Duplication, Insertion and Lossiness errors in Unreliable Communication

Channels

Gérard Cécé Alain Finkel
LIFAC, ENS de Cachan,
61 av. du Pdt. Wilson
94235 CACHAN Cedex, France

Abstract

We consider the problem of verifying correctness of finite
state machines that communicate with each other over un-
bounded FIFO channels that are unreliable. Various prob-
lems regarding verification of FIFQO channels that can lose
messages have been considered by Finkel [10], and by Ab-
dulla and Johnson [1, 2]. We consider, in this paper, other
possible unreliable behaviors of communication channels,
viz. (a) duplication and (b) insertion errors. Furthermore,
we also consider various combinations of duplication, inser-
tion and lossiness errors.

Finite state machines that communicate over unbounded
FIFO buffers is a model of computation that forms the back-
bone of ISO standard protocol specification languages Es-
telle and SDL. While an assumption of a perfect communi-
cation medium is reasonable at the higher levels of the OSI
protocol stack, the lower levels have to deal with an unreli-
able communication medium; hence our motivation for the
present work.

The verification problems that are of interest are reacha-
bility, unboundedness, deadlock, and model-checking against
CTL* All of these problems are undecidable for machines
communicating over reliable unbounded FIFO channels. So,
it is perhaps surprising that some of these problems become
decidable when unreliable channels are modeled. The contri-
butions of this paper are: (a) An investigation of solutions
to these problems for machines with insertion errors, du-
plication errors, or a combination of duplication, insertion
and lossiness errors, and (b) A comparison of the relative
expressive power of the various errors.

Keywords: Finite State Machines; Communication Chan-

nels; Duplication, Insertion and Lossiness errors; Verifica-
tion problems; model-checking against CTL*; Decidability.

1 Introduction

Finite state machines which communicate over unbounded
channels have been used as an abstract model of compu-
tation for reasoning about communication protocols [4, 11]
and form the backbone of ISC protocol specification lan-
guages Estelle (8] and SDL [7]. Ever since the publication

Permission to copy without fee all or part of this material i
granted provided that the copies are no't) made or distrigﬁtaéclisfor
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

SIGSOFT '94- 12/94 New Orleans LA USA
© 1994 ACM 0-89791-691-3/94/0012..$3.50

S. Purushothaman Iyer
Dept of Computer Science,
North Carolina State University,
Raleigh, NC 27695-8206, USA

of the Alternating bit protocol [3] (the fixrst ever computer
communication protocol) it has been customary to assume,
while modeling a protocol, that the communication channels
between the processes are free of errors. Possible errors in
the communication channels are treated separately, or are
completely ignored. In [10] Finkel considered a model of
errors, called completely specified protocols, in which mes-
sages from the front of a queue can be lost. He showed that
the termination problem is solvable for this class. In [1, 2]
Abdulla and Jonsson consider a slightly more general no-
tion of message lossiness: they assume that messages from
anywhere in the queue can be lost. They considered the
reachability problem [1] and the model-checking problem [2]
against specifications in the branching time temporal logic
CTL* [9]. They show that the reachability problem is de-
cidable and that the model-checking problem is undecidable.
This is in sharp contrast to finite state machines communi-
cating over perfect channels, which are equivalent to turing
machines [5].

In this paper we consider two other sources of errors in
unreliable channels: duplication and arbitrary insertion of
messages. We show that duplication of messages, waiting in
the queue to be delivered, does not decrease the power of
these communicating finite state machines; they indeed are
equivalent to turing machines. On the other hand, in the
case of communicating finite state machines that have arbi-
trary insertion errors, we show that the entire state space of
such machines can be expressed as regular languages. Fur-
thermore, we show how to compute a description of this
regular language. Based on this description, problems such
as reachability and boundedness are immediately shown to
be decidable. We also consider machines that can have a
combination of these errors. The contributions of this paper
are:

1. A complementary view, on errors, to what has already
been proposed in the literature. In particular we con-
sider insertion errors, duplication errors and combina-
tions of the three (insertion, duplication and lossiness)
€rrors.

2, A comparison of the relative expressive power of these
errors. Our findings are that insertion errors decrease
the expressive power of the communication finite state
machines the most, followed by lossiness; in sharp con-
trast we find that the duplication errors do not de-
crease the power of communicating finite state ma-

chines.

The presentation is structured as follows: In Section 2 we

35

recall the necessary mathematical definitions. ' In Section 3
we offer an overview of past work. We present our results
for arbitrary insertion errors in Section 4, our results for
duplication in Section 5 and the various combinations in
Section 6. In the conclusion we offer a comparison of the
relative expressive power of these errors.

2 Definitions and Preliminaries

2.1 The model of communicating finite state machines

While it is customary to think of a network of communicat-
ing finite state machines as made up of a set of finite state
processes’, we will talk about a single finite state control
(which could be a product of the component machines) act-
ing on a set of channels. Consider, for example, the two
machines P, and P, communicating over channels ¢; and
¢z, shown in Figure 1. We could as well consider the sin-
gle machine acting on two channels ¢; and c3, as shown in
Figure 2, instead. This is possible as this single machine
contains a shuffle of the actions of the two machines. It has
been shown that this model is as powerful as turing ma-
chines [5]. Formally, we have

Definition 1 A machine M = (S, C!Ucec ¥., 80,6) where
S is a finite set of states, C = {c1,...,cn} is a finite set of
channels, . the alphabet of channel ¢ € C, 3¢ € S is the
distinguished initial state and

8§ C 8 x (| J{cta,clalae n}) x 8

ceC

is the transition relation. []

Notations 1 We will use z -y to emphasize the concatena-
tion of strings z and y. Let ¥¢ = Ucec .. u

In the following cla denotes the act of sending a mes-
sage a on channel c and c?a denotes the act of receiving the
message a from channel ¢. As we are dealing with asyn-
chronous communication any message that has been sent
will be queued in the buffer to be picked up later by the
receiver. The queue itself has a FIFO behavior.

Definition 2 Given a machine M = (§,C, Z¢,§) the set of
reachable states of the machine M is the least set R(M) C
S x X} x...x X} defined inductively by the following rules:

o (initial state axiom) {s0,¢,...,€) € R(M) — the initial
state.

¢ fu= (5!21,---9311.) € R(M) then
— (output rule) If (s,c;la, s') € § then

u = (s',21,...,2i1,%i°a, Tit1, ..., Ta) € R(M).

This defines the semantics of an output action.
Furthermore, u' is said to be a successor of u.

— (input rule) If (5,¢i%a,s') € § and z; = a-] then
' = (8,21, 1 Zi1, 25, Zid1,. . 2a) € R(M).

This defines the semantics of an input action.
Furthermore, u” is said to be a successor of u.

1 We use the words processes and machines synonymously

36

In the future we call such machines which do not model
errors as normal machines.

Notations 2 Let) ' = %] x...Z}, the set of all n-tuple
of words over the channel alphabets. []

The set of words that are in the buffers can be identified
with various languages classes. To that end we define the
notion of channel languages as follows:

Definition 3 Given a machine M with a set of states S and
the reachability set R(M), define the channel language of a
state 8 € S to be

L(s) = {{z1,...12a) € Eﬂ(s,zl,...,zn) € R(M)}
|

The set R(M) captures the semantics of a machine M
when it is acting normally, without any errors. Given a
machine M, we would like to study various properties of
this machine.

Definition 4 Given a machine M with the reachability set
R(M), the following properties are of importance:

Reachability: Does a particular state {(s,2,...,%n) belong
to R(M)?

Deadlock: Does a state u = (s,¢,...,£) belong to R(M)
such that there are no successors for u?

Boundedness: Is the set R(M) finite?

Computation of R(M): There are two questions here. The
first question is: is the set R(M) regular? If so, then
the second question is: is there an algorithm which
when given M would construct either a finite state
machine (or a regular expression) for R(M)?

Model-Checking against CTL*: Given a CTL* formula ¢,
over an appropriate set of atomic propositions, does a
reachable state u satisfy the formula ¢?

Given that a normal machine has at least one FIFO
queue it can be used to simulate a turing machine. Con-
sequently, we have:

Theorem 1 (Brand et al [5]) All of the problems of in-
terest are undecidable for normal machines.

2.2 Subword Ordering

Our technical treatment of unreliable channels critically de-
pends upon the notion of the subword relation, and its prop-
erties, which we now recall.

Definition 5 Let z,y € X*. 2 (i.e., = is a subword
of y) provided 2 = a3 ...an and YoQ1Y1 - . . AnYn Where
y;: €X* and a; € 2. B

2y
y:

The relation < is a reflexive and a transitive relation.
Furthermore, it has the following property (due to Higman)

Theorem 2 (Higman [12, 13]) If a set of words W con-
sists of mutually incomparable elements according to <X then

W is finite.

cl?a cl?b clla

c2d

c2ld

cltb

PROCESS P1 PROCESS P2

Figure 1: Two communicating machines

Figure 2: Alternative view: One machine acting on two buffers

37

We can, without loss of generality, also use < for n-tuples
of words; define (21,...,Zn) =< (¥1,...,¥n) Provided for ev-
ery ¢, such that 1 < ¢ < n, we have z; < y;. Given a set
W C 37, we will say that W is upward closed provided for
each w € W every element w' such that w < w’ is also in
W. Formally,

Definition 6 Let W C) 7. Define closure(W) = {w' €

Y7 lw X w' Aw € W} Consequently, a set of n-tuples of
words W is said to be upward closed provided

W = closure(W)
| |

Consider the minimal elements of an upward closed set.
Since any two minimal elements are mutually incomparable,
we have, by Higman’s lemma, that the set of minimal ele-
ments of any upward closed set is necessarily finite. Given
a minimal element w = ai,...,an, it is easy to see that if
w is in a upward closed set W then L*q;X*...Z%a, X" is
also included in the set W. Consequently, we can look upon
these minimal elements as a representation of that set. For
a upward closed set W we will write min{W) for the mini-
mal elements of W. As there is a finite set of generators for
every upward closed, we have:

Lemma 1 FEvery upward closed set is regular. |

Consider two related upward closed sets, then there is a
relation between the minimal elements of those two sets:

Lemma 2 Let A C B and let both sets be upward closed.
We then have

Va € min(A) Vb € min(B) either b <a or (a Abandb A a)
|

Notations 3 A C B provided A is a subset of B, and A C
B provided A is properly contained in B. |

A consequence of the above lemma is that given an up-
ward closed set A there is no infinite sequence of successively
larger sets (that are all higger than A). Formally, we have

Lemma 8 Let A be an upward closed set. There is no infi-
nite sequence of upward closed sets {A;}i>o such that

ACA CA ...

Proof: Given an upward closed set A assume that there
is an infinite sequence, {Ai}i>q, of successively larger sets.
Now consider the sequence p = w;};zo formed as follows:
(a) initially populate p with elements from min(A), (b) suc-
cessively consider each of the A;,1 > 0, and add to p those
elements of min(A4;) which are not related to any element
added to p thus far. By construction, this sequence contains
mutually incomparable elements. By Higman’s Lemma, this
sequence is necessarily finite. Without loss of generality, as-
sume that p terminates when elements from min(A4,) are
being added to p. By our previous lemma all elements in
min{A:),1 > £, have to be less than some element in ». Since
b < a implies that the length of b is less than or equal to the
length of a, there is a finite 3 > £ such that all 4,,: > 3, are
the same, contradicting our assumpticn.

Consequently, given an upward closed set A the sequence

ACA CAC...

of upward closed sets is finite.

3 Previous results on Lossy Machines

In this section we will recall existing results from the lit-
erature so that we can compare the various kinds of errors
in an uniform framework. In this process we will also show
some new results. In the literature two models completely
specified protocols [10] and machines capable of lossiness
errors [1] have been considered. They differ in that com-
pletely specified protocols can only lose messages from the
front of the queue where as the machines capable of lossiness
errors can lose messages anywhere from the queue. Though
the two models are not equivalent (in that their reachability
sets are not the same) they are related. We first recall their
definitions:

Definition 7 A completely specified protocol is a machine

M = (S,C,%¢, 0,6) whose reachability set is the least set
R..p(M)C S x z: defined by the following rules:

o The initial state axiom, output rule and input rule are
as for normal machine.

e Vi:1<i<nandVac€X, wehave
= (8,21, 2ic1,8ZisTit1s--+1Zn) € Resp(M)
then u'' = <s, FlyeenyZicly TisTitly---rZn) € RC,P(M).
Again u'" is said to be a successor of u.

An execution path of a machine M is a sequence

{<pia Tilyeony zin)}izo

such that (a) po = 80, 2zoj = ¢, forall 7: 1 < j < n and (b)
every element of the sequence is a successor of the previous
element in that sequence.

Definition 8 A machine M is said to finitely terminate

provided every execution path starting from {s0,¢,...,€)}

is finite. |
Finkel, in [10], showed the following:

Thecrem 3 The finite termination problem for completely
specified protocols is sclvable.

Let us now consider machines that are capable of lossi-
ness errors.

Definition 9 A machine that is capable of lossiness errors
is a machine M = (5, C,X¢, 80, §) whose reachability set is
the least set R(M) C S x Er defined by the following
inductive rules:

o The initial state axiom, input rule and output rule are
as for normal machines.

o V1 <z <nandVa & X; we have
if (8,21, i1, ztazl, Zit1,.. . 2n) € Rp(M)
then (s,21,...,2i 1, 2zl2! ,Zn) € R (M)

i Titi,---

The notion of successor states carries over from the def-
inition of completely specified protocol.
Abdulla and Jonsson show the following in [1, 2]:

Theorem 4 The following are true for machines capable of
lossiness errors:

38

o The reachability problem and the deadlock problems are
decidable.

o The model-checking problem is undecidable.
o The channel language is regular.

The following facts were not reported earlier by Finkel,
or Abdulla and Jonsson, though these follow from their the-
orems:

Theorem 5 (Cécé et al [6]) Given a machine M
o Rr(M) is finite iff R.sp(M) is finite.

¢ Ry (M) has a deadlock state iff Resp(M) has a deadlock
state.

Unlike the previous theorem which is a direct conse-
quence of the definitions from [10, 1, 2], the following new
undecidability result is due to a reduction from a problem
shown to be undecidable in [2]: the Recurrent Path Prob-
lem (RPP). This problem decides the existence of an infinite
execution path which visits infinitely often a given state s.

Theorem 6 {Cécé et al [8]) Given a machine M

There exists no procedure to compute a finite state
machine (or a regular ezpression) representation

of RL(M).

4 Insertion Errors

We will now define what it means for a machine to have
insertion errors. While the syntax of a machine capable of
insertion errors is no different from a normal machine, its
semantics (i.e., its set of reachable states) is different.

Definition 10 A machine M = (S, C, ¢, 50, 6) capable of
arbitrary insertion errors has the reachability set R;(M) C
S x)7 which is the least set satisfying the following induc-
tive specifications:

¢ The initial state axiom, output rule and input rule are
the same as for normal machines.

e V1 <i<nandVa € X; we have
if (8,21,...,2i—1,2i2! 2iq1, ..., 2a) € Ri(M)
then (8,21,...,Zi-1,2i02],Zit1,...,2a) € Rf(M)

A machine that is capable of arbitrary insertion errors
can insert any message, at any location of the queue. While
this is very close to our mental notion of arbitrary errors,
it is technically much more easier to deal with a slightly
different, but equivalent, machine model. In this slightly al-
tered model, called insertion machine, arbitrary unspecified
messages can only be inserted at the end of the queue. The
advantage is that in the insertion machine there is a bound
on the number of successor to any states, but in the case of
arbitrary insertions there is no such bound (as the number
of successors of a state depends upon the length of the words
in that state).

Deflnition 11 A machine M = (S, C, X¢, §) is an insertion
machine provided

Vs € §,Vc € C,Va € £..(s,cla,8) €§

Given a machine M = (S, C, X¢, §) its insertion completion
is the machine I(M) = (S,C,Z¢,6 U {(s,cla,s)|s € S,c €
C,a € Z.}). n

But the two models are equivalent in that their reacha-
bility sets are the same. Formally, we have:

Lemma 4 Let M be a machine, Ri(M) be the reachability
set of M when it is capable of arbitrary insertion errors and
let R(I(M)) be the reachability set of the insertion comple-
tion of M. We have

R (M) = R(I(M))

Proof: The inclusions in both direction can be proven
by an induction on the length of the justification that a
particular state is reachable.]

4.1 Computation of R(M) for a Insertion Machine

We will now show how to compute the set R(M) when M is
an insertion machine. The computation will yield a machine
independent characterization (i.e., a regular expression) in
terms of minimal elements of an upward closed set. The
calculation itself involves setting up a set of equations and
solving them. We need the following operations to state the
equations:

Definition 12 Let W C 3 7. Define

(c;!a)(W) _ { gwl, e Wi 1, Wy Ay Wi414.. .w,,)| }

Wiyoooy Wil Wi, Witly.. W) EW

Similarly define

(Ci?a)(W) — { <w11...,W.‘_l,w;,w;“,...wn)] }

(wl,...,wg_l,a~w.~,w,~+1,...wn) € W

Given an insertion machine M = (5, C, ¥ ¢, 30, §), in this
section we will show how to compute a description of the
reachability set, R(M), of M. By the construction of the in-
sertion machines, the channel languages are upward closed.

Lemma 5 For every state s € S of an insertion machine
M, we have L(s) is upward closed. Consequently, for all
5 €8S, L(s) is a regular set. |

To compute the channel language we can state equations
between the various channel languages and solve them. The
flow equations, which are similar to what was used in [15],
are as follows:

Vs#s0: L(s)= U(u,cga,.)es(‘:!a)(L("))U (1)

U(5’.c!u,-)€6(6?a)(L(s'))

L(s0) ={e,...,e)U U(.',c!a,.o)es(C!a)(L(”))U (2)
U(J',:!a,lo)ed(C?a)(L(sl))

39

cla, clb

cla clb cla

1 1
C.a,C.b C!a, clb

Figure 3: An insertion machine

Given that the eventual solution for each of the variables
L(s),s € S, is an upward closed set we can restate the equa-
tions as:

Vs # 80 : L{s) = closure < U("""‘-’)‘55(6!a)(L(al))LJ)

U(J',c?a.a)GG(C?a)(L(s’))
(3)

(e, ceey s)U
U(:',c!a,on)66(cga)(L(8'))U
U(,:,cga,,o)eg(C?a)(L("'))

L{sy) = closure

=27

Given equation (4) it is tempting to think that the chan-
nel language for every state would be Y . But this is not
so, as the channel language for states s1, 82 and 33 of the
machine in Figure 3 does not include «.

The first thing to notice in these equations is that the
domain of the variables is the powerset of 2';, which is
a complete lattice. Furthermore the operators involved in
these equations, cla, c?a, U and closure are continuous op-
erators over the domain of the powerset of Z;‘ Conse-
quently, these equations have an unique least solution. Due
to Tarski’s Fixed-Point theorem [16] the computation of this
least solution can be expressed as the limit (viz., union) of
a sequence of solutions as follows:

Vs#£s0: L{s)o=9
Vi>0: L(so)i = Z?
Vs # 80,Vi1 > 0 we have

L{8).+1 = closure (

(4)

U(,:,CM_,)es(C!a)(L(sl)‘)U)
U(1',:!4,3)65(0?a)(L(31)i)

An immediate consequence of the equations (5) is:

(5)

Lemma 6 For the equations (5) of an insertion machine

the following hold:
1. Vs€ S and Vi > 0 we have L(s); C L(8)it1-
2. 3 a finite £ such thatVs € S,i > L. L(s)i = L(s),.

Consequently, the solution to equations (5) can be computed
in a finite number of iterations.

Proof: The first part foilows by the monotonicity of the
operators involved in the equations, and the second part
foliows from Lemma 3. L]

Since we can compute the channei language for every
state of the machine, all of our problems of interest (dead-
lock, reachability, unboundedness etc) can be immediately
solved. To check whether a state (s,%1,...,25) is reach-
able we need to check whether (z4,..., 2,) is in the channel

40

language of s, i.e. L(s). Note that no state can be dead-
lock state because there are always transitions out of every
state. Furthermore, every machine is obviously unbounded
as an unbounded number of messages can be inserted into
the buffer. Consequently,

Theorem 7 We have the following for machines capable of
insertion errors:

o The channel language is computable.
o The reachability problem is decidable.

o The deadlock and boundedness problems are trivially
solvable.

Proof: The proof follows from Lemmas 4, 5 and 6. M

5 Duplication errors

In this section, we consider the problem of analyzing chan-
nels that can arbitrarily duplicate messages. The formal
definition of a machine capable of duplication errors is as
follows:

Definition 13 A machine M = (S,C,Z¢, 50,6) is capable
of duplication errors when its reachability set Rp(M) is de-
fined as the least set satisfying the following rules:

¢ The initial state axiom, input rule and output rule are
as the same for normal machines.

¢ V1 <i¢<nandVa € £; we have
if (8,100 Zic1, ZeaZY Zit1,.. - yZa) € Rp(M)
then (s,21,...,2zi—1,ziaaz!, z.41,...,2.) € Rp(M).

We will show in the following that machines which are ca-
pable of duplication errors are as powerful as turing-machines
and therefore none of the verification problems we are inter-
ested in are decidable. Without loss of generality, we will
assume that there is a single channel in the machine.

The problem with our current definition of machines ca-
pable of duplication errors is that it is not possible to dis-
tinguish between a sequence of identical messages due to
duplication errors and a sequence of identical messages due
to the normal behavior of a machine. We can take care of
this distinction as follows:

For all normal behavior of the machine every
message in the queue is to be followed by a letter
{say #) not in the alphabet of the machine.

This is easily achieved by creating extra states (as many
as there are edges in the machine), and always sending a

after sending a normal message. More pictorially, the

transformations look as follows:

cla 4 c'#

P ~a, g is transformed to p — p' — ¢

and
p il q is transformed to p LA p, and p LY q

where p' is a new state not in S.
We therefore need to only consider machines that have
the following properties:

e There is only one channel in the machine.

e For every state s € S the channel language L(s) does
not contain any word with two consecutive occurrences
of the same letter.

Call such machines as non-duplicate machines.

Since a normal machine is turing-powerful, the set of
channel languages of a normal machine is recursively enu-
merable. Furthermore, as the transformation from the lan-
guage of normal machines to the language of non-duplicate
machines is a simple homomorphism we infer that the chan-
nel language of non-duplicate machines are also recursively-
enumerable. Let us now consider the channel languages of
machines that are capable of duplication errors. For every
non-duplicate language L define

Lp = {ai" ...a,ﬂal...an EL}

Furthermore, define a function f: £* — * as follows:
fle)=¢
fla)=a,Va € X

f(z1aaz;) = f(z1a22),Vz1,22 €ET*,a €X
f(z1abzz) = f(z1a)f(bz2), V21,22 €EX*,a,bE T anda # b

Note that the function f merely squeezes out all repetitions
within a word. We now have the obvious condition for a
word to be in L.

Lemma 7
z€L iff € Lp and f(z)==¢

If Lp happens to be recursive then there is an algorithm
to check whether a word z is in Lp. Clearly, it is trivial to
check whether f(z) = z holds for any word z. This implies
that if Lp is recursive then I is also recursive. Given that
L is know to be recursively enumerable, we have:

Theorem 8 The following statements are true:
o Lp is recursively enumerable.

o The channel language of a duplication machine is re-
cursively enumerable.

¢ No non-trivial property of duplication machines (for

instance, reachability, deadlock detection, model-checking)

i3 decidable.

6 Comivinatica of errors

In this section we will consider various combinations of the
three errors (a) duplication, (b) insertion and (c) lossiness.
We will establish in each of these cases whether a particular
problem is decidable or not.

41

6.1 Lossiness and Insertion

Let M be a machine that can lose messages, and let R(M)
be the set of reachable states of M. The reachability set of
such a machine is, by definition, downward closed:

if(p,z1,...,22) € RL(M) then (p,zi,...,z0) € Rp(M)
Vzi < z;,1<i<n

Consequently, a machine that can have both lossiness and
insertion errors has the following property

Lemma 8 Let machine M = (5,C,Zc,50,6) be a machine
that is capable of having both lossiness and insertion errors.
The channel language for any s € S has the following prop-
erty:

o L(s) = Z;’ iff there i3 a sequence of transitions from
8o to 8.

o L(s) =0 or L(s) = Z?

Given this lemma the machines that are capable of both
lIossiness and insertion do not have any significant property:
all states are reachable, there can be no deadlocks, and the
machines are always unbounded. We thus have:

Theorem 9 For a machine that has both lossiness and in-
sertion errors the reachability, deadlock and boundedness
problems are trivially solvable.

6.2 Duplication and Insertion

A machine that is capable of duplication and insertion does
not behave any differently from a machine that is capable of
only having insertion errors. This is because every duplica-
tion error is also an insertion error. Consequently our anal-
ysis for insertion errors presented in Section 5 holds here.

Theorem 10 We have the following for machines capable
of insertion errors and duplication errors:

e The channel language is computable.

¢ The reachability problem is decidable, and the deadlock
and unboundedness problems are trivially solvable.

6.3 Duplication and Lossiness

Before considering both lossiness and duplication errors to-
gether, we will present another machine model that is equiv-
alent to the machines that are capable of duplication errors.
With this new model it would be easy for us to show that the
class of machines capable of both duplication and lossiness
errors is a subclass of machines containing only lossiness er-
rors; consequently, most of the work for lossy machines {1, 2]
is applicable to machines that have both lossiness and du-
plication errors.

Definition 14 Given a machine M = (5,C,Xc,50,8) de-
fine the duplication completion D(M) as follows:

For each (s,cla,s') € § create a new state s and
replace the transition (s,cla,s') with the transi-
tions (s,cla,s"), (s",cla,s") and (s",¢,5"). The
last of these do not affect any channel and are
called e-transitions.

Tossy | Dup | Insert | Lossy&Dup | Lossy&Inseri | Dup&lInsert

Reachability D U D D D D

Boundedness U(?) U D D D D

Deadlock D U D D D D
Model Checking

against CTL* 19) U D U D D
Ts Reachability

set regular? Yes No Yes Yes Yes Yes
iComputating Finite

Automaton for U n/a D U D D

Reachability set

Legend: D ~ Decidable, U~ Undecidable, U(?) — conjectured to be undecidable, n/a — not applicable.

Figure 4: A survey of decidability results

As in the case of insertion machine, the following holds:

Lemma 98 The reachability set of a machine M that is ca-
pable of duplicating messages is the same as the reachability
set of duplication completion of M, viz. R(D(M)).]

Now a machine D(M) is no different from a normal ma-
chine, as far its semantics goes. Consequently, instead of
considering M to be capable of duplication and lossiness er-
rors we can consider D{M) as having lossiness errors. This
in turn implies that the reachability problem is decidable for
the class of machines that have duplication and lossiness er-
rors. In fact, all of the decidability results of machines with
lossiness errors also holds for machines that can have du-
plication and lossiness errors. Furthermore, boundedness is
decidable for lossiness and duplication, where as it is still an
open problem for lossy systems (clearly, one can duplicate
a letter in the buffer to produce buffers of unbounded size).
Undecidability results also carry over though their proofs
are not straightforward; the proofs appear in the complete
paper. Summarizing, we have:

Theorem 11 (Cécé et al [6]) The reachability problem and

the boundedness problem for a machine that has both duplica-
tion and lossiness errors is solvable. Furthermore, the chan-
nel language is not computable and model checking against
CTL* is undecidable.

7 Conclusion

We summarize the results known to date, on unreliable chan-
nels, in the Table 4. Apart from being almost complete, it
does provide a comparison of the expressive power of the
three kinds of errors. Clearly duplication has no effect on
the expressive power. Lossiness on the other hand makes
the communicating machines less powerful. What is sur-
prising is that insertion makes the communicating machines
even less powerful, as a description of the set of all reachable
states can be calculated for machines with insertion errors
but not for machines with lossiness errors. Pachl proved
in {14] that if the reachability set is regular than the reacha-
bility problem is decidable. What we have shown is that this
result docs not scale up to other problems, and perhaps sur-
prisingly even though the reachability set might be regular
a machine-independent description need not be computable.

The contributions of this paper are new results for verifi-
cation of communication machines whose channels have du-
plication error, insertion errors, or a combination of duplica-

tion, insertion and lossiness errors. These results are signifi-
cant in that assumptions about the possibility of such errors
(which are closer to reality) make the verification problems
casier. Finally, we have also presented the decidability re-
sults for all three kinds of errors (duplication, insertion and
lossiness) and their combination with in a single framework.

References

[1] P. Abdulla and B. Jonsson. Verifying Programs with
Unreliable Channels. In Proc of Logic in Computer
Science, 1993.

[2] P. Abdulla and B. Jonsson. Undecidability of verifying
programs with unreliable channels. To appear in Proc
of ICALP, 1994,

[3] K. A. Bartlett, R. A. Scantlebury and P. T. Wilkinson.
A note on reliable full-duplex transmission over half-
duplex lines. CACM, 12(5):260-265, 1969.

[4] Gregor Bochmann. Finite State Description of Com-
munication Protocols. Computer Networks, 2:362-372,
1978.

[5] Daniel Brand and Pitro Zafiropulo. On communicating
finite-state machines. J4 CM, 30(2):323-342, 1983.

[6] G. Cécé, A. Finkel and S. Purushothaman Iyer. Unreli-
able channels are easier to verify than perfect channels.
LIFAC Tech Report 94-02. ENS de Cachan, France,
May 1994.

[7] CCITT Recommendation Z.100: Specification and De-
scription Language SDL, Blue Book Vol X.1-X.5, 1988,
ITU General Secretariat, Geneva.

[8] M. Diaz, J. P. Ansart, P. Azema, and V. Chari. The
Formal Description Technigue Estelle. North Holland,
1989.

[9] E. A. Emerson and J. Y. Halpern. “Sometimes” and
“not never” revisited: on branching time versus linear
time temporal logic. JACM, 33(1):151-178, 1986.

[10] Alain Finkel. Decidability of the termination problem
for completely specified protocols. Distributed Comput-
ing, 7:129-135, 1994.

42

[11] M. G. Gouda, E. M. Gurari, T.-H. Lai, and L. E. Rosier.
On deadlock detection in systems of communicating fi-
nite state machines. Computers and Artificial Intelli-
gence. 6(3):209-228, 1987.

[12] G. Higman. Ordering by divisibility in abstract alge-
bras. In Proc. of London Math Society, 2:326-336, 1952.

[13] M. Lothaire. Combinatorics on Words. Addison-
Wesley, 1983.

[14] J. K. Pachl. Protocol description and analysis based
on a state transition model with channel expressions.
In Proc. of Protocol Specification, Testing and Verifica-
tion, VII, May 1987.

[15] W. Peng and S. Purushothaman. Data flow anal-
ysis of communicating finite state machines. ACM

Transactions on Programming Languages and Systems,
13(3):399-442, July 1991,

[16] A. Tarski. A Lattice Theoretic Fixpoint Theorem and
its Application. Pacific Journal of Mathematics, 5:285—
305, 1955.

43

