
Software Maintenance like Maintenance in
Other Engineering Disciplines

Gustavo Villavicencio
Facultad de Matemática Aplicada, Universidad Católica de Santiago del Estero

4200 Campus de la UCSE, Santiago del Estero, Argentina
gustavov@ucse.edu.ar

ABSTRACT
Software maintenance exhibits many differences regarding
how other engineering disciplines carry out maintenance on
their artifacts. Such dissimilarity is caused due to the fact
that it is easy to get a copy from the original artifact to be
used in maintenance, and also because the flat dimension of
the software text facilitates access to the components by sim-
ply using a text editor. Other engineering disciplines resort
to different artifact ‘versions’ (obtained by dissassembling)
where the introduction of modifications (previous compre-
hension) is easier. After which the artifact is reassembled.
In software engineering this approach can be simulated by
combining program transformation techniques, search-based
software engineering technology and design attributes.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

General Terms
Algorithm

Keywords
Software maintenance, software comprehension, refactoring

1. INTRODUCTION
In general, the term maintenance in software engineering

has different implications from the same term in other engi-
neering disciplines. For the latter, maintenance entails the
activities performed to keep the artifact working by solving
its deterioration caused by use and the passing of time. On
the contrary, in software engineering use and time have no
effect on the artifact due to its intangible nature. Likewise,
the flat dimension of the software text makes its inspection
extremely easy by simply using a text editor. Furthermore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14, November 16-22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

getting a copy of the artifact to be used in maintenance
while the original is in execution is not an option available in
the other engineering sciences. This easiness can lead us to
the false perception that software maintenance would not re-
quire some basic procedures that are part of the maintenance
process in the other engineering sciences. Such easiness can
also have influenced the ‘tepid’ approach for maintenance
that prevails today.

On the other hand, other engineering sciences have neither
the option to carry out maintenance on a copy of the artifact,
nor to inspect it so easily. In those disciplines, access to a
specific component may require the removal of others. Thus,
disassembling (or decomposition) is a common activity dur-
ing maintenance in the other engineering areas. Clearly, the
aim of disassembling is to reach a ‘version’ of the artifact
where the introduction of modifications is easier. In order
to simulate this approach in software engineering, the phys-
ical disassembling of components from the other engineering
disciplines can be replaced by program transformation tech-
niques to generate subsidiary versions (or ‘virtual versions’)
of the artifact. As in the other engineering disciplines, we
require that these versions improve the conditions for com-
prehension and the introduction of changes, while keeping
the original version for the subsequent reception of changes
by automatically propagating such changes back.

We should note that such disassabling or decomposition
used by older engineering disciplines is part of a phase of
preparation of the artifact for maintenance. Furthermore,
such preparation is specific, in the sense that it depends on
the specific maintenance request. For instance, if during an
aircraft maintenance we have the request for solving a fail-
ure in a video system, we may need to remove some plastic
parts from the aircraft cabin but not components from the
hydraulic systems. We can say, then, that the preparation
phase is oriented by the maintenance request. In software
engineering, there is not preparation phase as a response to a
specific maintenance request. Given a maintenance request,
the maintenance machinery tries to solve it by introducing
the modification directly into the current version of the ar-
tifact, as it is, without making any previous arrangement of
the source code to facilitate the changes.

Besides, in software maintenance the easiness for making
changes is associated with the design quality. That is, a
good design will allow the software artifact to be compre-
hensible and easy to maintain. Traditionally, the software
engineering research effort has been focused on keeping a
good design with the hope that it will be able to face all the
future unpredictable maintenance requests. We argue that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2666613

853

a good design is necessary for maintenance but not enough.
We want to highlight two design aspects which show that

a good design does not guarantee a successful future main-
tenance. First, software maintenance entails two intrinsi-
cally related critical facets, i.e. comprehension and capacity
for introducing changes (modifiability). Both are human-
centered and the second one depends on the first. However,
there is a factor affecting comprehension which can not be
controlled or measured, the programmer cognitive style. Dif-
ferent programmers adhere to different cognitive styles and a
good design can not necessarily cope with all of them. Since
the capacity for introducing changes depends on comprehen-
sion, even a good design can not guarantee such capacity
either.

The second ‘obscure’ aspect of the software design is its
characterization by using properties and metrics. The ap-
propriateness of a design is evaluated according to proper-
ties like efficiency, security, reusability, maintainability, etc.
These properties are quantified by metrics that are usually
gathered from the code. In the last few years refactoring
has been one of the most extensively used technique for
keeping the software design in good conditions. Unfortu-
nately, such design properties are in continuous tension -
while some of them are improved others can be affected [1].
The two properties in which this phenomenon is more ev-
ident are efficiency and comprehension. Many works have
reported that an efficient algorithm is compact and difficult
to understand, whereas a well-structured algorithm is easier
to understand but inefficient. This circumstance has been
better observed in the functional programming setting [7].

So, we can not state that by using refactoring we can im-
prove design in all its aspects at the same time. Here we are
not interested in measuring the degree of deterioration of a
property as a consequence of improving another one, instead,
we want to emphasize that such properties are in continu-
ous tension. We sustain that such tension is caused because
the artifact, after being delivered, is only viewed from one
perspective. We mean that the current source code artifact
in execution is exactly the same as the one in maintenance.
But execution and maintenance are different referential con-
texts, demanding entirely different characteristics from the
code (execution and maintenance are the two sides of the
same coin, the artifact source code). Nevertheless, in the
current software engineering belief there is no distinction
between the artifact in maintenance and the artifact in ex-
ecution, both versions are exactly the same and so, exhibit
exactly the same attributes. This ‘simplification’ of real-
ity might be due to the fact that we can get a copy of the
artifact and easily explore it.

Thus, in this paper we propose a software maintenance
model as in the other engineering disciplines, where an arti-
fact version is functioning while an entirely different version
is in maintenance. Such distinction is the consequence of
the preparation phase for arranging the source code to solve
a specific maintenance request. In the execution referential
context we want to strengthen properties such as efficiency,
security, etc., and diminish others such as comprehension
and maintainability which are irrelevant in such conditions.
On the other hand, in the maintenance referential context
we want to strengthen properties like comprehension and
maintainability and diminish efficiency, security, etc., which
are irrelevant in these conditions. Consequently, in our view
software artifact properties are relative to a specific refer-

ential context. In this way, the new maintenance model
not only solves the tension problem among the software at-
tributes, but also considers human factors during compre-
hension and maintenance. The latter issue is also settled by
the model since the transformation process, applied on the
artifact version in execution to obtain the version for main-
tenance, generates subsidiary versions that can be assigned
to programmers with different cognitive styles.

Section 2 supplies a more detailed description of the main
mechanisms that compose the model. The unresolved issues
on refactoring which are important in our context are men-
tioned in section 3. Finally, section 4 details the conclusions.

2. A NEW MAINTENANCE MODEL
As we said, execution and maintenance are two referen-

tial contexts where a software artifact can be after being
delivered. Current software engineering makes no distinc-
tion between the artifact in one context or in the other.
But the needs in one context are different from those in the
other, and so, why should we expect to obtain good results
in both referential contexts with exactly the same code ver-
sion? We propose an integral software maintenance model
where the software attributes are emphasized according to
the referential context considered.

The proposed maintenance model involves the two con-
nected referential contexts (execution and maintenance) bi-
ased to keep consistency between them. When the mainte-
nance process starts, the version of the current software arti-
fact is in the execution referential context. Since the main-
tenance model must keep consistency, the artifact version
in the maintenance referential context must be semantically
equivalent. Additionally, as we have indicated previously,
we also require that the artifact in maintenance strengthen
comprehension and maintainability properties while mini-
mizing efficiency, security, etc. The technology that can
accomplish this transformation process is refactorings [9].
Once the comprehension is carried out and the changes are
introduced into the subsidiary version in maintenance, the
model consistency must be restored again. That means that
the artifact version in execution must reflect the changes in-
troduced to the version in maintenance. To this aim, the
transformation process performed before is reversed in or-
der to propagate the changes introduced to the maintenance
version back to the version in execution. This description
can be depicted graphically in figure 1.

The versions in maintenance are named subsidiary ver-
sions and will be generated by refactoring sequences named
reverse refactorings. The name comes from reverse engi-
neering which has among its aims the decomposition of the
system in smaller pieces. In our view the aim is similar,
not always, though. The forward refactorings will be the
inverse of the reverse refactorings and they will be respon-
sible for propagating the changes introduced to the selected
subsidiary version back to the current version in execution.

2.1 Maintenance Request-Driven Transforma-
tion

As we indicated in section 1, software engineering lacks a
preparation phase for arranging the source code in order to
better solve an entering maintenance request. Traditional
software engineering assumes that a good design can face all
future unpredictable maintenance requests with the same
efficiency. But we know that each request has its own char-

854

Low

HighEfficiency
Security
Etc.

Comprehension
Maintainability Low

High Comprehension
Maintainability

Efficiency
Security
Etc.

Current

version

Subsidiary

versions

Reverse refactorings

Forward refactorings

In execution In maintenance

Figure 1: The maintenance model entails the synchronization between the versions in both referential contexts.

acteristics, and thus, it can be solved with different levels
of effort according to how well the design accepts the mod-
ifications. In our proposal we deal with each maintenance
request individually. That means that the generated source
code arrangement depends on the current request, exactly
like in the other engineering areas (remember the simple
example on aircraft maintenance).

In the other engineering areas once there is a clue as to
what component is failing, other components are removed
to get access to the failing component. In our view a com-
ponent is a statement or group of statements that can be
identified as critical since a relevant data item can be used
or updated there, for instance. After identifying the state-
ment (or group of statements) the next step is to isolate
it. The isolation of a statement can not be performed as the
isolation of a physical component in other engineering areas,
that is, by removing the surrounding components. We can
simulate this ‘fault-isolation process’ by reducing the size of
the procedure or function where the statement is located.

The isolation process will be supported by sequences of re-
verse refactorings as in figure 1. The reverse refactorings are
refactorings in combination with Search Based Software En-
gineering (SBSE) technology [6]. Refactorings are respon-
sible for carrying out the transformations while the search
algorithms in SBSE are responsible for finding the best solu-
tion. To this aim, the search algorithms are equipped with
a fitness function. In our context, using the ‘metrics are fit-
ness functions’ approach [5] we can define a metric to mea-
sure the size of the functional unit where the critical state-
ment is placed. The definition of this metric should be sim-
ilar to the Component Balance metric defined in [2], whose
calculation is based on other two metrics, system breakdown
(number of components) and component size uniformity (the
relative size of the components). However, in our view we
are interested in smaller components (methods, procedures,
or functions) than those considered by [2]. Furthermore,
the isolation process must be parameterized with the criti-
cal statement or group of statements.

2.2 Program Comprehension
The previous preparation phase based on reverse refactor-

ings is focused on reducing the volume of information to be
analyzed by the maintainer. Additionally, the application of
sequences of reverse refactorings will generate intermediate
versions until the critical statement is isolated in a func-
tional unit with a required size. In this way, we avoid to
overwhelm the maintainer with unnecessary information by
focusing his attention on a smaller source code area.

However such process is not a typical ‘zoom effect’. In or-
der to reduce the size of the functional unit where the critical
statement is located, the surrounding statements with which
the critical statement keeps data and control dependencies
must be arranged accordingly. That means that such state-
ments, in turn, are grouped together in separated functional
units, which are invoked by the functional unit where the
critical statement is placed. Thus, the dependencies of the
critical statements with the others will be reformulated in a
more ‘abstract’ style that favours comprehension.

On the other hand, the intermediate versions generated
before getting the expected results can also be useful. Clearly,
they are a consequence of the intermediate steps performed
by the refactoring sequence. These results can exhibit dif-
ferent code arrangements and different granularity levels on
the generated functional units, which supply alternative per-
spectives on the code. On this matter we must remember
what was said before regarding the programmers can adhere
to different cognitive style. Thus, different code perspectives
can be associated with different programmers during main-
tenance.

In [4] Harman introduces the idea of ‘semantic lens’ through
which the programmer could view the algorithmic structure
clearer. He also states that the current version in execution
can be the most efficient, but the version (the semantic lens)
viewed by the programmer executing comprehension, would
be the one that better fits its cognitive style. In this view,
the artifact version in execution must be semantically equiv-
alent to those in maintenance. Harman’s idea is a faithful
description of part of our view. In our perspective, the ‘se-
mantic lenses’ are not only useful for comprehension but also
for introducing changes, and they can be propagated to the
current version in execution.

2.3 Introducing and Propagating the Changes
Back

At first sight, we might assume that the last generated
artifact version, where the critical statement will be enclosed
in the functional unit with the required size and ‘calculated’
by the search algorithm, would be selected for introducing
the modification to solve the request at hand. However,
it would not always be in this way. The maintainer can
select a version with which he feels more comfortable when
introducing the changes.

Whichever the version used to introduce the modifica-
tions, they must be propagated back to the current version
in execution in order to keep the consistency of the mainte-
nance model. As we have said, it will be carried out by the

855

sequence of forward refactorings as shown in figure 1. This
sequence is the inverse of the sequence of reverse refactorings
calculated as solution by the search algorithm. For this se-
quence its precondition must be calculated, which will be the
AND-sequence of preconditions corresponding to each refac-
toring step. The precondition of the sequence of forward
refactorings is the responsible mechanism for controlling the
propagation process. Three cases can occur with the AND-
sequence of preconditions after modifications are introduced
into a subsidiary version:

1. The modifications have not affected the precondition of
the sequence of forward refactorings and so, the whole
sequence of forward refactorings can be performed.

2. The modifications have partially affected the precondi-
tion and so, only the active subsequence of the forward
refactorings can be performed to propagate the change
back.

3. The whole precondition is affected and thus the se-
quence of forward refactoring can not propagate the
changes back to the current version in execution.

The first possibility has already be documented and ex-
emplified in the functional setting where the observation of
the attributes in tension seems clearer [11]. The first as well
as the second case guarantee the changes propagation and
the restoration of the current version in execution, and con-
sequently, the maintenance model consistency. In the third
case, instead, the modifications can not be propagated to
the current version and so it can not be restored. A way to
solve this situation would be to ‘reverse’ the fitness function
and find a new sequence of forward refactorings. By revers-
ing the fitness function we mean that instead of improving
comprehension and maintainability, the opposite attributes
such as efficiency, etc., should be improved. This will bring a
new sequence of forward refactorings and, as a consequence,
a new current version to the execution referential context.
In such case we can not say that the maintenance model is
consistent but that it diverges to an alternative solution.

3. ISSUES ON REFACTORING
Refactoring plays a critical role in the model in figure 1.

We have explained that the fitness function, expressing the
decomposition required, guides the transformation process
for generating subsidiary versions. However, besides decom-
position, we can consider abstraction as another criterion to
follow. In this case, the aim is that the transformed source
code fits a well-known pattern or schema which, in turn,
will improve maintainability. Whatever criterion is consid-
ered, new refactorings must be designed. The design of new
refactorings with specific orientation and their composition
in sequences has been suggested by [8]. Other refactoring
aspect to solve is its genericity, that is, the refactorings can
not only be applied to different programming languages [10]
but also to different domains. Finally, a refactoring facet
that acquires importance in our context is the construction
of a bidirectional language for defining refactorings in both
directions. This possibility has been suggested in [3].

4. CONCLUSION
After a software artifact is delivered, traditional software

engineering does not make any distinction between the source

code in execution and the source code in maintenance. How-
ever, this ‘laid-back’ simplification has affected comprehen-
sion and maintenance, since they have not been supplied
with the appropriate source code perspective. According
to our view, the (bidirectional) transformation mechanisms
supported by refactoring and SBSE algorithms, and guided
by the design attributes can supply the appropriate perspec-
tives required by the two referential contexts.

5. REFERENCES
[1] J. Bansiya and C. G. Davis. A hierarchical model for

object-oriented design quality assessment. IEEE
Trans. Softw. Eng., 28(1):4–17, Jan. 2002.

[2] E. Bouwers, J. P. Correia, A. van Deursen, and
J. Visser. Quantifying the analyzability of software
architectures. In 9th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pages 83–92,
Boulder, Colorado, USA, June 2011. IEEE CS.

[3] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J. F. Terwilliger. Bidirectional
Transformations: A Cross-Discipline
Perspective—GRACE meeting notes, state of the art,
and outlook. In ICMT2009 - International Conference
on Model Transformation, Proceedings, volume 5563 of
LNCS. Springer, 2009.

[4] M. Harman. Search based software engineering for
program comprehension. In Proceedings of the 15th
IEEE International Conference on Program
Comprehension, ICPC ’07, pages 3–13, Washington,
DC, USA, 2007. IEEE Computer Society.

[5] M. Harman and J. Clark. Metrics are fitness functions
too. In Proceedings of the Software Metrics, 10th
International Symposium, METRICS ’04, pages 58–69,
Washington, DC, USA, 2004. IEEE Computer Society.

[6] M. Harman and B. F. Jones. Search-based software
engineering. Information and Software Technology,
43:833–839, 2001.

[7] Z. Hu, T. Yokoyama, and M. Takeichi. Optimizations
and transformations in calculation form. In
R. Lämmel, J. Saraiva, and J. Visser, editors, Summer
School on Generative and Transformational
Techniques in Software Engineering (GTTSE’05),
volume 4143 of LNCS, Braga, Portugal, July 2006.
Springer-Verlag.

[8] G. Kniesel and H. Koch. Static composition of
refactorings. Sci. Comput. Program., 52(1-3):9–51,
Aug. 2004.

[9] W. F. Opdyke. Refactoring: A Program Restructuring
Aid in Designing Object-Oriented Application
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[10] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel.
Hurdles in multi-language refactoring of hibernate
applications. In Proceedings of the International on
Software and Data Technologies (ICSOFT 2011),
pages 129–134. SciTePress, 2011.

[11] G. Villavicencio. A new software maintenance scenario
based on refactoring techniques. In 16th European
Conference on Software Maintenance and
Reengineering (CSMR 2012), Zseged, Hungary, March
2012. IEEE.

856

