
Symbolic Execution of Programmable Logic Controller Code

Shengjian Guo
Virginia Tech

Blacksburg, VA, USA

Meng Wu
Virginia Tech

Blacksburg, VA, USA

Chao Wang
University of Southern California

Los Angeles, CA, USA

ABSTRACT
Programmable logic controllers (PLCs) are specialized computers
for automating a wide range of cyber-physical systems. Since these
systems are often safety-critical, software running on PLCs need to
be free of programming errors. However, automated tools for test-
ing PLC software are lacking despite the pervasive use of PLCs in
industry. We propose a symbolic execution based method, named
SymPLC, for automatically testing PLC software written in pro-
gramming languages speci!ed in the IEC 61131-3 standard. SymPLC
takes the PLC source code as input and translates it into C before
applying symbolic execution, to systematically generate test inputs
that cover both paths in each periodic task and interleavings of
these tasks. Toward this end, we propose a number of PLC-speci!c
reduction techniques for identifying and eliminating redundant in-
terleavings. We have evaluated SymPLC on a large set of benchmark
programs with both single and multiple tasks. Our experiments
show that SymPLC can handle these programs e"ciently, and for
multi-task PLC programs, our new reduction techniques outper-
form the state-of-the-art partial order reduction technique by more
than two orders of magnitude.

CCS CONCEPTS
• Software and its engineering→ Software veri!cation and vali-
dation; Software testing and debugging; Software evolution;

KEYWORDS
Symbolic execution, Test generation, Partial order reduction, Pro-
grammable logic controller, PLC, SCADA

ACM Reference format:
Shengjian Guo, Meng Wu, and Chao Wang. 2017. Symbolic Execution of
Programmable Logic Controller Code. In Proceedings of 2017 11th Joint

Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,

Germany, September 4-8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106245

1 INTRODUCTION
Programmable logic controllers (PLCs) are specialized computers
for automating electro-mechanical processes in a wide variety of
industrial applications, including factory assembly lines, transporta-
tion systems, and smart power grids. PLCs are often equipped with
domain-speci!c operating systems and virtual machines for exe-
cuting software code written in programming languages such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106245

Structured Text (ST), Ladder Diagram (LAD), and Sequential Func-
tion Chart (SFC). Since PLC software control critical infrastructures
(e.g., the SCADA systems), design defects or implementation bugs
may lead to catastrophes. However, despite the already widespread
use of PLCs, automated testing tools are still lacking. In this work,
we !ll the gap by developing a symbolic execution based tool for
automatically testing PLC software.

Symbolic execution is a popular technique for generating test
inputs to systematically explore feasible paths of a program. Al-
though symbolic execution has been applied to many programming
languages, prior to this work, it has never been applied to PLCs. One
reason is that PLC software are written in specialized and some-
what archaic languages that di#er from mainstream programming
languages, thus lacking open-source development tools. Another
reason is that PLC software are periodic programs that often do
not terminate, and they involve multiple tasks running concur-
rently with respect to each other. Tasks have di#erent priority
levels, where high-priority tasks may preempt low-priority tasks,
but not vice versa. Thus, precise modeling of this non-conventional
execution semantics is di"cult.

We solve these problems by leveraging an open-source PLC
compiler named Matiec [39] and a symbolic execution tool named
Cloud9 [19]. First, we leverage Matiec to translate each PLC task
from the original language (e.g., ST) to C. The C code is functionally-
equivalent in that each of its program paths has a corresponding
path in the original PLC task, which ensures that tests generated
from the C code can be mapped back to the PLC. Second, we auto-
matically synthesize a test harness (i.e., themain() function in C) to
invoke PLC tasks as threads. Threads are further constrained to pre-
cisely model the priority-based preemptive scheduling as de!ned
in the PLC program semantics. Finally, we extend Cloud9 to sym-
bolically execute the multi-threaded C model. The new symbolic
execution procedure systematically generate test cases to cover
both paths of each periodic task and their interleavings.

Figure 1 shows the %ow of SymPLC, where P denotes the PLC
program, and translation from P to C is implemented in the Matiec
PLC compiler. Our symbolic execution procedure based on Cloud9
produces test cases of the form (in, sch), where in denotes the input
data and sch denotes the interleaving schedule. Since Cloud9 only
supports coarse-grained thread scheduling, we extended it to exe-
cute multithreaded C code at a !ner granularity. Furthermore, we
propose several PLC-speci!c reduction techniques that leverage the
periods and priorities of tasks as well as visited states to e"ciently
pruning redundant interleavings. Since these redundant interleav-
ings are due to PLC-speci!c program semantics, they cannot be
removed by partial order reduction techniques [23, 33, 49].

One advantage of SymPLC as a tool is the %exibility resulted
from its separation of the modeling and analysis phases. In the
modeling phase, it focuses on capturing the semantics of a PLC pro-
gram written in various languages by constructing the functionally-
equivalent C model. Each PLC language may be handled by a ded-
icated front-end; multiple front-ends may be developed indepen-
dently. In the end, PLC tasks, regardless of which languages they

326

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Shengjian Guo, Meng Wu, and Chao Wang

PLC Program (P)
and Properties

Modeling in C Adding Test Harness
and Constraints

Current Input
(in, sch)

PLC Symbolic Execution
based on KLEE

Generate New
Test Input

Redundancy Pruning
(period, priority, stateful)

Figure 1: SymPLC: The overall !ow of our method.

were written in, are merged to the same C model that simulates
the preemptive scheduling. In the analysis phase, SymPLC focuses
on executing the C model e"ciently, without worrying about PLC
language complications. The overall architecture allows SymPLC
to easily support new languages and execution platforms.

Another advantage of SymPLC is the e"ciency resulted from the
PLC-speci!c interleaving reduction techniques. Since these new
techniques are designed speci!cally for the PLC task scheduling,
they are more e#ective than generic partial order reduction (POR)
techniques. In the experiments section, we will show POR is often
ine#ective for removing redundant executions in PLC programs
due to their semantic di#erences from thread interleavings. For
example, in standard multithreaded programs, two threads with
the same priority level are allowed to preempt each other, whereas
in PLC programs, they are not allowed to preempt each other. Fur-
thermore, PLC tasks are executed periodically, which means they
never terminate. Our new reduction techniques are designed to
take advantage of these unique characteristics.

SymPLC is a test input generation tool. As such, it di#ers from
existing tools for simulating, verifying, or synthesizing PLC soft-
ware. Speci!cally, simulators [13, 31, 44] can execute PLC code in
controlled environments, but they require the users to handcraft
test inputs. In contrast, SymPLC automatically generates these in-
puts. Veri!cation tools [22, 34, 43] are designed to formally prove
the correctness of properties in models of PLC software, but these
formal models are at a much higher level of abstraction than the
actual software code. In contrast, SymPLC directly executes the
actual PLC code. Synthesis tools [17, 18] have the ambitious goal
of generating PLC code directly from formal speci!cations, thus
bypassing the programmers completely. However, these tools only
synthesize small programs with single tasks due to scalability prob-
lems. In comparison, SymPLC is more scalable and can uniformly
handle both single- and multi-task PLC programs.

We have implemented SymPLC and evaluated it on 93 PLC bench-
mark programs, including 49 single-task programs and 44multi-task
programs. In total, they consist of 26,713 lines of ST code, which
translate to 62,926 lines of C code. Properties are expressed as as-
sertions embedded in the source code. During our experiments, we
evaluated the execution time of SymPLC as well as its e#ectiveness
in detecting property violations.We also compared our PLC-speci!c
reduction techniques with state-of-the-art POR techniques; for com-
parison, we implemented the DPOR algorithm [23] in SymPLC. Our
experimental results show that SymPLC can e"ciently generate
test cases for all benchmark programs, and for multi-task PLC pro-
grams, in particular, our new reduction techniques signi!cantly
outperform the state-of-the-art POR technique.

To summarize, we make the following contributions:

• We develop a symbolic execution tool for PLC software by
!rst translating the original PLC tasks to C code and then
applying symbolic execution to generate the test inputs.

• We propose PLC-speci!c reduction techniques for more
e#ectively eliminating redundant interleavings than state-
of-the-art POR techniques.

• We implement and evaluate our techniques on a large num-
ber of benchmark programs to demonstrate their e"ciency
and e#ectiveness.

The remainder of this paper is organized as follows. First, we
illustrate the main problems of testing PLC software in Section 2.
Then, we present our new method for modeling the PLC program
using a multi-threaded C in Section 3. We present the overall sym-
bolic execution algorithm in Section 4, which is followed by the
PLC-speci!c reduction techniques in Section 5. Our experimental
evaluation is presented in Section 6. We review the related work in
Section 7. Finally, we give our conclusions in Section 8.

2 MOTIVATING EXAMPLES
In this section, we use examples to illustrate bugs in PLC programs
and explain why our new method is necessary to detect them.

2.1 Single-task PLC Programs
Figure 2 shows three PLC programs that implement a two-player
game named Responder [16], where I0.0, I0.1 and I0.2 are inputs
from the game host and two players, while Q0.0 and Q0.1 are
outputs for the players. The program consists of two sections:
CONFIGURATION and PROGRAM. The CONFIGURATION section declares
global variables and allocates resource (CPU) to a task. For example,
Task T1 is started every 10 milliseconds and each time it executes
an instance named Game of the program ProgA. The actual code of
ProgA, provided in the PROGRAM section, has two statements. The
!rst statement at Line 12 reads from I0.0, I0.1, Q0.0, and Q0.1 and
then computes the new value for Q0.0, while the second statement
computes the new value for Q0.1.

Initially, all inputs, outputs, and global variables are set to false.
The host starts the game by setting I0.0 to true. Then, the players
try to respond as quickly as possible by setting their inputs to true.
If the !rst player is faster, its output Q0.0 becomes true, indicating
she has won. But if the !rst player is slower, the second player’s
output Q0.1 becomes true. After a player’s output becomes true, it
should remain true until the host sets I0.0 back to false.

The program in Figure 2 (a) is buggy because, when both players
respond at the same time, the program is not able to set both outputs
to true (indicating a tie). Instead, it is biased toward the !rst player
– since the PLC program is executed sequentially, i.e., one line after
another, Q0.0 will be set to true !rst, which prevents Q0.1 from
being set to true subsequently.

To !x this bug, we could introduce two auxiliary global variables
M0.0 and M0.1 as shown in Figure 2 (b), to bu#er the temporary
outputs before assigning them toQ0.0 andQ0.1, respectively. Thus,
settingM0.0 to true does not preventM0.1 from becoming true. In-
deed, when the two players respond at the same time, both outputs
will be set to true. Unfortunately, the revised program is still faulty.
Assume that both outputs have been set to true at the end of the
!rst task execution because two players responded concurrently.
Since task T1 executes periodically, during the next task execution,
Q0.1 being true will forceQ0.0 to become false, andQ0.0 being true
will force Q0.1 to become false. Thus, both outputs become false at

327

Symbolic Execution of Programmable Logic Controller Code ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

1 CONFIGURATION PLC_Cell1

2 VAR_GLOBAL

3 I0.0: BOOL; I0.1: BOOL; I0.2: BOOL;

4 Q0.0: BOOL; Q0.1: BOOL;

5 END_VAR

6 RESOURCE CPU_Responder ON CPU001

7 TASK T1 (INTERVAL := t#10ms, PRIORITY := 1);

8 PROGRAM Game WITH T1 : ProgA;

9 END_RESOURCE

10 END_CONFIGURATION

11 PROGRAM ProgA

12 Q0.0 := (I0.1 OR Q0.0) AND (NOT Q0.1) AND I0.0 ;

13 Q0.1 := (I0.2 OR Q0.1) AND (NOT Q0.0) AND I0.0 ;

14 END_PROGRAM

(a) The initial (buggy) implementation

1 VAR_GLOBAL

2 ...; M0.0: BOOL; M0.1: BOOL;

3 END_VAR

4 ...

5 PROGRAM ProgA

6 M0.0 := (I0.1 OR Q0.0) AND (NOT Q0.1) AND I0.0 ;

7 M0.1 := (I0.2 OR Q0.1) AND (NOT Q0.0) AND I0.0 ;

8 Q0.0 := M0.0;

9 Q0.1 := M0.1;

10 END_PROGRAM

(b) Revised but still buggy implementation

1 PROGRAM ProgA

2 M0.0 := (I0.1 AND (NOT Q0.1) OR Q0.0) AND I0.0 ;

3 M0.1 := (I0.2 AND (NOT Q0.0) OR Q0.1) AND I0.0 ;

4 Q0.0 := M0.0;

5 Q0.1 := M0.1;

6 END_PROGRAM

(c) The correct implementation

Figure 2: Three implementations of PLC Responder in ST.

the end of the second execution, which is not expected. Recall that
the expected behavior is that both outputs remain true, until the
host ends the game.

To !x the second bug, we need to revise the code as shown
in Figure 2 (c). Compared with the program in Figure 2 (b), the
modi!cation is actually minor – we simply enlarge the scope of the
two logical-OR operators to include Q0.0 and Q0.1. Because of this
modi!cation, after Q0.0 and Q0.1 become true, they will remain
true during all subsequent executions of T1 regardless of the new
input data, until the host ends the game by setting I0.0 to false.

These three examples show that even a simple PLC programwith
a single task may have subtle bugs in its implementation due to
the non-conventional program semantics. Thus, automated testing
tools such as SymPLC would be invaluable.

2.2 Multi-task PLC Programs
Figure 3 shows a PLC program with two tasks that implement a
simpli!ed version of the robotic controller from [15]. The RESOURCE
section contains the two tasks, both of which are assigned to the
device CPU001. Task T1 has a shorter period (100ms) and a higher
priority, while task T2 has a longer period (200ms) and a lower
priority. In PLCs, high-priority tasks may preempt low-priority
tasks, but not vice versa. Assume tasks never miss their deadlines,
then implicitly, the timing constraint is that T1 !nishes its execution
within 100ms and T2 !nishes within 200ms. Furthermore, the tasks
are associated with ProgA and ProgB de!ned below.

The PROGRAM sections provide the source code of the tasks, which
share two global variables. In addition, ProgA reads from the input
variable Sensor_input, whereas ProgB does not read from any
primary input.

1 CONFIGURATION PLC_Cell2

2 VAR_GLOBAL

3 Obstacle : BOOL := 0; Forward : INT := 50;

4 END_VAR

5 RESOURCE CPU_main ON CPU001

6 TASK T1 (INTERVAL := t#100ms, PRIORITY := 1); //High

7 TASK T2 (INTERVAL := t#200ms, PRIORITY := 2); //Low

8 PROGRAM Fast WITH T1 : ProgA;

9 PROGRAM Slow WITH T2 : ProgB;

10 END_RESOURCE

11 END_CONFIGURATION

12

13 PROGRAM ProgA

14 VAR_INPUT

15 Sensor_input : INT;

16 END_VAR

17 Obstacle := 0;

18 IF (Sensor_input <= 10) THEN

19 Obstacle := 1;

20 Forward := -100;

21 END_IF;

22 END_PROGRAM

23

24 PROGRAM ProgB

25 IF (Obstacle = 0) THEN

26 Forward = 100;

27 END_IF;

28 END_PROGRAM

Figure 3: A Multi-task PLC Program in Structured Text.

0ms 100ms 200ms

Sensor_input > 10

Sensor_input <= 10

Obstacle := 1

Forward := -100

Forward := 100Obstacle = 0

Obstacle := 0

Forward := 50

Figure 4: The task interleaving that fails the assertion.

ProgA is responsible for obstacle detection, e.g., by setting Forward
to the reverse speed -100 when the value of the input Sensor_input
indicates an obstacle ahead. ProgB computes the forward speed of
the robot if no obstacle is detected. Thus, both tasks may write to
the variable Forward (Lines 20 and 26). The race condition would
cause a problem in the following scenario:

• T1 runs !rst and Sensor_input is greater than 10;
• T1 !nishes its !rst execution of ProgA;
• T2 starts and proceeds to the statement at Line 26, then it

is preempted by T1 before writing to Forward;
• T1 detects an obstacle and sets Forward to -100, and !n-

ishes its second execution of ProgA;
• T2 continues the execution of ProgB.

At this moment, the value of Forward is -100, and should have
remained -100, but ProgB overwrites it to 100 as illustrated by
Figure 4. The erroneous value is not expected, and may result in
the robot hitting the obstacle.

Note that detecting the kind of bug shown in Figure 4 is not easy,
since it requires a combination of the right input data (Sensor_input
being > 10 in the !rst execution of ProgA and ≤ 10 in the second
execution of ProgA) and task interleaving (ProgB is preempted by
the second execution of ProgA right before the write to Forward).
Although in practice, simulators may be used to reproduce this
bug after it is detected, the users are required to handcraft the

328

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Shengjian Guo, Meng Wu, and Chao Wang

error-triggering input data in the !rst place, which is di"cult. Fur-
thermore, simulators do not have the capability of systematically
exploring the space of task interleavings. Our SymPLC tool, in con-
trast, solves the problem by automatically exploring the combined
input and interleaving space. Thus, given the source code of this
PLC program, SymPLC will generate not only the failure-triggering
test data but also the corresponding task schedule.

3 MODELING PLC PROGRAM SEMANTICS
We !rst present our method for translating PLC tasks to equivalent
C code, and then model their execution semantics using threads.

3.1 Translating PLC Tasks to C
Variables. PLC programs have di#erent variable types. For exam-
ple, the keyword VAR_INPUT de!nes read-only input variables,
VAR_OUTPUT de!nes output-only variables, and VAR_EXTERNAL
de!nes the global variables. There are eight such usage types in IEC
61131-3 standard, all of which are mapped by SymPLC to proper
variables in the C program. The translation is mostly straightfor-
ward except for inputs, which require special handling.

Inputs. Variables such as sensor_i1 and sensor_i2 at Line 15
in Figure 5 are primary inputs. They need to be fed a symbolic
value every time the corresponding task is activated. This is accom-
plished by calling the API function symplc_mk_symbolic, which
returns a symbolic value for the variable. We also apply value-range
constraints over these symbolic values to ensure that they always
concretize to values allowed by their types. The use of symbolic
values simulates the fact that input data may be arbitrary.

Timers. The behavior of PLC timers is abstracted by treating the
output of each timer invocation as a symbolic variable: it is either
true or false since both values are possible at run time. It ensures
that actions depending on di#erent timer outputs are always cov-
ered. Although this modeling approach may introduce potentially
redundant test cases, it has the advantage of not missing any valid
test input. Furthermore, we shall show that the redundant test cases
may be eliminated by our new PLC-speci!c reduction techniques
implemented inside the symbolic execution procedure.

Statements. The translation of PLC program statements from the
ST language to C is straightforward because as a programming
language, C is strictly more expressive than ST. Thus, any ST state-
ment in the original program can be expressed by a corresponding
C statement. Furthermore, since the number of built-in functions
in ST (library functions) is fairly small, each of these functions may
be replaced by a corresponding C function. In our implementation,
the translation from ST code to C code is carried out by the Matiec
PLC compiler, which has been designed to conform to the popular
IEC 61131-3 standard. In Figure 5, for example, the program state-
ments of the PLC robotic controller are translated into the C code
at Lines 1-13.

3.2 Constructing the Test Harness
The test harness is the main() function that treats PLC tasks as
threads and incorporates them to a complete C program. In Figure 5,
for example, the test harness consists of Lines 14-38. There are two
separate issues in simulating PLC tasks using threads. The !rst
one is constructing a thread for potentially multiple invocations of
each task (Lines 14-24). The second one is using these threads to
simulate the periodic execution of PLC tasks (Lines 25-38).

1 bool Obstacle = 0; int Forward = 50;

2 void ProgA (int Sensor_input){

3 Obstacle = 0;

4 if (Sensor_input <= 10){

5 Obstacle = 1;

6 Forward = -100;

7 }

8 }

9 void ProgB (){

10 if (!Obstacle){

11 Forward = 100;

12 }

13 }

14 void thread1 () {

15 int sensor_i1, sensor_i2;

16 symplc_mk_symbolic(&sensor_i1, ...);

17 symplc_mk_symbolic(&sensor_i2, ...);

18 ProgA(sensor_i1);

19 //symplc_task_boundary();

20 ProgA(sensor_i2);

21 }

22 void thread2 () {

23 ProgB();

24 }

25 int main(void){

26 pthread_t t1, t2;

27 for (i=0; i<MAX_ITER; i++) {

28 //symplc_hyperperiod_begin();

29 pthread_create(&t1, 0, thread1, 0);

30 pthread_create(&t2, 0, thread2, 0);

31 //symplc_set_priority_n_period(t1, 1, 100);

32 //symplc_set_priority_n_period(t2, 2, 200);

33 pthread_join(&t1);

34 pthread_join(&t2);

35 //symplc_hyperperiod_end();

36 assert(Obstacle == (Forward == -100)); // property

37 }

38 }

Figure 5: The Multithreaded C Model of the ST Program.

It is always feasible to simulate PLC task interleaving seman-
tics using threads because threads have strictly more permissive
interleaving semantics. That is, all possible interleavings allowed
by PLC tasks are included in the set of interleavings allowed by
threads. However, threads may allow certain interleavings that are
not possible in PLCs. Thus, we need to constrain the threads in our
C model to make the modeling of PLC tasks precise. Toward this
end, the !rst step is to construct all threads for a hyper-period.

Hyper-period. PLC tasks in the same program may have di#erent
periods. For instance, in our running example, T1 has a period
of 100ms and T2 has a period of 200ms. In this context, a hyper-
period is de!ned as the least common multiplier of the periods of
all tasks. Thus, the hyper-period of our running example is 200ms.
Clearly, within a hyper-period, T1 will be executed twice and T2

will be executed once. The reason why we are interested in the
hyper-period is because timing-related program behaviors repeat
themselves after each hyper-period. Thus, focusing on analyzing
the tasks within each hyper-period is important. Furthermore, the
hyper-period will be used to reduce the symbolic execution cost. In
the C model, we construct one thread for all the execution instances
of each task in a hyper-period. That is why in Figure 5, thread1()
invokes ProgA twice, but thread2() invokes ProgB only once.

Periodic execution. Next, we construct a for-loop in the main()
function to execute all threads concurrently. Each iteration of the
for-loop corresponds to a hyper-period. The total number of iter-
ations is bounded by a user-de!ned parameter MAX_ITER, since
PLC programs in general are non-terminating programs. Within
each hyper-period, we !rst create the threads and then set their
parameters (period and priority). These parameters will be passed
to the symbolic execution engine to avoid exploring interleavings

329

Symbolic Execution of Programmable Logic Controller Code ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

that are not allowed by the PLC program semantics. As shown in
Figure 5, we use special API functions to signal the boundary of
the hyper-period and boundaries of tasks within each thread.

Assertions. The assertion at the end of the hyper-period represents
the property to be checked. In PLC programs, developers may use
the ASSERTION(. . .) keyword to specify a property. Such assertions
are translated into assertions in the C program straightforwardly.
SymPLC also allows its user to specify additional assertions, which
are inserted at the end of the hyper-period (e.g., at Line 36 in Fig-
ure 5). Assertions are reachability properties because each assert(c)
may be modeled as if(!c) ERROR, where ERROR is an error location.
During symbolic execution, if any error location is reached, the
symbolic execution tool produces an error-triggering test case.

4 SYMBOLIC EXECUTION
In this section, we formally de!ne PLC programs and then present
the overall symbolic execution algorithm.

4.1 Multithreaded C Model
The multithreaded C model of a PLC program consists of a set of
periodic tasks T = {T1, . . . ,Tn }. Each task Ti ∈ T, where 1 ≤ i ≤
n, denotes an instance of a PLC program within a hyper-period.
Consider the program named ProgA in Figure 5, which has two
instances in a hyper-period (Lines 18 and 20). In our C model, these
two instances are considered as di#erent tasks in T.

Tasks share a set GV of global variables. Each Ti also has a set
LVi of local variables. In addition, eachTi may read from a set PI of
primary inputs. Thus,Ti can be viewed as a sequential program that
reads from primary inputs as well as global variables, updates the
global variables, and computes the outputs. Since tasks are executed
periodically, in addition to being a sequential program, each Ti has
the following attributes:

• Ti .tid denotes the unique identi!er of the task;
• Ti .priority denotes the priority level of the task;
• Ti .period denotes the execution period of the task within a

hyper-period;
• Ti .startT denotes the start time of the task’s period;
• Ti .endT denotes the end time of the task’s period.

Due to PLC’s non-conventional interleaving semantics, for any two
tasks Ti and Tj , where i , j,

• ifTi .priority < Tj .priority, thenTj may preempt the execu-
tion of Ti at any time between Ti .startT and Ti .endT , but
Ti cannot preempt Tj ;
• if Ti .priority = Tj .priority, neither task may preempt the

other task.

This is di#erent from the standard interleaving semantics of a multi-
threaded program, where threads with the same priority are allowed
to preempt each other.

The execution of task Ti leads to a sequence of events t1, . . . , tk .
For ease of presentation, we assume each event t ∈ Ti inherits all
attributes of the task Ti including tid, priority, period, startT, and
endT. In other words, t .startT and t .endT are the expected start
time and end time of the period of the task Ti . In addition, we
introduce t .task to denote the task Ti that generates the event t .

Some events in a PLC program are reads and writes of global
variables, while others are computations over local variables. Lo-
cal operations are further divided into branching statements e.g.,

Algorithm 1 Symbolic execution of a multi-task PLC program.

Initially: State stack S = {};
Run SymPLC(s0) where s0 is the initial state.

1: SymPLC(State s) {
2: S .push(s);
3: if (s is an interleaving schedule node)
4: foreach (event t that is enabled and ¬Redundant(s, t))
5: s ′ ← NextState (s, t);
6: SymPLC(s ′);
7: else if (s is a sequential computation node)
8: foreach (event t whose path condition is satis!able)
9: s ′ ← NextState (s, t);
10: SymPLC(s ′);
11: else
12: output test case if s is the end of an execution
13: S .pop();
14: }
15: NextState(State s , Event t) {
16: s .sel ← t ;
17: Compute new symbolic state s ′ based on s and t ;
18: return s ′;
19: }
20: Redundant(State s , Event t) {
21: if (t is redundant according to the theory of POR)
22: return true;
23: return false;
24: }

i f (c), and assignments lv = exp, where exp may be arithmetic com-
putations, bit-string operations, boolean operations, etc. Without
loss of generality, we assume i f (c) involves only local variables,
because if (exp(gv)), where дv ∈ GV, can always be replaced by
lv = дv ; if (exp(lv)), where lv ∈ LVi is a newly added local variable
and if (exp(lv)) involves only local variables. Thus, during symbolic
execution, we only need to consider two types of events:

• interleaving schedule events, which perform context switches
right before global reads and writes;

• sequential computation events, which are either if (c) or
assignments over local variables.

Only interleaving schedule events may a#ect the execution order.
Thus, we will focus on analyzing them to identify redundant inter-
leavings. In contrast, sequential computation events are handled in
the same way as in standard symbolic execution tools.

4.2 Overall Algorithm
Algorithm 1 shows the overall procedure, which closely follows
prior techniques for symbolic execution ofmultithreaded programs [6,
19, 25, 26]. Here, S is a stack of symbolic states. Each symbolic state
s ∈ S is a tuple 〈pcon,M, enabled, sel〉, where pcon is the path con-
dition,M is the symbolic memory, enabled is the set of enabled
events, and sel is the event executed at s .

Initially, SymPLC starts with the symbolic state s0. Then, de-
pending on the type of the current state s , it either schedules a
context switch or executes a sequential computation. Speci!cally,
if s is an interleaving schedule node (right before a global read
or write), SymPLC is invoked recursively to explore each possible
schedule together with the subsequent events (Lines 4-6). If s is a
sequential computation node (local statement within a task), Sym-
PLC is invoked recursively to explore each branch and assignment
(Lines 8-10). Upon reaching the end of an execution (Lines 11-12),
SymPLC generates the corresponding test case and backtracks from
the current state.

Subroutine NextState takes the current state s and the event
t as input, and returns the newly computed symbolic state s ′ as
output. For brevity, we omit the details of this symbolic execution

330

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Shengjian Guo, Meng Wu, and Chao Wang

Algorithm 2 Deciding if event t chosen at s is redundant.

1: Redundant (State s , Event t) {
2: if (t is redundant according to the DPOR algorithm)
3: return true;
4: // Priority-based reduction
5: let t ′ be the last event in S before reaching t ;
6: if (t ′ is NULL)
7: if (t .priority is not the highest in s .enabled) return true;
8: else
9: if (t is about to preempt t ′)
10: if (t ′ .priority ≥ t .priority) return true;
11: if (t ′ .startT ≥ t .startT) return true;
12: // Period-based reduction
13: if(t ′ .t id , t .t id)
14: if (t ′ .endT < t .startT) return true;
15: if (t ′ .startT ≥ t .endT) return true;
16: if (t is the last event in t .task)
17: if (∃th, tl ∈ S that th .tid == t .tid and th preempted tl)
18: if (∃t ′′ ∈ S that t ′′ .task interleaved with t .task)
19: if (t ′′ .startT ≥ tl .endT) return true;
20: return false;
21: }

process since it remains the same as in standard symbolic execution
procedures in the literature.

The challenge is mitigating the combinatorial blowup associated
with the event interleavings (Lines 4-6) because, in the worst case,
the number of interleavings is exponential in the number of global
operations. Traditional techniques for mitigating the interleaving
explosion are based on partial order reduction (POR) [23, 30, 33, 46,
49], which is to group interleavings into equivalence classes and
then pick a representative interleaving from each equivalence class
while skipping the other (redundant) interleavings. In Algorithm 1,
this is implemented inside Subroutine Redundant. However, POR
does not consider the additional interleaving constraints imposed by
PLC tasks. As such, it is not e#ective in mitigating the interleaving
explosion problem in PLC programs.

5 OUR PLC-SPECIFIC REDUCTIONS
In this section, we present three new reduction techniques designed
to take advantage of the unique characteristics of PLC programs.
Speci!cally, they are related to leveraging information from (1) the
priorities of tasks, (2) periods of tasks, and (3) previously visited
program states during symbolic execution.

Algorithm 2 shows our implementation of the !rst two reduc-
tions. The third reduction will be presented in Section 5.3. Here, the
subroutine Redundant returns true if executing t from the state s
is redundant, whether it is due to DPOR or infeasibility according
to the PLC interleaving semantics. Within the current hyper-period,
we de!ne t ′ to be the last event chosen before reaching s (Line 5).
In the subsequent two sections, we illustrate how these two types
of reductions make use of t ′ in more details.

5.1 Priority-based Reduction
In this new reduction, we impose three rules which directly follow
the way PLCs schedule their tasks:

(1) The active task with the highest priority must be scheduled
to before other active tasks whenever a hyper-period starts.

(2) A running task can only be preempted by another running
task with a strictly higher priority;

(3) If a high-priority task starts before the period beginning of
a low-priority task, there must be no interleavings between
these two tasks.

1 RESOURCE CPU_main ON CPU001

2 TASK T1 (INTERVAL := t#200ms, PRIORITY := 1); //High

3 TASK T2 (INTERVAL := t#200ms, PRIORITY := 2); //Low

4 PROGRAM Fast WITH T1 : ProgA;

5 PROGRAM Slow WITH T2 : ProgB;

6 END_RESOURCE

Figure 6: The control !ow graph of the modi"ed program.

We encode these rules into Lines 5-11 of Algorithm 2. First, when
both high-priority task and low-priority task are enabled and ready
to run, the PLC should always run the high-priority task !rst. This
corresponds to the conditions at Lines 5-6: if t ′ does not exist,
it means t is the !rst event in the current hyper-period. At this
moment, the PLC must choose the highest-priority task to execute.
Thus, if t is not the highest-priority task, Redundant returns true.

On the other hand, if t ′ exists and t is about to preempt t ′, we
!rst leverage the task priorities to perform a reduction, and then
leverage both the priorities and the periods to perform another
reduction. Speci!cally, we check two the following conditions.

The !rst condition at Line 10 ensures that t has a strictly higher
priority than t ′, because PLCs only allow high-priority tasks to
preempt low-priority tasks but not vice versa. And tasks with the
same priority are not allowed to preempt each other. The second
condition at Line 11 makes use of periods of the tasks. Note that
at this point, we know t ’s priority is higher than that of t ′. The
condition checks if the (expected) start time of the period of t is
before the (expected) start time of the period of t ′. If this is the
case, the interleaving is infeasible because the low-priority event t ′

should not have occurred before t (it should only be executed after
the end of t ’s period).

Consider the PLC program in Figure 3 again as an example,
but with an important modi!cation—setting the INTERVAL of T1 to
t#200ms instead of t#100ms. Since both tasks now need t#200ms,
the hyper-period becomes 200ms, meaning ProgA and ProgB are
invoked once each in the new threads thread1 and thread2, re-
spectively. The control %ow of these two new threads are shown in
Figure 6, where nodes are the global reads or writes and solid lines
are the control %ows. Recall that the primary input Sensor_input
is modeled as a symbolic variable, thus allowing both branches
immediately after the node 1 to be taken. In contrast, the branches
immediately after the node 4 depend only on the value of the global
variable Obstacle.

331

Symbolic Execution of Programmable Logic Controller Code ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: Interleavings explored by priority-based reduction.

ID All-Interleavings DPOR SymPLC ID All-Interleavings DPOR SymPLC

1 1-4-5 yes yes 7 4-5-1 yes
2 1-2-3-4 yes yes 8 4-1-5

3 1-2-4-3 9 4-1-2-5-3 yes
4 * 1-4-2-3-5 yes 10 * 4-1-2-3-5 yes
5 1-4-2-5-3 yes 11 4-1-5-2-3

6 1-4-5-2-3 yes 12 4-5-1-2-3 yes

If it were a standard multithreaded program, each thread would
be allowed to preempt the other one at the control %ow nodes, thus
leading to a total of 12 interleavings, as shown in the second and !fth
columns of Table 1, labeled All-Interleavings. Among them, the two
interleavingsmarkedwith * would violate the assertion. After apply-
ing the DPOR algorithm, for example, eight interleavings would re-
main while the other four would be removed. Speci!cally, 1-2-4-3
is removed because it is equivalent to 1-2-3-4; 1-4-5-2-3 is equiv-
alent to 1-4-2-5-3; 4-1-5 is equivalent to 4-5-1; and 4-1-5-2-3

is equivalent to 4-5-1-2-3.
However, applying our new priority-based reduction would lead

to signi!cantly fewer interleavings. In fact, only two interleavings
would remain, which are shown by the red and blue dotted lines
in Figure 6. This is because, according to our second rule, all six
interleavings in Column 2 except 1-4-5 and 1-2-3-4 are infeasi-
ble, because the low-priority task (T2) preempts the high-priority
task. Similarly, according to our !rst rule, all six interleavings in
Column 6 are infeasible, because when both T1 and T2 are active
and ready to run at the beginning, the PLCs would always choose
to execute the high-priority task (T1).

Since the erroneous interleavings (4 and 10) are not explored by
SymPLC, and SymPLC terminates after two hyper-periods (due to
the termination condition to be presented in Section 5.3), we have
proved the validity of this assertion condition.

Our implementation uses an on-the-#y computation to decide
whether the current interleaving is feasible. Take the second rule as
an example. Whenever an instruction accessing global variables is
interpreted in the symbolic execution engine, we check the priority
of its task against the operation history of current execution. If a
preceding operation is from an active task whose priority is higher
than the current one, then the interleaving resulted from executing
t at s should be skipped. The !rst and the third rule are developed
in a similar fashion.

In Figure 6, for instance, 4-5-1 is determined to be infeasible
immediately after the !rst node 4 is reached by SymPLC, since the
!rst rule is violated. Therefore, SymPLC backtracks from node 4
while skipping the interleavings numbered 8-12 entirely.

5.2 Period-based Reduction
In this new reduction, we develop two rules over task interleaving:

(1) Two tasks are allowed to interleave only when their ex-
pected execution periods overlap in time;

(2) If a high-priority task Th preempts a low-priority task Tl ,
Th must not interleave with any task whose period begin
time is not earlier than the period end time of Tl .

We implement these rules at Lines 13-19 of Algorithm 2. Recall
that t .startT and t .endT are the expected logical time when the
period of t begins and ends (we are not concerned with the actual
start time and end time of t , except that they must fall within the
period). Without these rules, any two operations from di#erent

1 CONFIGURATION PLC_Cell1

2 RESOURCE CPU_main ON CPU001

3 TASK T1 (INTERVAL := t#100ms, PRIORITY := 1); //H-priority

4 TASK T2 (INTERVAL := t#200ms, PRIORITY := 2); //M-priority

5 TASK T2 (INTERVAL := t#300ms, PRIORITY := 3); //L-priority

6 PROGRAM Fast WITH T1 : ProgA;

7 PROGRAM Const WITH T2 : ProgB;

8 PROGRAM Slow WITH T2 : ProgC;

9 END_RESOURCE

10 END_CONFIGURATION

B2B1

C1 C2

B3

0 100 200 300 400 500 600 ms

Task T2

Task T3

Hyper Period

A3A1 A6Task T1 A2 A4 A5

Figure 7: Three periodic tasks with a hyper-period of 600ms.

threads would have been allowed to execute concurrently in the
same hyper-period. However, since each task must meet its own
deadline, some of them can never run concurrently.

Consider the program in Figure 7 as our example, which has
three tasks T1, T2 and T3 with periods 100ms, 200ms and 300ms, re-
spectively. Thus, the hyper-period is 600ms, allowing T1 to execute
six times, T2 to execute three times, and T3 to execute twice. For
ease of presentation, let the six instances of T1 be denoted from A1

to A6, the three instances of T2 be denoted from B1 to B3, and the
two instances of T3 be denoted C1 and C2.

Without the timing-related information, symbolic execution
would have to explore all possible interleavings of these tasks,
including the obviously infeasible ones between A1 and B2, for ex-
ample, which do not overlap in time. These infeasible interleavings
will be removed by applying our reduction rules.

We !rst compare the task IDs of t ′ and t in Algorithm 2 – di#erent
IDs means they belong to di#erent tasks. The next rule at Line 14
is straightforward, since interleaving cannot occur if the two tasks
do not overlap in time. In our running example, the period of A1 is
[0ms, 100ms] while the period of B2 is [200ms, 400ms]. Obviously,
events in A1 do not occur concurrently with events in B2. Similarly,
the periods of B3 and C1 do not overlap. Both of these two cases
are handled by the conditions at Lines 14-15 of Algorithm 2.

The second rule (Lines 16-19) is more subtle because the infeasi-
ble interleavings are deduced via a preceding interleaving, based on
both periods and priorities of involved tasks. As shown in Figure 7,
the period B2 is expected to start beforeA4. Thus, it appears thatA4

may interleave with B2. However, if B2 preempts C1 in a particular
execution, then B2 must end before the end of the period of C1, to
allowC1 to meet its deadline. Since B2 would have ended before the
start of the period of A4, it cannot run concurrently with A4. Thus,
in this particular example, A4 and B2 can no longer interleave.

This example also illustrates the third reduction rule in Sec-
tion 5.1: A3 starts from the 200ms, while the earliest time B2 can
start is 200ms. Since T1 has a higher priority, and A3 starts earlier
than B2, the execution ofA3 cannot be interrupted by B2. Thus, any
interleaving between them is guaranteed to be infeasible.

332

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Shengjian Guo, Meng Wu, and Chao Wang

Algorithm 3 Next state computation with stateful reduction.

1: NextState(State s , Event t) {
2: s .sel ← t ;
3: Compute the new symbolic state s ′ based on s and t ;
4: if (t is plc_hyperperiod_end)
5: if (s ′ ⊆ visited) return NULL;
6: else visited ← visited ∪ {s ′ };
7: return s ′;
8: }

5.3 Stateful Exploration
Now we present the state-based reduction. Recall PLC tasks are
periodic and thus never terminate. Furthermore, symbolic execution
by default is geared toward detecting bugs as opposed to proving
the correctness of properties. Thus, applying SymPLC with a user-
speci!ed depth bound in general will never prove the absence of
bugs in a PLC program. However, information of already-visited
states may be leveraged to detect early-termination conditions. This
allows SymPLC to drastically reduce the number of test cases, as
well as prove the correctness of properties.

Algorithm 3 shows the modi!ed NextState subroutine in Al-
gorithm 1 that implements this method. At the end of each hyper-
period, it checks if the new symbolic state s ′ has been visited pre-
viously. If the answer is yes, it returns NULL instead of s ′ which
forces SymPLC to backtrack immediately.

In general, the state of a PLC program is a valuation of all vari-
ables as well as program counters (PC) of all tasks. However, since
we are concerned with the program state only at the end of a hyper-
period (where all tasks have ended and local variables are out of the
scope), only the valuation of global variables needs to be considered.

Let R be the set of all reachable states of a PLC program at the end
of the hyper-period. Ideally, SymPLC should generate enough test
cases to cover all states in R. We will show through experiments
that, due to the nature of these PLC programs, the termination
condition can often be met after a few hyper-periods. It also means
SymPLC should be designed to terminate as soon as the symbolic
execution procedure stops generating previously unexplored states.

Consider a program named IndustrialAuto4 from [18], which
contains a state machine whose state variable, CSTATE6, may take
a number of values. A brute-force application of SymPLC would
result in exponentially many program paths as the number of hyper-
periods increases. For example, after !ve hyper-periods, the number
of executions becomes 3176. In contrast, applying our new stateful
reduction decreases the total number of executions down to 45.
Furthermore, since the symbolic execution procedure detects the
early-termination condition after 3 hyper-periods, all unfalsi!ed
properties are considered to be formally proved.

6 EXPERIMENTS
We have implemented SymPLC based on the Matiec PLC com-
piler [39] and the Cloud9 symbolic virtual machine [19]. We used
Matiec to translate ST code of each PLC task to ANSI C, and then cre-
ated a test harness to incorporate these tasks. We implemented the
test harness generator using Python. The resulting multithreaded
C model was then executed by the extended Cloud9, which uses
KLEE [12] internally for symbolic execution. We extended Cloud9
to handle the PLC-speci!c program features.

Our experiments answer the following research questions: (1)
Can SymPLC e"ciently handle both single-task and multi-task PLC
programs? Is SymPLC e#ective in detecting property violations as

well as proving their correctness? (2) Are the PLC-speci!c reduction
techniques (stateful, period, and priority) e#ective in reducing the
search space? Do they outperform state-of-the-art POR techniques?
For comparison purposes, we implemented the state-of-the-art
dynamic partial-order reduction (DPOR) algorithm [23, 33, 49] in
SymPLC to identify and remove redundant interleavings.

We evaluated SymPLC on two sets of benchmark programs. The
!rst set consists of 49 single-task PLC programs collected from
various online sources [16, 18, 29]. The second set consists of 44
multi-task PLC programs that implement several embedded con-
trollers [14, 15]. Each PLC program has 30 to 3,418 lines of ST code,
which translate to 90 to 8,783 lines of C code. In total, they consist
of 26,713 lines of ST code, which translate to 62,926 lines of C code.
The C code is !rst compiled to LLVM bitcode and then symboli-
cally executed by the modi!ed Cloud9. Correctness properties are
expressed as assertions embedded in the programs. We conducted
all our experiments on a computer with a 3.40 GHz CPU and 8 GB
RAM running Ubuntu 12.04 Linux.

6.1 Results on Single-task PLC Applications
Table 2 shows the experimental results on single-task PLC programs.
Since each hyper-period has one task, the number of iterations is
the same as the number of tasks executed. In this table, Columns 1–
3 show the statistics of each benchmark program, including the
name, the number of lines of original ST code, and the number of
lines of generated C code. Columns 4-8 show the detailed results
of SymPLC, including the maximum number of iterations reached
(#.Iter), whether stateful reduction detected convergence (Conv),
the number of tests generated, execution time in seconds, and the
instruction coverage (#.ICov). The last three columns show the
assertion checking results, including the number of undecided,
falsi!ed, and proved assertions.

If SymPLC !nds an execution that fails an assertion, the asser-
tion is falsi!ed. If SymPLC does not !nd such an execution before
reaching early termination, the assertion is proved. Otherwise, the
assertion remains undecided.

Although symbolic execution is geared toward falsifying asser-
tions, Table 2 shows that our stateful reduction is also e#ective in
detecting termination conditions. As a result, SymPLC can prove 154
assertions (in addition to falsifying 34 assertions) and there are only
18 undecided assertions. In contrast, without stateful reduction,
there would be 172 undecided assertions.

Furthermore, the number of iterations ranges from 2 to 14, in-
dicating that repeatedly executing the same PLC tasks after that
many hyper-periods does not lead to new program states. Instead,
the main di"culty resides in covering the input space, which is
what symbolic execution is designed for.

The average Instruction Coverage for all benchmarks is 89.7%,
which did not reach 100% even for benchmarks that converged,
apparently because some of these instructions are unreachable.

6.2 Results on Multi-task PLC Applications
In this section, we show the performance di#erences between non-
stateful and stateful exploration inside SymPLC, and then compare
the various interleaving reduction techniques.

Table 3 shows the results onmulti-task PLC programs. Columns 1-
3 show the benchmark name and statistics of the hyper-period,
including the total number of tasks and global operations executed

333

Symbolic Execution of Programmable Logic Controller Code ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 2: Results of SymPLC on single-task PLC programs.

Program
LOC

#.Iter Conv #.Tests Time (s) #.ICov (%)
Assertions

ST C Undet. Falsi!ed Proved

G4LTL_ST1 470 1,249 5 Y 305 36.2 89.1 0 0 1

G4LTL_ST2 188 504 5 Y 316 13.2 87.5 0 0 1

G4LTL_ST3 111 252 6 Y 116 4.9 87.3 0 0 2

G4LTL_ST4 1,409 4,279 7 Y 1,498 140.2 44.5 0 1 1

G4LTL_ST5 321 855 5 Y 240 9.6 97.8 0 0 2

G4LTL_ST6 69 154 2 Y 67 2.5 98.5 0 2 1

G4LTL_ST7 86 156 2 Y 272 1231.9 78.2 0 0 1

G4LTL_ST8 488 1,661 8 Y 368 16.3 74.4 0 0 5

G4LTL_ST9 577 914 10 Y 686 69.7 92.6 0 1 1

G4LTL_ST10 257 435 6 Y 354 27.8 99.8 0 1 2

IndustrialAuto1 45 145 2 Y 12 0.6 95.1 0 0 2

IndustrialAuto2 43 150 2 Y 10 0.5 95.5 0 2 2

IndustrialAuto3 206 379 4 Y 289 10.6 99.7 0 1 3

IndustrialAuto4 65 172 3 Y 45 1.7 98.9 0 0 3

IndustrialAuto5 105 273 3 Y 65 2.1 98.8 0 1 7

IndustrialAuto6 126 276 6 Y 25 1.0 84.1 0 0 9

IndustrialAuto7 126 275 5 Y 34 1.3 92.4 0 0 8

IndustrialAuto8 199 485 13 Y 55 3.1 60.0 0 0 11

IndustrialAuto9 2,444 8,291 14 Y 143 8.8 11.7 0 2 9

IndustrialAuto10 1,195 3,266 12 No 5,084 >3600 34.3 15 1 0

IndustrialAuto11 75 218 3 Y 23 0.9 97.8 0 0 8

IndustrialAuto12 1,580 3,781 6 Y 3,216 813.1 99.9 0 0 14

IndustrialAuto13 255 607 8 Y 130 4.9 61.5 0 1 6

IndustrialAuto15 3,418 8,783 8 Y 1,349 151.8 65.7 0 1 11

IEC-1 30 90 2 Y 6 0.4 83.2 0 0 1

IEC-2 53 135 2 Y 619 25.6 97.9 0 1 1

IEC-3 118 260 2 No 8,041 >3600 98.4 2 2 0

IEC-4 66 173 6 Y 216 9.1 92.5 0 0 3

IEC-5 32 72 2 Y 6 0.3 88.2 0 0 2

IEC-6 52 140 2 Y 306 9.9 98.0 0 0 1

IEC-7 173 474 3 Y 37 2.5 85.1 0 1 1

LD-Program1 89 136 3 Y 1,084 64.5 79.1 0 0 4

LD-Program2 336 403 2 No 10,508 >3600 67.0 1 0 0

LD-Program3 92 135 11 Y 231 10.3 99.6 0 1 1

LD-Program4 110 150 2 Y 601 29.9 74.9 0 1 2

Mixer 181 251 4 No 5,088 >3600 88.6 0 2 0

Evaporator 178 238 2 Y 287 11.9 81.7 0 1 3

Hydraulic 118 128 2 Y 54 2.4 83.0 0 0 4

Safe 215 313 2 Y 1,724 199.5 92.0 0 0 2

Logic 234 322 2 Y 125 6.2 78.9 0 1 8

Lift 187 169 2 Y 160 8.1 71.6 0 0 2

Plastic 187 215 2 Y 360 22.6 75.1 0 0 2

Bargraph 126 143 4 Y 4,316 429.6 98.0 0 0 2

Jedyka 80 92 7 Y 132 4.5 99.5 0 2 0

Glowny 70 86 4 Y 62 2.1 93.5 0 2 1

IL-Tool 137 171 2 Y 362 20.4 99.2 0 1 2

Shutter 83 125 4 Y 643 49.6 94.3 0 3 0

Alarm 68 107 4 Y 326 22.4 99.5 0 1 1

Fountain 50 95 9 Y 339 28.7 99.6 0 1 1

Total 16,923 42,183 50,335 17,913 18 34 154

in each hyper-period, because they are closely related to the com-
plexity of the interleaving exploration. Columns 4-9 show results
of SymPLC without stateful reduction, including the maximum
number of iterations reached, the number of test cases generated,
the run time, and the assertion checking results. Columns 10-15
show results of SymPLC with stateful reduction. We set the time
bound to 10 minutes and hyper-period iteration bound to 10.

Since non-stateful SymPLC cannot detect convergence, it does
not prove properties. In contrast, stateful SymPLC can prove prop-
erties. Our results show that stateful SymPLC only needed a few
hyper-periods to detect convergence. In contrast, non-stateful Sym-
PLC frequently timed out or generated more test cases (1.4 million
versus 11K). Both detected 17 violations, but stateful SymPLC also
proved 27 assertions, whereas non-stateful SymPLC did not.

Table 4 shows the result of comparing di#erent interleaving
reduction techniques. Here, KLEE denotes the default symbolic
execution algorithm in Cloud9 augmented with the capability of
handling threads. DPOR denotes the enhanced version of KLEE

Table 3: Results of SymPLC on multi-task PLC programs.

Program
Hyper-period Non-Stateful Stateful

#.Task #.Ops #.Iter #.Test #.Time
Assertions

#.Iter #.Test #.Time
Assertions

Und Fal Pro Und Fal Pro

nxt2.prog1 3 16 10 10 0.2 1 0 0 3 3 0.4 0 0 1

nxt2.prog2 3 16 10 1027 2.8 0 1 0 2 7 0.4 0 1 0

nxt2.prog3 5 27 10 59048 372.2 1 0 0 2 5 0.4 0 0 1

nxt2.prog4 7 37 10 59767 >600 1 0 0 2 5 0.4 0 0 1

nxt2.prog5 5 28 4 109,669 >600 0 1 0 2 43 0.7 0 1 0

nxt2.prog6 7 38 4 71,631 >600 0 1 0 2 43 0.8 0 1 0

nxt2.prog7 7 38 3 66,907 >600 1 0 0 2 91 1.4 0 0 1

nxt3.prog1 5 15 5 43,313 >600 1 0 0 3 24 0.6 0 0 1

nxt3.prog2 7 19 4 57,396 >600 0 1 0 2 93 1.2 0 1 0

nxt3.prog3 8 28 4 15,080 >600 1 0 0 2 20 0.8 0 0 1

nxtway01 6 42 5 41,629 >600 1 0 0 2 25 0.6 0 0 1

nxtway02 6 46 3 35,449 >600 0 1 0 3 149 2.4 0 1 0

nxtway03 9 62 3 33,809 >600 0 1 0 3 978 16.2 0 1 0

nxtway04 9 66 4 26,988 >600 0 1 0 2 575 10.4 0 1 0

nxtway05 6 38 9 11122 >600 1 0 0 3 11 0.6 0 0 1

nxtway06 6 34 4 46,580 >600 0 1 0 3 860 12.1 0 1 0

nxt.pi00 6 46 5 21,808 >600 0 1 0 2 55 1.2 0 1 0

nxt.pi01 6 46 4 23,348 >600 1 0 0 2 98 1.7 0 0 1

nxt.pi02 8 62 3 21,139 >600 0 1 0 2 368 6.5 0 1 0

nxt.pi03 5 38 4 25,406 >600 0 1 0 3 179 2.9 0 1 0

trans01 6 41 3 26,367 >600 0 1 0 3 502 7.9 0 1 0

trans02 6 41 6 498 >600 1 0 0 4 27 0.9 0 0 1

trans03 6 39 4 33,572 >600 0 1 0 5 2,638 38.7 0 1 0

trans04 6 41 4 29,326 >600 1 0 0 3 73 1.4 0 0 1

trans05 9 59 5 11582 >600 1 0 0 3 19 0.8 0 0 1

attend01 6 35 5 34,658 >600 1 0 0 4 64 1.2 0 0 1

attend02 6 42 3 32,932 >600 0 1 0 3 388 5.9 0 1 0

attend03 6 48 4 20,723 >600 1 0 0 2 119 2.3 0 0 1

attend04 6 39 4 23,537 >600 1 0 0 3 101 1.9 0 0 1

att4_01 7 40 3 23,655 >600 1 0 0 3 855 14.5 0 0 1

att4_02 7 33 4 32,505 >600 1 0 0 3 105 1.9 0 0 1

race01 6 47 3 21,990 >600 0 1 0 2 166 2.6 0 1 0

race02 6 38 5 17,730 >600 0 1 0 3 41 0.9 0 1 0

race03 9 63 3 14,960 >600 1 0 0 2 275 6.7 0 0 1

nobadmode01 6 34 4 22,915 >600 1 0 0 3 88 1.5 0 0 1

nobadmode02 7 45 4 10,840 >600 1 0 0 3 86 2.3 0 0 1

nobadmode03 6 52 3 14,051 >600 1 0 0 3 614 13.1 0 0 1

nobadmode04 6 51 5 12,666 >600 1 0 0 3 102 2.2 0 0 1

ctm01 7 123 7 47067 >600 1 0 0 9 131 2.2 0 0 1

ctm02 7 120 5 82,330 >600 1 0 0 4 178 2.5 0 0 1

ctm03 6 115 9 72,135 >600 1 0 0 5 82 1.2 0 0 1

aso_01 11 67 2 20,269 >600 1 0 0 2 438 12.4 0 0 1

aso_02 9 49 2 19,204 >600 1 0 0 2 90 2.9 0 0 1

aso_03 9 53 3 26,610 >600 0 1 0 2 452 9.4 0 1 0

Total 1,423,248 24,975 27 17 0 11,266 199 0 17 27

where we added the implementation of dynamic partial order re-
duction. Among the three PLC-speci!c reductions, Period denotes
our period-based reduction technique, Priority denotes our priority-
based reduction technique, and Period+Priority denotes the full-
blown implementation of our reduction in SymPLC. All methods
shown in Table 4 were used in conjunction with the stateful re-
duction. For each individual method, we show the number of test
cases generated and the total execution time in seconds. Since the
time limit was set to 10 minutes, >600s means the corresponding
method was forced to terminate after running out of time.

As shown in the total numbers in the last row, the full-blown
reduction implemented in SymPLC, denoted (Period+Priority), sig-
ni!cantly outperformed KLEE and DPOR, two state-of-the-art sym-
bolic execution techniques. Speci!cally, the reduction in the number
of test cases is more than two orders of magnitude. Furthermore,
the full-blown reduction is signi!cantly more e"cient than Pe-
riod-based reduction (11,266 versus 1,433,944) or Priority-based
reduction (11,266 versus 267,352) alone. This means applying both
Period and Priority based reductions has led to synergistic impact.

334

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Shengjian Guo, Meng Wu, and Chao Wang

Table 4: Results of comparing the reduction techniques.

Program KLEE [12] DPOR [23] PLC-speci!c Reductions

Period Priority Period+Priority

#. Test Time (s) #. Test Time (s) #. Test Time (s) #. Test Time (s) #. Test Time (s)

nxt2.prog1 43,960 >600 135 1.6 135 1.6 3 0.4 3 0.4

nxt2.prog2 44,200 >600 19 0.5 19 0.5 7 0.4 7 0.4

nxt2.prog3 44,595 >600 5,644 62.2 3,839 39.5 24 0.6 5 0.4

nxt2.prog4 45,683 >600 47,652 >600 35,531 452.3 40 0.7 5 0.4

nxt2.prog5 50,067 >600 52,666 >600 47,422 >600 144 1.5 43 0.7

nxt2.prog6 44,442 >600 46,521 >600 45,867 >600 528 5.1 43 0.8

nxt2.prog7 44,383 >600 46,280 >600 45,394 >600 827 9.8 91 1.4

nxt3.prog1 47,159 >600 48,111 >600 44,560 >600 250 3.3 24 0.6

nxt3.prog2 52,490 >600 54,248 >600 41,011 >600 5,792 59.9 93 1.2

nxt3.prog3 45,842 >600 54,851 >600 25,527 >600 3,117 37.8 20 0.8

nxtway01 53,425 >600 43,799 >600 41,003 >600 195 2.7 25 0.6

nxtway02 51,317 >600 45,304 >600 45,633 >600 1,646 22.2 149 2.4

nxtway03 51,609 >600 35,932 >600 39,562 >600 35,445 >600 978 16.2

nxtway04 60,785 >600 45,557 >600 38,916 >600 31,045 >600 575 10.4

nxtway05 51,589 >600 38,140 >600 39,562 >600 713 10.1 11 0.6

nxtway06 46,392 >600 50,025 >600 45,756 >600 4,608 68.6 860 12.1

nxt.pi00 49,470 >600 39,158 >600 40,716 >600 561 8.2 55 1.2

nxt.pi01 49,978 >600 40,446 >600 39,212 >600 1,226 16.9 98 1.7

nxt.pi02 48,670 >600 28,824 >600 29,922 >600 10,216 169.9 368 6.5

nxt.pi03 43,048 >600 40,384 >600 39,884 >600 239 3.7 179 2.9

trans01 40,869 >600 42,269 >600 40,684 >600 5,170 78.9 502 7.9

trans02 40,893 >600 38,720 >600 39,364 >600 99 2.1 27 0.9

trans03 36,714 >600 43,546 >600 43,602 >600 11,112 168.6 2,638 38.7

trans04 38,568 >600 35,123 >600 25,535 >600 357 5.3 73 1.4

trans05 49,880 >600 46,138 >600 35,480 >600 4,207 69.3 19 0.8

attend01 43,298 >600 54,320 >600 57,849 >600 222 3.1 64 1.2

attend02 32,541 >600 56,541 >600 18,866 >600 20,292 12.8 388 5.9

attend03 46,143 >600 35,023 >600 35,585 >600 343 5.1 119 2.3

attend04 45,951 >600 36,224 >600 32,570 >600 432 6.5 101 1.9

att4_01 47,312 >600 40,691 >600 36,861 >600 2,391 37.2 855 14.5

att4_02 46,969 >600 34,278 >600 40,327 >600 364 5.5 105 1.9

race01 45,610 >600 38,334 >600 37,424 >600 500 7.2 166 2.6

race02 45,277 >600 17,756 231.9 2,236 32.2 176 3.9 41 0.9

race03 44,974 >600 22,145 >600 32,658 >600 28,112 >600 275 6.7

nobadmode01 49,094 >600 46,622 >600 40,932 >600 314 4.6 88 1.5

nobadmode02 43,561 >600 51,877 >600 6,616 144.6 16,862 346.7 86 2.3

nobadmode03 43,525 >600 49,719 >600 48,408 >600 2,745 49.9 614 13.1

nobadmode04 43,962 >600 42,283 >600 37,739 >600 2,558 46.5 102 2.2

ctm01 51,345 >600 51,810 >600 776 11.4 846 10.9 131 2.2

ctm02 55,711 >600 63,599 >600 54,294 >600 621 7.8 178 2.5

ctm03 49,343 >600 51,875 >600 41,839 >600 97 1.3 82 1.2

aso_01 42,260 >600 39,386 >600 10,582 >600 20,607 >600 438 12.4

aso_02 44,403 >600 43,847 >600 12,461 >600 29,191 >600 90 2.9

aso_03 44,235 >600 40,646 >600 11,785 >600 23,108 >600 452 9.4

Total 2,041,542 26,400 1,786,468 24,296 1,433,944 22,822 267,352 4,895 11,266 199

7 RELATEDWORK
Since PLCs are widely used in industry control applications, there
exist some integrated development environments (IDEs) and simula-
tors for PLCs. However, they are designed primarily for mimicking
the behavior of PLC devices on host computers. Although simula-
tors may be used to test a PLC program, the user must handcraft the
test inputs. As wementioned earlier, manually creating high-quality
test inputs is di"cult. Furthermore, even with the test inputs, it is
still necessary to explore the possible task schedules under these
inputs. Unfortunately, simulators are not equipped to perform this
task. SymPLC !lls the gap by leveraging symbolic execution to auto-
matically generate high-quality test inputs, as well as systematically
cover the possible interleavings.

There is also a large body of work on formal veri!cation of PLC
applications [2, 5, 7–9, 40, 42, 43]. In this context, a formal model
of the target PLC has to be constructed before it is analyzed by
veri!cation tools such as UPPAL [41] and NuSMV [1, 5]. Various
optimizations are also proposed to increase the e"ciency of these
veri!cation tools [27, 43, 47, 48]. However, there are several funda-
mental di#erences between these model checkers and SymPLC.

First, constructing and tuning formal models are not easy. They
require expertise in formal methods and the application domains,
thus limiting the practical use. Second, formal models are at higher

abstraction levels than the actual code; thus, they are more suitable
for checking design defects [20, 36, 43] than implementation bugs.
Finally, none of the existing tools handles multi-task PLC programs;
indeed, they focus exclusively on single-task programs, perhaps to
avoid the di"culty in modeling the concurrency semantics.

In contrast, SymPLC requires no formal model; instead, it relies
on symbolic execution to directly checking the PLC software code.
SymPLC also uniformly models both single-task and multi-task
PLC programs. While symbolic execution has been routinely used
for testing sequential and concurrent programs written in a wide
variety of programming languages, to the best of our knowledge,
it has never been applied to multi-task PLCs before. Bohlender et
al. [11] applied concolic testing to single-task PLC programs but
did not consider the interleaving of multiple tasks.

Our modeling of preemptive scheduling semantics is related to
testing and verifying periodic programs. In this particular context,
Regehr et al. [45] used threads to simulate the behavior of interrupt-
driven C programs. Kroening et al. [32] veri!ed C code with nested
interrupts using a bounded model checker. Chaki et al. [14, 15] also
developed several tools for verifying periodic C programs. Although
there are similarities, these works are signi!cantly di#erent because
the semantics of PLC tasks di#ers from both interrupts and threads.
Furthermore, none of these prior works was related to symbolic
execution, which is the focus of our work.

Our method for restricting task interactions based on priori-
ties was inspired by techniques for model checking real-time soft-
ware [4, 10, 21, 28, 37], which encode necessary conditions of the
scheduler semantics to increase !delity and reduce state-space ex-
plosion. Similar approaches were also used in combination with
symbolic execution [38]. Our stateful reduction can be viewed as an
instance of the state-merging and matching technique in symbolic
execution [3, 25, 26, 35]. However, none of the existing techniques
has been applied to PLC software.

There are techniques for synthesizing PLC software from speci-
!cations. For example, Cheng et al. [17, 18] synthesized PLC code
from linear temporal logic speci!cations. Gelen et al. [24] synthe-
sized PLC code for real-time supervisory control of a manufacturing
system. However, due to inherent limitations, so far, they can only
produce small programs. SymPLC can be considered as a comple-
mentary testing method to these program synthesis tools.

8 CONCLUSIONS
We have presented a symbolic execution tool for automatically test-
ing single- and multi-task PLC programs. It takes the PLC source
code as input, translates it into C code, and then applies symbolic
execution. As such, it can systematically explore feasible paths of
individual PLC tasks as well as their interleavings. Toward this
end, our main contribution is developing a number of PLC-speci!c
reduction techniques for eliminating redundant interleavings. Our
experiments show that the tool is e"cient in handling a large num-
ber of PLC benchmark programs. On multi-task PLC programs, in
particular, our new reduction techniques signi!cantly outperform
the state-of-the-art partial order reductions technique.

ACKNOWLEDGMENTS
This material is based upon research supported in part by the U.S.
National Science Foundation under grants CNS-1617203 and CNS-
1702824 and the U.S. O"ce of Naval Research under award number
N00014-13-1-0527.

335

Symbolic Execution of Programmable Logic Controller Code ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

REFERENCES
[1] Borja Fernandez Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles

Tournier, Simon Bliudze, Jan Olaf Blech, and Víctor Manuel González Suárez.
Applying model checking to industrial-sized PLC programs. IEEE Trans.
Industrial Informatics, 11(6):1400–1410, 2015.

[2] Alexander Aiken, Manuel Fähndrich, and Zhendong Su. Detecting races in relay
ladder logic programs. In International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 184–200, 1998.

[3] Saswat Anand, Corina S. Pasareanu, and Willem Visser. Symbolic execution
with abstract subsumption checking. In International SPIN Workshop on Model
Checking Software, pages 163–181, 2006.

[4] Luciano Baresi, Carlo Ghezzi, and Luca Mottola. On accurate automatic
veri!cation of publish-subscribe architectures. In International Conference on
Software Engineering, pages 199–208, 2007.

[5] Bernhard Beckert, Mattias Ulbrich, Birgit Vogel-Heuser, and Alexander Weigl.
Regression veri!cation for programmable logic controller software. In
International Conference on Formal Methods and Software Engineering, pages
234–251, 2015.

[6] Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of
multithreaded programs from arbitrary program contexts. In ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages, and
Applications, pages 491–506, 2014.

[7] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Counterexample-guided
abstraction re!nement for PLCs. In International Workshop on Systems Software
Veri!cation, 2010.

[8] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Arcade.PLC: A
veri!cation platform for programmable logic controllers. In IEEE/ACM
International Conference On Automated Software Engineering, pages 338–341,
2012.

[9] Sebastian Biallas, Mirco Giacobbe, and Stefan Kowalewski. Predicate
abstraction for programmable logic controllers. In Formal Methods for Industrial
Critical Systems - 18th International Workshop, pages 123–138, 2013.

[10] Thomas Bøgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and
Kim Guldstrand Larsen. Model-based schedulability analysis of safety critical
hard real-time Java programs. In International Workshop on Java Technologies
for Real-time and Embedded Systems, pages 106–114, 2008.

[11] Dimitri Bohlender, Hendrik Simon, Nico Friedrich, Stefan Kowalewski, and
Stefan Hauck-Stattelmann. Concolic test generation for PLC programs using
coverage metrics. In International Workshop on Discrete Event Systems, pages
432–437, 2016.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
USENIX Symposium on Operating Systems Design and Implementation, pages
209–224, 2008.

[13] Henrik Carlsson, Bo Svensson, Fredrik Danielsson, and Bengt Lennartson.
Methods for reliable simulation-based PLC code veri!cation. IEEE Trans.
Industrial Informatics, 8(2):267–278, 2012.

[14] Sagar Chaki, Arie Gur!nkel, and Nishant Sinha. E"cient veri!cation of
periodic programs using sequential consistency and snapshots. In International
Conference on Formal Methods in Computer-Aided Design, pages 51–58, 2014.

[15] Sagar Chaki, Arie Gur!nkel, and Ofer Strichman. Time-bounded analysis of
real-time systems. In International Conference on Formal Methods in
Computer-Aided Design, pages 72–80, 2011.

[16] Gang chen, Xiaoyu Song, and Ming Gu. PLC program veri!cation and analysis
using the coq theorem prover. Acta Scientiarum Naturalium Universitatis
Pekinensis, 46(1):30–34, 2010.

[17] Chih-Hong Cheng, Yassine Hamza, and Harald Ruess. Structural synthesis for
GXW speci!cations. In International Conference on Computer Aided Veri!cation,
pages 95–117, 2016.

[18] Chih-Hong Cheng, Chung-Hao Huang, Harald Ruess, and Stefan Stattelmann.
G4LTL-ST: automatic generation of PLC programs. In International Conference
on Computer Aided Veri!cation, pages 541–549, 2014.

[19] Liviu Ciortea, Cristian Zam!r, Stefan Bucur, Vitaly Chipounov, and George
Candea. Cloud9: A software testing service. Operating Systems Review,
43(4):5–10, 2009.

[20] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Formal veri!cation
of safety PLC based control software. In Integrated Formal Methods - 12th
International Conference, pages 508–522, 2016.

[21] Xianghua Deng, Matthew B. Dwyer, John Hatcli#, Georg Jung, Robby, and
Gurdip Singh. Model-checking middleware-based event-driven real-time
embedded software. In International Symposium on Formal Methods for
Components and Objects, pages 154–181, 2002.

[22] Jean-Marie Farines, Max Hering de Queiroz, Vinicius G. da Rocha, Ana Maria M.
Carpes, François Vernadat, and Xavier Crégut. A model-driven engineering
approach to formal veri!cation of PLC programs. In IEEE Conference on
Emerging Technologies & Factory Automation, pages 1–8, 2011.

[23] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 110–121, 2005.

[24] Gökhan Gelen and Murat Uzam. The synthesis and PLC implementation of
hybrid modular supervisors for real time control of an experimental

manufacturing system. Journal of Manufacturing Systems, 33(4):535–550, 2014.
[25] Shengjian Guo, Markus Kusano, and Chao Wang. Conc-iSE: incremental

symbolic execution of concurrent software. In IEEE/ACM International
Conference On Automated Software Engineering, pages 531–542, 2016.

[26] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta.
Assertion guided symbolic execution of multithreaded programs. In ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 854–865,
2015.

[27] C. G. Haba, R. Cociu, and L. Cociu. Mixed mode veri!cation of PLC based
control systems. In International Symposium on Advanced Topics in Electrical
Engineering, pages 1–4, 2011.

[28] Matthew Hoosier, Matthew B. Dwyer, Robby, and John Hatcli#. A case study in
domain-customized model checking for real-time component software. In
International Symposium on Leveraging Applications of Formal Methods, pages
161–180, 2004.

[29] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: programming industrial
automation systems: concepts and programming languages, requirements for
programming systems, decision-making aids. Springer Science & Business Media,
2010.

[30] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order
reduction: An optimal symbolic partial order reduction technique. In
International Conference on Computer Aided Veri!cation, pages 398–413, 2009.

[31] Lock-Jo Koo, Chang Mok Park, Chang Ho Lee, SangChul Park, and Gi-Nam
Wang. Simulation framework for the veri!cation of PLC programs in
automobile industries. International Journal of Production Research,
49(16):4925–4943, 2011.

[32] Daniel Kroening, Lihao Liang, Tom Melham, Peter Schrammel, and Michael
Tautschnig. E#ective veri!cation of low-level software with nested interrupts.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference, pages
229–234, 2015.

[33] Markus Kusano and Chao Wang. Assertion guided abstraction: a cooperative
optimization for dynamic partial order reduction. In IEEE/ACM International
Conference On Automated Software Engineering, pages 175–186, 2014.

[34] E. V. Kuzmin, Valery A. Sokolov, and D. A. Ryabukhin. Construction and
veri!cation of PLC-programs by LTL-speci!cation. Automatic Control and
Computer Sciences, 49(7):453–465, 2015.

[35] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.
E"cient state merging in symbolic execution. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 193–204, 2012.

[36] Tim Lange, Martin R. Neuhäußer, and Thomas Noll. Speeding up the safety
veri!cation of programmable logic controller code. In International Haifa
Veri!cation Conference, pages 44–60, 2013.

[37] Gary Lindstrom, Peter C. Mehlitz, and Willem Visser. Model checking real time
Java using Java PathFinder. In International Symposium on Automated
Technology for Veri!cation and Analysis, pages 444–456, 2005.

[38] Kasper Søe Luckow, Corina S. Pasareanu, and Bent Thomsen. Symbolic
execution and timed automata model checking for timing analysis of Java
real-time systems. EURASIP J. Emb. Sys., 2015:2, 2015.

[39] IEC 61131-3 compiler. URL: https://www.openhub.net/p/matiec.
[40] Stephen E. McLaughlin, Saman A. Zonouz, Devin J. Pohly, and Patrick D.

McDaniel. A trusted safety veri!er for process controller code. In Network and
Distributed System Security Symposium, 2014.

[41] Houda Bel Mokadem, Béatrice Bérard, V. Gourcu#, O. De Smet, and J. Roussel.
Veri!cation of a timed multitask system with uppaal. IEEE Trans. Automation
Science and Engineering, 7(4):921–932, 2010.

[42] Johanna Nellen, Erika Ábrahám, and Benedikt Wolters. A CEGAR tool for the
reachability analysis of PLC-controlled plants using hybrid automata. In
Formalisms for Reuse and Systems Integration, pages 55–78. 2015.

[43] Johanna Nellen, Kai Driessen, Martin Neuhäußer, Erika Ábrahám, and Benedikt
Wolters. Two CEGAR-based approaches for the safety veri!cation of
PLC-controlled plants. Information Systems Frontiers, pages 1–26, 2016.

[44] Sang C. Park, Chang Mok Park, Gi-Nam Wang, Jonggeun Kwak, and Sungjoo
Yeo. PLCStudio: Simulation based PLC code veri!cation. In Proceedings of the
2008 Winter Simulation Conference, pages 222–228, 2008.

[45] John Regehr and Nathan Cooprider. Interrupt veri!cation via thread
veri!cation. Electr. Notes Theor. Comput. Sci., 174(9):139–150, 2007.

[46] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial
order reduction. In International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 382–396, 2008.

[47] Mo Xia, Mian Sun, Guiming Luo, and Xibin Zhao. Design and implementation
of automatic veri!cation for PLC systems. In IEEE International Conference on
Cognitive Informatics and Cognitive Computing, pages 374–379, 2013.

[48] Litian Xiao, Mengyuan Li, Ming Gu, and Jiaguang Sun. A hierarchy framework
on compositional veri!cation for PLC software. In IEEE International Conference
on Software Engineering and Service Science, pages 204–207, 2014.

[49] Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order
reduction for relaxed memory models. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 250–259, 2015.

336

