . . . ,Zm) E R..p(il!f)

then u’” = (9,2,,..., zi–17ziyzi+l, ...9 %) e R.#p(M).

Again U’” is said to be a successor of u.

■

An execution path of a machine M is a sequence

{(Pi, zilt ‘Zim)}i>O

such that (a)po = SO, Zoj =E, for allj : 1 < j < n and (b)

every element of the sequence is a successor of the previous

element in that sequence.

Definition 8 A machine M is said to finitely terminate

provided every execution path starting from {SO, e, ..., c)}

is finite. 9

Finkel, in [10], showed the following:

Theorem 3 The jinite termination problem for completely

specijied protocols is solvable.

Let us now consider machines that are capable of lossi-

ness errors.

Definition 9 A machine that is capable of lossiness errors

is a machine M = (S, C, XC, so, 6) whose reachability set is

the least set RL(M) < S x ~~ defied by the following

inductive rules:

s The initial state axiom, input rule and output rule are

as for normal machines.

●Vl<i<nand VaEEi we have

if(s, zl, Zi—17Z2ZZr9Zi+l ,.. .\Zn) G R.(M)

then (S, ZX, Zi_I. Z~Zf, Zi+I, Zm. ,Zm) 6 R.(M)

■

The notion of successor states carries over tlom the def-

tiltion of completely specified protocol.

Abdulla and Jonsson show the following in [1, 2]:

Theorem 4 The following are true for machines capable of

lo3siness errors:

38

● The reachability problem and the deadlock pro biema are

decidable.

● The model-checking problem is undecidable.

● The channel language is regular.

The following facts were not reported earlier by Finkel,

or Abdulla and Jonsson, though these follow horn their the-

orems:

Theorem 5 (C&c6 et al [6]) Given a machine M

● RL(M) has a deadlock state iff R..P(M) has a deadlock

date.

Unlike the previous theorem which is a direct conse-

quence of the definitions from [10, 1, 2], the following new

undecidability result is due to a reduction horn a problem

shown to be undecidable in [2]: the Recurrent Path Prob-

lem (RPP). This problem decides the existence of an infinite

execution path which visits infinitely oft en a given state s.

Theorem 6 (C&c6 et al [6]) Given a machine A4

There ezists no procedure to compute a finite state

machine (or a regular ezpreuaion) representation

oj RL(M).

4 Insertion Errors

We will now detine what it means for a machine to have

insertion errors. While the syntax of a machine capable of

insertion errors is no difTerent from a normal machine, its

semantics (i.e., its set of reachable states) is ditEerent.

Definition 10 A machine M = (S, C, IIc, go, 6) capable of

arbitrary insertion errors has the reachability set RI(M) ~

S x ~ which is the least set satisfying the following induc-

tive specifications:

● The initial state axiom, output rule and input rule are

the same as for normal machines.

cVl<i<nand Va6Eiwe have

if(s, zl,. ... Zi-,, z:z:, zi+,, . . . ,zrt) e RI(M)

then (s, z1, . . . ,z~-l, z~aZ~, z;+l, . . . ,zm) E RI(M)

■

A machine that is capable of arbitrary insertion errors

can insert any message, at any location of the queue. While

this is very close to our mental notion of arbitrary errors,

it is technically much more easier to deal with a slightly

difTerent, but equivalent, machine model. In this slightly al-

tered model, called insertion machine, arbitrary unspecified

messages can only be inserted at the end of the queue. The

advantage is that in the insertion machme there is a bound

on the number of successor to any states, but in the case of

arbitrary insertions there is no such bound (as the number

of successors of a state depends upon the length of the words

in that state).

Definition 11 A machine M = (S, C, Xc, @ is ~ insertion

machine provided

Vs G S,VC C C,Va E X=.(s, c!a,8) E $

Given a machine M = (S, C, ZC, 6) its

is the machine 1(M) = (S, C, Xc,15 U {(s, c!a, .Y)18 E S,c G

C,a E 2.}). ■

But the two models are equivalent in that their reacha-

bility sets are the same. Formally, we have:

Lemma 4 Let M be a machine, RI(M) be the reachability

set of M when it is capable of arbitrary insertion errors and

let R(I(M)) be the reachability set of the insertion comple-

tion of M. We have

RI(M) = R(I(M))

Proofi The inclusions in both direction can be proven

by an induction on the length of the justification that a

particular state is reachable. ■

4.1 Computation of R(M) for a Insertion Machine

We will now show how to compute the set R(M) when M is

an insertion machine. The computation will yield a machine

independent characterization (i.e., a regular expression) in

terms of minimal elements of an upward closed set. The

calculation itself involves setting up a set of equations and

solving them. We need the following operations to state the

equations:

Definition 12 Let W ~ ~~. Detine

Similarly define

{
(ci?a)(W) = ~~~:::;wi-ltwi’ wi+l, . . .Wm)lWi_lja. Wi, Wi+ll...Wn) E W }

■

Given an insertion machine M = (S, C, Y2c, so, $), in this
section we will show how to compute a description of the

reachability y set, R(M), of M. By the construction of the in-

sertion machines, the channel languages are upward closed.

Lemma 5 For every state s E S of an insertion machine

M, we have L(s) is upward closed. Consequently, for all

s c S, L(s) is a regular set. ■

To compute the channel language we can state equations

between the various channel languages and solve them. The

flow equations, which are similar to what was used in [15],

are as follows:

v8#$o: L(8)= u(4f,t!a,.)@(c!a)(L(i#))U (1)

u(’1,.?a,.)e5(c?a)(L(s’))

q.90) =(&,..., ~)u u(.t,c!a,go)G&(c!a)(L(d))u (2)

u(,l,c?a,.o)e~(c?a)(~(s’))

39

Given that the eventual solution for each of the variables

L(s), s E S, is an upward closed set we can restate the equa-

tions as:

(u(sl,c!a,s)e6(c~a)(~(g’))u
‘8#‘0: ‘(s)=“o’ureu(.~,c?a,.)e,(c?a)(~(”)))

(3)

(e,..., e)U

u(.l,.!a,.o)~$(c!a)(~($’))u
U(,,,c~a,,o)eJ(c?a) (L(s’))

Given equation (4) it is temptimz to think that the

(4)

chan-

nel languag~ for ev&y state wc%ld-be ~~. But this is not

so, as the channel language for states S1, 82 and sJ of the

machine in Figure 3 does not include E.

The tirst thing to notice in these equations is that the

domain of the variables is the powerset of ~~, which is

a complete lattice. Furthermore the operators involved in

these eauations. c!a. c?a. U and closure are continuous oD-

erators ‘over the dornti’ of the powerset of ~~. Cons~-

quently, these equations have an unique least solution. Due

to Tarski’s Fixed-Point theorem [16] the computation of this

least solution can be expressed as the limit (viz., union) of

a sequence of solutions as follows:

Vs #s, : L(s)o = 0
Vi >0: L(.s~)~ = ~~

Vs#aO, Va> Owe have

(

u(.r,c!a,s)c$(c!a) (~(s’);)u

‘(8)’+’ = ci08ure u(.l,.?a,,)e,(c?a)(~(s’)~))

(5)

An immediate consequence of the equations (5) is:

Lemma 6 For the equations (5) of an insertion machine

the following hold:

1. Vs E S ad Vi >0 we have L(s)i ~ L(S);+I.

Con~equently, the solution to equations (5) can be computed

in a finite number of iterations.

Proofi The fist part foiiows by the monot.nicity of the

operators involved in the equations, and the second part
fQilows fcOm. Lem_ma 3. ❑

Since we can compute the channel ianguage for every

state of the machine, all of our problems of interest (dead-

lock, reachability, unbormdedness etc) can be immediately

solved. To check whether a state (s, Z1, . . . ,z~) is reach-

able we need to check whether (z 1, ..., z~) is in the channel

language of s, i.e. L(s). Note that no state can be dead-

lock state because there are always transitions out of every

stat e. Furthermore, every machine is obviously unbounded

as an unbounded number of messages can be ‘inserted into

the buffer. Consequently,

Theorem 7 We have the following for machines capable of

in9erti0n error9:

● The channel language is computable.

● The reachability problem is decidable.

● The deadlock and boundedne8s problems are trivially

solvable.

Proofi The proof follows from Lemmas 4, 5 and 6. ■

5 Duplication errors

In this section, we consider the problem of analytiing chan-

nels that can arbitrarily duplicate messages. The formal

definition of a machine capable of duplication errors is as

follows:

Definition 13 A machine M = (S, C, XC, so, 6) is capable

of duplication errors when its reachability y set RD (M) is de-

fined as the least set satisfying the following rules:

o

0

The initial state axiom, input rule and output rule are

as the same for normal machines.

Vl<i<nand VaE.Xi we have—
if (s,2; , ...,zi–l>ziazf,zi+lj. ..,zn) e RD(M)

then (s, zl, . . . , zi—l,Z~aczZ~, 2,+1, . . . , z~) 6 RD(M).

■

We will show in the following that machines which are ca-

pable of duplication errors are as powerfti as tnring-machines

and therefore none of the verification problems we are inter-

ested in are decidable. Without loss of generality, we will

assume that there is a single channel in the machine.

The problem with our current definition of machines ca-

pable of duplication errors is that it is not possible to dis-

tinguish between a sequence of identical messages due to

duplication errors and a sequence of identical messages due

to the normal behavior of a machine. We can take care of

this distinction as fallows:

For all normal behavior of the machine every

message in the queue is to be followed by a letter

(say #) not iv tite +lphabet of the m.achhe.

This is easily achieved by creating extra states (as many

as there are edges in the machine), and always sending a

after sending a normal message. More pictorially, the

transformations look as follows:

p ~ q iz transformed to p ~ p’ ~ q

and

p % q is transformed to p :2 p, and p ~ q

where p’ is a new state not in S.

We therefore need to only consider machines that have

the following properties:

● There is only one channel in the machine.

● For every state s E S the channel language L(s) does

not contain any word with two consecutive occurrences

of the same letter.

Call such machines as non-duplicate machines.

Since a normal machin e is tnnng-powerfd, the set of

channel languages of a normal machine is recursively enu-

merable. Furthermore, as the transformation horn the lan-

guage of normal machines to the language of non-duplicate

machines is a simple homomorphism we infer that the chan-

nel language of non-duplicate machines are also recnrsively-

enumerable. Let us now consider the channel languages of

machines that are capable of duplication errors. For every

non-duplicate language L define

LD={a~...a~[aa~~L}~~L}

Furthermore, define a function ~ : X* ~ E* as follows:

f(E) = e
f(a) = a,Va E X

~(zlaaz.2) = f(z~az~),Vz~,z~ C X“, a E Z

f(zlabz~) = f(zla)f(bzZ), Vzl, zz ~ Z“, a,b ● X and a # b

Note that the function f merely squeezes out all repetitions

within a word. We now have the obvious condition for a

word to be in L.

Lemma 7

ZEL iflz CLDandf(z)=z

If LD happens to be recursive then there is an algorithm

to check whether a word z is in LD. Clearly, it is trivial to

check whether ~(z) = z holds for any word z. This implies

that if LD is recursive then L is also recuxsive. Given that

L is know to be recursively enumerable, we have:

Theorem 8 The ~ollowing statements are true:

LD is recursively enumerable.

The channel language of a duplication machine is re-

cur~ively enumerable.

No non-trivial property of duplication machines (Jor

instance, reachabili&, dea~lock detection, model-checking)

is deciduble.

6 CGm%aticii of errors

In this section we will consider various combinations of the

three errors (a) duplication, (b) insertion and (c) lossiness.

We will establish in each of these cases whether a particular

problem is decidable or not.

6.1 Losaine.ss and Insertion

Let M be a machine that can lose messages, and let RL(kf)

be the set of reachable states of ikf. The reachability set of

such a machine is, by definition, downward closed:

V(P!Z17 -..? z*) = RL(kf) then (p, z;, ..., Z;) ~ R@)

VZ~<Zi,l<i<n

Consequently, a machine that can have both lossiness and

insertion errors has the following property

Lemma 8 Let machine i%f = (S, C, Xc, so, $) be a machine

that is capable oj having both lossine.w and insertion errors.

The channel language for any s E S has the following prop-

erty:

. L(s) = ~~ ifi there is a sequence of transitions from

80 to s.

● L(g) = 0 or L(s) = ~~.

Given this lemma the machines that are capable of both

Iossiness and insertion do not have any significant property:

all states are reachable, there can be no deadlocks, and the

machines are always unbounded. We thus have:

Theorem 9 For a machine that has both los.sinesa and in-

~ertion errors the reachability, deadlock and boundedness

problems are trivially solvable.

6.2 Duplication and Insertion

A machine that is capable of duplication and insertion does

not behave any differently from a machine that is capable of

only having insertion errors. This is because every duplica-

tion error is also an insertion error. Consequently our anal-

ysis for insertion errors presented in Section 5 holds here.

Theorem 10 We have the following for machines capable

of insertion error~ and duplication errors:

●

●

6.3

The channel language is computable.

The reachability problem is decidable, and the deadlock

and unfoundedness problems are trivially solvable.

Duplication and Lossiness

Before considering both lossiness and duplication errors to-

gether, we will present another machine model that is equiv-

alent to the machines that are capable of duplication errors.

With this new model it would be easy for us to show that the

class of machines capable of both duplication and lossiness

errors is a subclass of machines containin g only lossiness er-

rors; consequently, most of the work for 10SSY machines [1, 2]

is applicable to machines that have both lossiness and du-

plication errors.

Definition 14- Given a machine M = (S, C, Zc, so, 6) de-

fine the duplication completion D(M) as follows:.

For each (s, c!a, s’) c 6 create a new state s“ and

replace the transit ion (s, c!a, s’) with the transi-

tions (s, c!a, d’), (s’’, c!a, s”) and (.s’’, e, d). The

last of these do not affect any channel and are

called e-transitions.

■

41

Legend: D - Decidable, U- Undecidable, U(?) – conjectured to be undecidable, n/a – not applicable.

Figure 4: A survey of decidability results

As in the case of insertion machine, the following holds:

Lemma 9 The reachability set of a machine M that is ca-

pable of duplicating messages is the same an the reachability

set of duplication completion of M, viz. R(D(M)). ■

Now a machine D(M) is no dWerent from a normal ma-

chine, as far its semantics goes. Consequently, instead of

considering M to be capable of duplication and lossiness er-

rors we can consider D(M) as having lossiness errors. This

in turn implies that the reachability problem is decidable for

the class of machines that have duplication and lossiness er-

rors. In fact, all of the decidabilit y results of machines with

lossiness errors also holds for machines that can have du-

plication and lossiness errors. Furthermore, bonndedness is

decidable for lossiness and duplication, whereas it is still an

open problem for 10SSY systems (clearly, one can duplicate

a letter in the btier to produce bufers of unbounded size).

Undecidability results also carry over though their proofs

are not straightforward; the proofs appear in the complete

paper. Summarizing, we have:

Theorem 11 (C4C6 et al [6]) The reachabdityproblem and

the boundedness problem for a machine that has both duplica-

tion and lossine.w errors is solvable. Furthermore, the chan-

nel language is not computable and model checking against

CTL * is undecidable.

7 Conclusion

We summarize the results known to date, on unreliable chan-

nels, in the Table 4. Apart from being ahnost complete, it

does provide a comparison of the expressive power of the

three kinds of errors. Clearly duplication has no effect on

the expressive power. Lossiness on the other hand makes

the communicating machines less powerful. What is sur-

prising is that insertion makes the communicating machines

even less powerful, as a description of the set of all reachable

states can be calculated for machines with insertion errors

but not for machines with lossiness errors. Pachl proved

in [14] that if the reachability y set is regular than the reacha-

bility problem is decidable. What we have shown is that this

result C!OCSnot scale up to other problems, and perhaps sw-

prisingly even though the reachability set might be regular

a machine-independent description need not be computable.

The contributions of this paper are new results for verifi-

cation of communication machines whose channels have du-

plication error, insertion errors, or a combination of duplica-

tion, insertion and lossiness errors. These results are signifi-

cant in that assumptions about the possibility of such errors

(which are closer to reality) make the verification problems

easier. Finally, we have also presented the decidability re-

sults for all three kinds of errors (duplication, insertion and

lossiness) and their combination within a single framework.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

P. Abdulla and B. Jonsson. Verifying Programs with

Unreliable Channels. In Proc of Logic in Computer

Science, 1993.

P. AbduUa and B. Jonsson. Undecidabilit y of verifying

programs with unreliable channels. To appear in Proc

of ICALP, 1994.

K. A. Bartlett, R. A. Scantlebury and P. T. Wilkinson.

A note on reliable fill-duplex transmission over half-

duplex lines. CACiU, 12(5):260-265, 1969.

Gregor Bochmann. Finite State Description of Com-

munication Protocols. Computer Networks, 2:362–372,

1978.

Daniel Brand and Pitro Zafiropulo. On communicating

finite-state machines. .lA Cilf, 30(2):323-342, 1983.

G. C6C6, A. Finkel and S. Purushothaman Iyer. Unreli-

able channels are easier to verify than perfect channels.

LIFAC Tech Report 94-02. ENS de Cachan, France,

May 1994.

CCITT Recommendation Z.1OO: Specification and De-

scription Language SDL, Blue Book Vol X.1-X.5, 1988,

ITU General Secretariat, Geneva.

M, Diaz, J. P. Ansart, P. Azema, and V. Chari. The

Formal Description Technique Estelle. North Holland,

1989.

E. A. Emerson and J. Y. Halpem. “Sometimes” and

‘not never” revisited: on branching time versus linear

time temporal logic. .lA Ci’kf, 33(1):151–178, 1986.

Alain Finkel. Decidability of the termination problem

for completely specified protocols. Distributed Comput-

ing, 7:129–135, 1994.

42

[11] M. G. Gouda, E. M. Gurari, T.-H. Lai, and L. E. Rosier.
On deadlock detection iu systems of communicating fi-

nite state machines. Computers and Artificial Intelli-
gence. 6(3):209-228, 198’7.

[12] G. Higman. Ordering by divisibility in abstract alge-

bras. In Proc. of London Math Society, 2:326-336, 1952.

[13] M. Lothaire. Combinatorics on Words. Addison-

Wesley, 1983.

[14] J. K. Pacbl. Protocol description and analysis based

on a state transition model with channel expressions.

In Proc. of Protocol Specification, Testing and Verifica-

tion, VII, May 1987.

[15] W. Peng and S. Purushothaman. Data flow anal-

ysis of communicating tinite state machines. ACM

Transaction on Programming Languages and Systems,

13(3):399-442, Jdy 1991.

[16] A. Tarski. A Lattice Theoretic Fixpoint Theorem and

its Application. Pacijic Journal of Mathematics, 5:285–

305, 1955.

43

