
Whitening SOA Testing

Cesare Bartolini1, Antonia Bertolino1, Sebastian Elbaum2, Eda Marchetti1
1ISTI - CNR

Via Moruzzi 1 - 56124 Pisa, Italy
{cesare.bartolini, antonia.bertolino, eda.marchetti}@isti.cnr.it

2University of Nebraska
Lincoln, NE, USA

elbaum@cse.unl.edu

ABSTRACT
Service Oriented Architectures (SOAs) are becoming increas-
ingly popular and powerful. Fueling that growth is the
availability of independent web services that can be cost-
effectively composed with other services to provide richer
functionality. The reasons that make these systems easier
to build, however, also make them more challenging to test.
Independent web services usually provide just an interface,
enough to invoke them and develop some general (black-box)
tests, but insufficient for a tester to develop an adequate un-
derstanding of the integration quality between the applica-
tion and independent web services. To address this lack we
propose a “whitening” approach to make web services more
transparent through the addition of an intermediate cover-
age service. The approach, named Service Oriented Cover-
age Testing (SOCT), provides a tester with feedback about
how a whitened service, called a Testable Service, is exer-
cised. In this paper we introduce the SOCT approach, im-
plement an instance of it, and perform a preliminary study
to show its feasibility and potential value. SOCT enables
SOA white-box testing, while maintaining SOA flexibility,
dynamism and loose coupling.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; H.3.5 [Information Storage and Retrieval]:
On-line Information Services—Web-based services

General Terms
Design

Keywords
White-box testing, coverage adequacy criteria, testing web
services, service-oriented architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$10.00.

1. INTRODUCTION
Web services are applications with a public interface that

can be invoked by other services and applications through
the web. Their usage has increased dramatically in the last
years [15] as companies develop their web systems and find
it cost-effective to integrate their own services with those
developed and managed by third parties (this development
paradigm is referred to as following a Service Oriented Ar-
chitecture (SOA) [20], and the integration of distributed web
services as an orchestration). Failures in web services, how-
ever, are common and their impact more obvious as their
popularity and interdependencies increase. For example, a
recent failure in Amazon’s storage web service affected many
companies relying on it [2].

For a service orchestrator, building effective tests that can
detect failures in the interaction among the composed ser-
vices is challenging for two reasons. First, even if best prac-
tices [26] are followed by the developer to test a service to
ensure its quality, nothing guarantees that it will operate
smoothly as part of a dynamic distributed system made of
multiple orchestrated but autonomous services. Second, the
orchestrator can often only access the service interface to
derive test cases and determine the extent of the testing ac-
tivity. This limited visibility means that the orchestrator
has to rely heavily upon an interface whose documentation
is often limited and possibly inconsistent with the true sys-
tem behavior, especially with services that undergo frequent
updates [12].

Researchers have developed several approaches to address
these challenges. In particular, much work has focused on
test case generation from improved service interfaces (i.e.,
more precise behavioral specifications) [24, 25, 27], and on
the detection of inconsistencies between a service interface
description and its behavior [13]. One trait existing test ap-
proaches share is that they treat the web services as black
boxes [9], focusing on the external behavior but ignoring
the internal structure of the services. This trait follows the
very nature of web services, which are meant to be imple-
mentation neutral. From a testing perspective, though, this
is a pity. White-box approaches are in fact a well-known
valuable complement to black-box ones [23], as coverage in-
formation can provide an indication of the thoroughness of
the executed test cases, and can help identify additional test
cases which might detect more faults.

We have conceived, however, an approach by which ser-
vices can be made more transparent to an external tester
while maintaining the flexibility, dynamism and loose cou-
pling of SOAs. In essence, we propose an approach for

161

“whitening” the current black-box testing approaches for
SOA applications through the use of dedicated testing ser-
vices that blend naturally into the existing paradigm. The
approach is thus called Service Oriented Coverage Testing
(SOCT). The added transparency from test whitening will
increase testability, letting the application developer gain
detailed feedback about how a service orchestration is exer-
cised during validation.

This feedback can then be used by developers of orchestra-
tions to design tests that cover more of the space of potential
behavior of the third party service as it interacts with their
application, to determine whether a coverage adequacy crite-
rion that includes the third party service structure has been
reached, or to detect possible updates in the implementa-
tion of third party service that may affect their application
behavior. On the other end, third party service providers
may be enticed to provide such extended testing interface
as a way to implement continuous quality assurance checks,
or may be required to do so as part of a service quality
agreement.

From a broader perspective, whitening of SOA testing re-
lies on lying down a governance framework to realize inter-
organization testing at the orchestration level [7]. The term
governance comprehends the complex set of rules, policies,
practices and responsibilities by which a complex system
is controlled and administered, and it well applies to the
governing of a SOA system, including its integration test-
ing [7]. The improved testability of SOA composite appli-
cations would require the contribution and availability of
all stakeholders, who should be convinced it constitutes a
win-win framework. More specifically, to enable this ap-
proach we require for: 1) the developer of a provided service
to instrument the code so to enable the monitoring of the
execution of target program entities, 2) the testing service
provider (who could coincide with the service developer) to
track test execution results, and 3) the service integrator
to request testing information through a standardized pub-
lished web service testing interface. Note that the approach
fits naturally in the service-oriented model by providing the
test information as a service controlled by a service interface.

We briefly introduced SOCT in our previous work [3]. In
here we further motivate the problem, define the approach,
implement an instance of it, and illustrate its application in
a preliminary case study. In the next section we overview
the problem domain, the approach, and its main challenges.
In Section 3 we define SOCT concepts, its components and
possible realization scenarios. A study is illustrated in Sec-
tion 4. Related work is overviewed in Section 5, while con-
clusions are drawn in Section 6.

2. MOTIVATION
Let us consider the case of a SOA developer building an

Integrated Travel Reservation System (ITRS) for a Travel
Agent (TA) customer. ITRS is meant to provide the TA
with a single-point access to several common on-line services
including flight booking and hotel reservation. The ITRS
developer builds a set of services to consolidate travel infor-
mation according to the TA requirements, and uses trusted
Global Distribution System (GDS) service providers such as
Sabre1 and Travelport 2, to obtain flight and hotel informa-

1http://www.sabre-holdings.com/
2http://www.travelport.com/

tion.

The developer intends to diligently test the new services
according to the recommended best practices for SOA test-
ing (see, e.g., [26]). To validate the functioning of the com-
posite SOA system, i.e., the cooperation between the newly
built front-end services and the linked GDS services, the de-
veloper can choose between two (extreme and non-exclusive)
options, which are referred to as off-line and on-line test-
ing [24]. In the first case, the developer could mock the
GDS services. Realizing this solution implies building and
maintaining a complex test environment simulating those
services. Such a solution has a high realization cost and
might not be 100% reliable, not only because there may not
be enough information to faithfully reproduce the behavior
of the external services, but also because the latter could
change without notice, making the developer’s stubs obso-
lete.

Second, the developer could test ITRS on-line, i.e., by di-
rectly accessing the GDS services, and exercise the whole
integrated system at once. A significant limitation of this
alternative is that when the test session is completed, the
ITRS developer will not be aware of the extent to which the
GDS integration has been tested, and therefore how com-
prehensive the test cases have been. This lack of awareness
can lead to some service elements left untested, and there-
fore to potential detectable problems going unnoticed (e.g.,
a branch that was not covered in GDS leads to the return
of flight information in a format that ITRS is not currently
handling and that makes it fail ungraciously) or to redun-
dant testing effort (e.g., addition of tests that traverse paths
in GDS that have been already exercised and do not add new
value).

Our proposed approach, SOCT, can mitigate the limita-
tions associated with the on-line testing activity by enabling
the application of traditional white-box testing techniques to
SOA applications.

2.1 The SOCT Approach
The envisioned testing scenario for SOCT is depicted in

Figure 1. The traditional actors in SOA testing [9] are the
service provider, who can test their service before deploy-
ment, and the service integrator, who has to test the orches-
trated services. SOCT introduces a new stakeholder for SOA
testing at the orchestration-level, a service provider called
TCov who sits between the ITRS developer and the GDS
service provider. Imagine the TCov provider as a trusted
provider of services that deliver coverage information on
GDS as it is tested by the ITRS developer.

To realize the SOCT scenario, we need for the company
that provides the GDS services to instrument them (callout
1 in Figure 1) to enable the collection of coverage data, not
differently from how instrumentation is normally performed
for traditional white-box testing. We call the instrumented
services Testable Services. As the ITRS developer invokes
the GDS services during on-line testing (callout 2), coverage
measures are collected from the Testable Services and are
sent (callout 3) to TCov, which will then be responsible to
process the information and make it available to the ITRS
developer as a service (callout 4).

This coverage information can help the ITRS developer to:
1) become aware of when an adequacy criterion is reached,
2) maintain an existing test suite by identifying tests worth
adding to cover untested behavior including GDS or to drop

162

Figure 1: Scenario of SOCT approach.

tests that are exercising the same activity, 3) detect faults
that arise from unexercised cases pinpointed by the coverage
information, and 4) detect unexpected behavioral changes
by collecting coverage information on successive versions of
GDS (e.g., coverage differences between vi and vi+1 reveal
that the available flights information is partitioned in smaller
packages and now requires multiple service requests).

It is obvious that any means to reveal more of the struc-
ture of a service will increase testability. What is novel about
SOCT is how it achieves that increase while the loose cou-
pling and late binding typical of the technology are kept un-
touched. Furthermore, by decoupling instrumentation (per-
formed by the GDS service provider before deployment) and
testing (carried on subsequently by ITRS-like developers)
they can both evolve independently as long as the service
interface remains the same. Of course, the coverage infor-
mation collected on a previous implementation of a service
will also become obsolete is the service evolves, but as said
above the SOCT approach allows for (re)collecting cover-
age information in a new test session, without any need for
changing the SOCT test infrastructure. Still, putting the
approach to work does not come without challenges.

2.2 Challenges
The first challenge is how to define a general notion of

coverage so that it can be valuable to the ITRS developer.
SOCT will be able to work with the wide range of traditional
coverage metrics (e.g., control-flow or data-flow, performed
at intra-procedural and inter-procedural levels) as long as
the Testable Services support its collection. Using those
coverage measures to determine the extent of the testing
activity, however, may prove fruitless. In our example, we
note that the GDS provider under test may offer a variety of
services from hotel booking, to flight reservation, to whole
tours. If ITRS only invokes a part of the airplane reservation
functionality, the coverage measures reported will be precise
from the GDS perspective but of limited use for the ITRS
developer to determine the degree of completeness of the
testing effort (they will underestimate the extent of coverage
respective to the functionality utilized by ITRS). Clearly,
a definition of an upper bound for the coverage space is

needed. In this work we develop the notion of relative cov-
erage, that is, coverage that takes into consideration how
the service is used by the client. In particular, we propose a
relative coverage metric that identifies the potential cover-
age space by using a reachability analysis rooted in the used
functionality (i.e., the relevant service operations).

The second challenge is to define an infrastructure that is
rich enough to support the testing effort but simple enough
to put into practice. For example, the ITRS developer will
be interested in obtaining coverage information not just on
one test with a service invocation but on a test suite in-
volving multiple service invocations, which implies that the
TCov interface must include capabilities to define a Testing
Session. Such infrastructure should enable the ITRS de-
veloper to initiate a Testing Session through TCov, invoke
the GDS services, and then close the Testing Session and
retrieve the coverage measures for that session from TCov.
In this work we define, implement, and assess the TCov
service interface with such facilities. Another related in-
frastructure requirement is a coverage collection mechanism
that can support the concurrent execution of multiple in-
dependent clients. Traditional coverage collection is meant
to assess one test suite. However, popular web services are
used concurrently by many clients, so there will be a need
to compartmentalize the collection of coverage information
on a clients basis, which has implications for the Testable
Services and TCov.

The third challenge is to understand the tradeoffs asso-
ciated with the introduction of SOCT at the organization
and business levels. Behind the technical implementation, a
governance framework for SOCT must be defined. For the
service provider, implementing SOCT implies costs for in-
strumenting a service, running an instrumented service and
communicating with TCov, which increases the risk of re-
vealing intellectual property. For the ITRS developer it may
imply paying for an additional service or a service overhead
to obtain coverage information. But there are several de-
grees of freedom in these implications. For example, if TCov
becomes a part of the service provider itself, or if having
Testable Services becomes a competitive advantage, then
the tradeoffs change. In this work we start exploring such
variations in the context of SOCT, by identifying two alter-
native business flows.

3. DEFINING SOCT
In this section we first define the concepts supporting

SOCT and then explain how we address the above outlined
challenges.

3.1 SOCT Conceptual Definition
There are three main SOCT stakeholders: a service provid-

er, called the Testable Service; a service integrator, called
the SOCT Tester; and a coverage services provider, called
TCov. Figure 2 provides a high level view of the interactions
between these stakeholders. The SOCT Tester initiates the
process by launching a Testing Session on the Testable Ser-
vice. The Tester then receives a unique test session identi-
fier SID and can start launching test cases on the Testable
Service. The Testable Service can then collect the coverage
information for SID and log it by invoking TCov. The Tester
can retrieve the coverage information by invoking TCov.

Note that the SOCT approach is independent of the mech-
anisms used to generate the test cases and it is orthogonal

163

to failure data collection. SOCT is only concerned with
providing coverage information to the tester while keeping
implementation neutrality.

In the rest of this section we define the concepts in Figure 2
in more detail. We start by describing the stakeholders more
precisely.

Definition 1. A Testable Service is a web service op-
portunely instrumented to collect coverage information and
accessible through a WSDL interface that includes basic op-
erations to enable testing data collection.

Definition 2. A SOCT Tester is a service developer or
integrator providing composite services who launches test cas-
es and specific operations on a Testable Service.

Definition 3. TCov is an organization that deploys and
maintains a set of web services supporting coverage collec-
tion and reporting through a predefined WSDL interface.
The Coverage Collecting Services (CCS) in TCov are
invoked by the Testable Service to log coverage information.
The Coverage Reporting Services (CRS) in TCov are in-
voked by the SOCT Tester to obtain coverage measures.

Figure 2: The SOCT Collaboration Diagram.

Two other basic but unique concepts that we need to de-
fine are Testing Session and instrumentation Probes.

Definition 4. A (SOCT) Testing Session is a bounded
set of interactions between the SOCT Tester and the Testable
Service for which coverage information is collected. The
bounds are defined by two operations: 1) start sets the envi-
ronment parameters necessary for measuring coverage, and
2) stop restores the initial conditions. Each Testing Session
is assigned a unique Testing Session identifier, SID.

The start and stop operations are executed by the SOCT
Tester. Test cases executed between these two operations
belong to one Testing Session. The SID of a Testing Ses-
sion is assigned by either TCov or the Testable Service de-
pending on the implemented scenario of interaction (further
discussed in Section 3.4).

As previously alluded to and as with any coverage testing
approach, SOCT requires code instrumentation in the form
of probes in order to monitor the execution of target program
entities.

Definition 5. Probes are additional instructions inserted
at targeted locations in a Testable Service to enable coverage
data collection according to a specific coverage criterion.

Three aspects make SOCT probes different from tradi-
tional probes:

• the ones located at return points will be service invo-
cations to Tcov to log the collected coverage data;

• they can measure coverage separately for concurrent
Testing Sessions (initiated by one or multiple testers);

• they can be bounded by the Test Scope (see Section 3.2
below) to tailor coverage measures to a specific client.

3.2 SOCT Challenge 1: Reporting Meaning-
ful Coverage

In conventional coverage measurement the coverage do-
main is determined by the analysis of the target program.
For example, to compute the coverage domain to report
statement coverage, the number of program statements is
counted. A similar computation of the coverage domain to
characterize how a SOCT Tester utilizes a Testable Service
will often result in a coarse over-approximation as testers
commonly exercise a limited and specific part of a Testable
Service. To address this problem we refine the coverage
domain in order to produce more meaningful coverage mea-
sures.

We start such refinement by explicitly specifying the sub-
set of the service’s operations that are relevant to the tester,
which we define as the Test Scope. More specifically:

Definition 6. The Test Scope of a Testing Session con-
sists of a (sub)set of relevant WSDL operations of the Testable
Service.

We foresee different ways in which a Test Scope can be
set, depending on by whom and when it is decided which
operations are relevant for coverage testing purposes. A
Test Scope could be explicitly defined by the SOCT Tester
by communicating to the TCov Provider the list of opera-
tions to be monitored. Alternatively, the Test Scope can be
dynamically defined at run-time by solely considering the
operations actually invoked by the tester during a session.

We can now refine the coverage domain relative to the
Test Scope.

Definition 7. Given a Testable Service with a specified
Test Scope, the Relative Coverage Domain is the set of ser-
vice entities, associated with a specified coverage criterion,
that can be reached through invocations rooted in any of the
operations included in the Test Scope.

For instance, when considering a block coverage criterion,
and therefore the target entity as a block, the Relative Cov-
erage Domain consists of the set of blocks in the Testable
Service that implement the operations in the Test Scope.
Reachability can be computed by analyzing the control and
data flow structure of the web service. The choice of analy-
sis will be determined by the selected coverage criteria, the
analysis costs, and the precision requirements. Note that,
given different test scopes, the relative coverage domain will
vary.

With the refined coverage domain we can now produce a
more precise measure to represent the extent to which the
test suite covers the program entities of interest.

Definition 8. Given n, the cardinality of a test suite
Relative Coverage Domain, and k, the number of unique pro-
gram entities executed by a test in the suite, the Relative

Coverage Measure is k/n.

164

3.3 SOCT Challenge 2: SOCT Infrastructure
In this section we provide a minimal WSDL specifica-

tion of the interfaces between: Testable Service and SOCT
Tester, CCS and Testable Service, and CRS and SOCT
Tester.

3.3.1 Testable Service and SOCT Tester
The SOCT Tester interacts with the Testable Service to

start a Testing Session, executing the test cases (which in-
cludes invoking Testable Service operations) and terminat-
ing the Testing Session. The operations that should be pro-
vided by the Testable Service include:

• SessionData startTest(): this operation initiates a
Testing Session between the SOCT Tester and the Test-
able Service. The SessionData returned to the SOCT
tester contains the unique ID of the opened Testing
Session (SID) and the URI of the CRS service;

• void stopTest(): this operation ends the current Test-
ing Session, invalidating further use of SID.

3.3.2 CCS and Testable Service
The Testable Service interacts with the CCS to notify the

opening and closing of a Testing Session, to log the car-
dinality of the Relative Coverage Domain, and to provide
coverage data information. Figure 3 shows the operations
that should be included by the CCS service and, for each
operation, it shows the input and output messages in the
first column, the composing part in the second column, and
either the part type (displayed with two dashes in a rectan-
gle) or its element (displayed with an e in a square) in the
third column.

Figure 3: Basic CCS WSDL.

• URI startTest(SID): this operation communicates the
opening of a Testing Session between the SOCT Tester

and the Testable Service. The URI returned to the
Testable Service is the URI of the CRS service. This
piece of information must be sent to the Testable Ser-
vice so that it can pass it on to the SOCT Tester who
will use it to retrieve the coverage information from
TCov.

• void opCoverageDomain(SID, OID, numEntities):
this operation communicates to the CCS the cardi-
nality of the Relative Coverage Domain for a specific
operation (OID is the unique operation identifier) and
the number of entities (numEntities) reachable from
OID;

• void coveredEntities(SID, OID, entityList): this
operation communicates to the CCS the list of entities
covered during the execution of the operation OID.
In particular, entityList contains the entity identifiers
executed during the operation. Note that the entity
identifiers are assigned by the Testable Service and are
only required to be consistent within a testing session.

• void operationEnd(SID, OID): this operation is the
counterpart of opCoverageDomain, and is used to com-
municate to TCov that the current operation has reach-
ed its conclusion.

• void stopTest(): this operation communicates the
end of a Testing Session.

3.3.3 CRS and SOCT Tester
The SOCT Tester interacts with the CRS to obtain the

coverage information collected. The operation that should
be included by the CRS are:

• void setTestScope(SID, operationList): it enabl-
es the tester to bound the scope of the Testing Ses-
sion. It requires the SID and the list of operations
(operationList);

• PercentageData coverageMeasure(SID): this opera-
tion returns PercentageData which includes the achiev-
ed coverage and the list of operations executed during
the Testing Session.

3.4 SOCT Challenge 3: Understanding the
Tradeoffs

Having settled the main concepts of the SOCT approach,
we now describe the potential flow of interactions in two
likely scenarios that illustrate the range of applicability of
the approach, depending on who is the stakeholder that as-
signs to a TCov provider the supervising responsibility.

In the first scenario, which we illustrate in Figure 4, a
contract is established between the Testable Service (TS)
provider and a TCov service provider. The justification may
be that the TS provider has to show that they have taken
diligent care for making the offered services monitorable.
The contract between TS and TCov is long-term, and im-
plies that every system integrator using TS services will in-
teract with the same TCov service, without having to choose
between several possible providers. The coverage measures
of TS will always be performed by the one and only con-
tracted TCov, and the SOCT Tester will only need to use
one TS interface to start the coverage collection. In such
a scenario the binding with TCov can be static, and the
general procedure works as follows:

165

Figure 4: A scenario of interaction among SOCT stakeholders.

1. the SOCT Tester invokes a startTest operation on
TS;

2. TS generates a Testing Session identifier (SID), and
sends a reply to the SOCT Tester which contains this
information, both as a SOAP variable and as a cookie.
The former will be used later by the SOCT Tester to
query the CRS, while the latter is the cookie which
will be used onward for every communication between
the SOCT Tester and the Testable Service, until the
end of the Testing Session;

3. the SOCT Tester will make invocations to the opera-
tions defined in the TS WSDL. Every SOAP invoca-
tion (which is contained in the payload of an HTTP
request) will contain the cookie in the HTTP header,
so the probes can retrieve this information and send it
to TCov as part of the logging data;

4. the SOCT Tester can then invoke TCov, sending the
SID along, to retrieve the coverage measures related
to its Testing Session;

5. when finished, the SOCT Tester will invoke a stopTest

operation on TS, and TS will reply by invalidating the
cookie (which will expire anyway after a given time).

This is relatively simply communication protocol, in which
the SID must be used in the communication between the
SOCT Tester and TCov only to retrieve the coverage data.

Apart from this, the SID is only used in the background
(in the HTTP header) as the communication between the
SOCT Tester and TS occurs. Also, this solution does not
prevent the existence of a contract between TCov and the
SOCT Tester, which might be required at the time coverage
measures are requested.

The second scenario is slightly more complex because there
is no contract, or previous agreement, between TS and TCov.
In this scenario there are a number of TCov providers, and
the choice of using one or another is up to the SOCT Tester.
Therefore, the handshake must not start between TS and the
SOCT Tester but between the latter and TCov. This sec-
ond scenario stresses the point that the interest in obtaining
coverage measures rests on the SOCT Tester.

1. the SOCT Tester invokes an init operation on TCov,
specifying which service will be tested;

2. TCov generates a SID and sends it (as a SOAP re-
sponse) to the SOCT Tester;

3. the SOCT Tester invokes a startTest operation on
TS, passing two arguments: the SID and the URL of
the selected TCov;

4. TS binds its probes to the URL given by the SOCT
Tester; this binding is valid only for this SOCT Tester,
since another Testing Session might be bound to an-
other TCov provider. Additionally, it sends a reply to

166

the SOCT Tester, packing the SID in a cookie associ-
ated to its own domain. This allows the SOCT Tester
to send the cookie on every subsequent SOAP request
to TS;

5. the TCov Tester invokes the normal TS operations,
and the coverage data is logged onto the selected TCov
service;

6. when finished, the stopTest operation is invoked on
TS, and TS invalidates the cookie;

7. the SOCT Tester requests the coverage measures using
the SID generated by TCov.

These two possible flows expose different business models
behind the SOCT approach. Implementing the approach
requires in fact not only to address technical issues (as those
discussed in Sections 3.2 and 3.3), but as importantly also
to agree on organizational and business-oriented tradeoffs, in
particular concerning who is willing to push (and pay) for
whitening SOA testing. As illustrated by the two alternative
flows of interaction, the latter issue can impact the technical
implementation as it affects the SOCT process flow. More
important, these are just two scenarios of many potential
ones involving SOCT.

4. EXPLORATORY STUDY
In this section we share our experience in instantiating

and utilizing SOCT to support white-box testing of an in-
dependent web service provided by our collaborators. Our
instantiation is compliant with the WSDL described in Sec-
tion 3.3, it follows the protocol described in the first scenario
of Section 3.4 (shown in Figure 4), and the testing scope is
defined by the Tester through the setTestScope operation
defined in Section 3.3.1.

4.1 Study setup
Our collaboration with the Italian company Codices aims

to facilitate the testing of their platform, PICASSO3, which
aims to support interoperability among health-related ap-
plications by translating to and from HL7-V3 standard [16].
Details of the collaboration work between CNR and Codices
can be found in [22].

The current testing status, presented in Figure 5(a), for
testing PICASSO requires some manual work for coordinat-
ing the activities of an input generator tool, called TAXI,
and the execution of the interoperability platform. In par-
ticular, the TAXI [6] tool is used to automatically derive a
set of XML instances conforming to a given XML Schema.
Switching to a more automated system such as the one de-
picted in Figure 5(b) could improve the testing efficiency and
reduce costs. In this case the manual activity is replaced
with two web services: Test Manager, which coordinates
the test case generation and execution between PICASSO
and TAXI; and XML Database Manager, which handles the
XML database where testing inputs are stored and queried
by the Test Manager.

So, we set out to build a Test Manager web service which
employs a third party web service for data management,

3PICASSO is an acronym from the Italian “Piattaforma per
l’Interoperabilità e la Cooperazione Applicativa nelle Strut-
ture Sanitarie ed Ospedaliere”.

(a) Current testing environment.

(b) Testing environment under devel-
opment.

Figure 5: The testing environment for PICASSO.

and we use our SOCT approach in the process. For the ex-
ternal service we selected XMLIndexer, a publicly available
service from the D4Science project [1]. XMLIndexer is a
complex entity, made up of three different WSDL interfaces
to be used in concert: XMLIndexerFactory, GCUBEDaix,
and WSDaix.

A single operation in XMLIndexerFactory is the starting
point for using the service:

a. EndpointReference createResource(string collNa-

me) for fetching a data collection. If the collection is
already present in the eXist database, the operation
will simply return a reference to the collection; other-
wise, the collection will be created and the reference
returned.

GCUBEDaix provides a set of operations shown in Fig-
ure 6. However, due to space limitations, we are not going
to describe in detail all the operations, but only those which
have actually been used in the next section:

b1. void addElement(string docName, string content)

for adding an element into a data collection;

b2. string[] executeXPath(string xpath) for selecting
elements, or parts thereof, in a collection;

b3. void remove(void) completely deletes a collection and
its content from the eXist database;

b4. int documentCount(void) for counting the elements
of a collection.

WSDaix is similar to GCUBEDaix. However, its defi-
nition is presently a work in progress, and in the current
version a single operation is implemented: int document-

Count(void), which counts the elements in a collection.
For the purpose of this study then, we are the SOCT

Tester developing the Test Manager, whereas the service
provided by D4Science takes the role of the Testable Service.
With the consensus and the assistance of the D4Science de-
velopers, the operations for communicating with the TCov
service, as specified in Section 3.3, have been integrated into
the XMLIndexerFactory WSDL. For the study, the imple-
mentation of the web service has been properly instrumented
to collect block coverage information.

167

Figure 6: WSDL of the GCUBEDaix service.

4.2 Preliminary results
In the rest of this section we focus exclusively on the point

of view of the SOCT Tester. We established a series of
activities operating on the XML Database Manager:

• create several XML instance collections corresponding
to the three different data formats exchanged between
healthcare organizations;

• search within a collection for instances having specific
element values. For instance, the selection of all the
instances having the value “Pisa” as province within
the HL7-V3 collection;

• update a collection adding further XML instances;

• delete a collection and its contents;

• count the elements in a collection.

These actions have been then translated into a test suite,
whose scope (with respect to the operations of XMLIndexer)
comprises the operations labeled as a and the full set of b
presented in Section 4.1. The test suite consists of the test
cases described in Table 1.

We launched a Testing Session among Test Manager and
XMLIndexer, and used TCov to collect and report the cov-
erage obtained after the execution of each test case. Table 2
shows the results obtained. The first column lists the tests
described above. The second column shows the accumulated
number of blocks covered, and the third one reports the cor-
responding relative coverage. The fourth column displays

Table 1: Test cases in the test suite
T1 create a collection with one element
T2 delete a collection
T3 search for non-existing data within a collection
T4 search in a non-existing collection
T5 create different collections
T6 add an already-existing document to a collection
T7 delete a non-existing collection

which XMLIndexer operations are used by each test case.
These three pieces of information are provided by TCov.
The last column shows the coverage obtained without tak-
ing Test Scope analysis into account. The reported absolute
coverage is based on the total number of blocks (185) within
the whole set of operations in the XMLIndexer service.

Table 2: Incremental coverage results
Test Blocks Coverage Covered ops Abs. coverage
T1 68 50.37% a, b1, b4 36.76%
T2 72 53.33% a, b3 38.92%
T3 78 57.78% a, b2 42.16%
T4 78 57.78% a, b2 42.16%
T5 79 58.52% a, b1, b4 42.70%
T6 79 58.52% a, b1, b4 42.70%
T7 79 58.52% a, b3 42.70%
T8 79 58.52% a, b2 42.70%
T9 79 58.52% a, b2 42.70%
T10 80 59.26% a, b2 43.24%
T11 80 59.26% a, b1 43.24%
T12 80 59.26% a, b2 43.24%
T13 80 59.26% a, b3 43.24%

Even in the limited setting where the study is conducted
we can make some interesting observations. First and fore-
most, TCov enabled the collection of coverage information
without breaking the underlying principles of SOA. A SOCT
Tester looking at these results would be in a position to as-
sess, for example, whether additional testing effort is paying
off. In our setting we observe that if testing resources are
tight, T4 could be considered a small contributor over T3
as it does not increase coverage and exercises the same op-
erations; the same can be said for other tests that might be
assigned a lower priority in the future. When the coverage
does not increase, a tester also gets a hint that it is time to
vary the input selection.

In our case, we realized after T7 that we had omitted
to test the XMLIndexer invocations for robustness against
wrong input parameters. Developing these simple additional
tests increased the coverage to 59.26% (43.24% absolute).
A SOCT Tester would also be able to determine whether
sufficient coverage was achieved and the relative coverage
measures are clearly useful in that regard. Even though
XMLIndexer is a rather small service with many functions
shared among the operations, scoping is able to provide a
more precise coverage estimate that turns out to be 16%
higher at the end of the session.

For completeness, after carrying out the study, we per-
formed an inspection on the XMLIndexer service code with
our collaborators to understand the reasons that limited cov-
erage to the current values. The inspection reveals that
many blocks are part of catch blocks that the Test Manager

168

is unlikely to throw except under very specific cases that
will be hard to discover without access to the service source
code. This does not take value away from the collected cov-
erage information but rather puts in evidence the need for
SOCT and TS to provide further visibility and control in
some cases. For example, under our circumstances, it would
be helpful if XMLIndexer would allow us to adjust the cov-
erage criteria to ignore exceptional blocks or would provide
suggestions for inputs that would reach the missing entities.

5. RELATED WORK
In this paper we have introduced the SOCT approach for

enabling white-box SOA testing. The topic of web service
testing is actively researched, and several approaches have
been proposed, as recently surveyed in [9]. We focus in par-
ticular on SOA testing at the integration level, i.e., we ad-
dress the need of testing a composition of services that might
have been developed by independent organizations. The is-
sues encountered in testing a composition of services are
investigated in [8], distinguishing between testing of orches-
trations and of choreographies.

Today, the de facto standard for service orchestration is
the Business Process Execution Language (BPEL) [21]. Sev-
eral authors have leveraged the BPEL code for SOA testing.
Although different approaches have been devised, the essen-
tial common basis in BPEL-based testing is that variants
of a control flow diagram are abstracted and paths over this
diagram are used to guide test generation or to assess BPEL
coverage (see, e.g., [28, 29]). Others (including authors of
this paper) have also proposed to exploit BPEL data-flow
information [19, 4].

Anyhow, so far, all existing approaches to SOA testing
test the services invoked in a composition as black-boxes.
Indeed, the shared view -before SOCT- is that for SOA in-
tegrators “a service is just an interface, and this hinders the
use of traditional white-box coverage approaches” [9]. To the
best of our knowledge, SOCT is the very first attempt to cir-
cumvent such a vision by revising and adapting a notion of
code coverage testing within the service-oriented paradigm.

The need to enhance black-box testing with coverage in-
formation of tested services is also recognized in [17], where
“grey-box testing” is introduced. The BPELTester tool is
presented, that extends the above cited BPEL-based test ap-
proach [29]. Test case design is driven by the BPEL paths;
the approach is grey-box in that, after test execution, the
produced test traces are collected and analysed against the
BPEL paths. Discrepancies are exploited essentially for re-
gression testing purposes, i.e., to prevent misalignment due
to unforeseen service changes and detect need for re-test.
The work thus addresses some of the concerns tackled by
SOCT, however the two approaches make different assump-
tions. Certainly the assumption of BPELTester that the
integrator can access and analyse service execution traces
breaks the loose coupling between service provider and ser-
vice user. This is a constituent principle of SOA, which we
seek to maintain through the TCov actor.

The idea of leveraging service execution traces is pursued
also in [5]. Similarly to SOCT, this work extends SOA with
observation capabilities by introducing an “Observer” stake-
holder into the ESOA (Extended SOA) framework. ESOA
however does so for a different goal than SOCT: while we
introduce TCov to monitor code coverage, in ESOA services
are monitored (passive testing) against a state-model. In

SOCT we do not assume the availability of additional infor-
mation for testing purposes.

Finally, SOCT is aimed at enabling the derivation of cov-
erage measures in testing of service compositions, but it is
not concerned with how the test cases should be derived.
Therefore, the SOCT approach should be integrated with
methodologies for test case generation. In literature, dif-
ferent proposals provide strategies for test case generation,
such as [11] which relies on Genetic Algorithms, the above
cited BPEL-based approaches [28, 14, 10, 19, 4, 18], others
that apply Model-based Testing [24, 25]. All these and many
others not cited here for space limitations could be seen as
complementary to SOCT, and could indeed be made more
effective if enhanced with coverage information.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced SOCT, an approach that

whitens SOA testing. The approach overcomes what is ap-
parently a contradiction in terms: it empowers a service inte-
grator to obtain coverage information on an invoked external
web service without breaking the implementation neutrality
of the latter, which is one of SOA founding principles. Such
an attainment is possible if the service provider is willing
to instrument their services so that users accessing them for
testing purposes can monitor the execution of the service
program entities. Based on such premises, the approach
naturally fits the service-oriented paradigm as test coverage
information is collected and retrieved through dedicated ser-
vice interfaces. We have hereby defined the approach, im-
plemented an instance of it, and performed a preliminary
study to show its feasibility and potential value.

We are aware of the commitments required to put SOCT
into practice. It requires, for example, for service develop-
ers to instrument their services, reveal program information,
and incorporate additional services for external testing, all
of which imply additional resources. On the other hand, we
believe that our approach radically changes the way SOA
testing has been conceived so far, opening the way to a whole
new range of opportunities and instruments for making ser-
vices more transparent and, in the end, more trustworthy.

In the future, we plan to extend this work in several ways.
First, we plan to perform a larger scale study in collabo-
ration with the D4Science community and other industrial
collaborators to obtain a better understanding of the cost,
performance and overall impact on the quality of the ser-
vice, and potential benefits of SOCT. The setting of such
study may include more and larger orchestrated services,
tests prepared by engineers using their process and tools,
and multiple testers working concurrently to validate a ser-
vice. We note that the results obtained in this paper set the
stage for such costly study. Second, we want to refine several
aspects of the SOCT instantiation such as those associated
with the estimation of the coverage domain, the realization
of the relative coverage notion through various reachability
analyses exposing different tradeoffs, and the efficient collec-
tion of coverage information where we can leverage a large
body of existing work on minimizing the overhead caused by
instrumentation probes.

Acknowledgements
This work was partially supported by the TAS3 Project (EU
FP7 IP No. 216287), and by the Italian MIUR Project D-

169

ASAP (Prin 2007). The authors wish to thank the col-
leagues of Codices and of the D4Science project for their
collaboration in the case study development.

7. REFERENCES
[1] DIstributed colLaboratories Infrastructure on Grid

ENabled Technology 4 Science.
http://www.d4science.eu/.

[2] Amazon Discussion Forum. Thread: Massive (500)
Internal Server Error.outage.
http://developer.amazonwebservices.com/

connect/thread.jspa?threadID=19714.

[3] C. Bartolini, A. Bertolino, and E. Marchetti.
Introducing service-oriented coverage testing. In
Workshop on Automated engineeRing of Autonomous
and run-tiMe evolvIng Systems, pages 57–64, 2008.

[4] C. Bartolini, A. Bertolino, E. Marchetti, and
I. Parissis. Data Flow-Based Validation of Web
Services Compositions: Perspectives and Examples,
pages 298–325. Architecting Dependable Systems V.
Springer-Verlag, 2008.

[5] A. Benharref, R. Dssouli, M. A. Serhani, and
R. Glitho. Efficient traces’ collection mechanisms for
passive testing of web services. Information Software
Technology Journal, 51(2):362–374, 2009.

[6] A. Bertolino, J. Gao, E. Marchetti, and A. Polini.
Systematic generation of XML instances to test
complex software applications. In Rapid Integration in
Software Engineering. LNCS 4401, September 2006.
Geneve, Switzerland.

[7] A. Bertolino and A. Polini. SOA test governance:
enabling service integration testing across organization
and technology borders. In Workshop on Web Testing,
pages 277–286, 2009.

[8] A. Bucchiarone, H. Melgratti, and F. Severoni.
Testing service composition. In Argentine Symposium
on Software Engineering, 2007.

[9] G. Canfora and M. Di Penta. Service Oriented
Architecture Testing : A Survey, pages 78–105.
Number 5413 in LNCS. Springer, 2009.

[10] H. Cao, S. Ying, and D. Du. Towards model-based
verification of BPEL with model checking. In
International Conference on Computer and
Information Technology, pages 190–194, 2006.

[11] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and
M. Bruno. Search-based testing of service level
agreements. In Conference on Genetic and
Evolutionary Computation, pages 1090–1097, 2007.

[12] M. Fisher II, S. Elbaum, and G. Rothermel.
Automated refinement and augmentation of web
service description files. Technical Report 0026,
University of Nebraska, Lincoln, Computer Science
and Engineering Department, December 2007.

[13] M. Fisher II, S. Elbaum, and G. Rothermel. Dynamic
characterization of web application interfaces. In
M. B. Dwyer and A. Lopes, editors, Fundamental
Approaches to Software Engineering, volume 4422 of
Lecture Notes in Computer Science, pages 260–275.
Springer, 2007.

[14] J. Garćıa-Fanjul, J. Tuya, and C. de la Riva.
Generating test cases specifications for BPEL
compositions of web services using SPIN. In

International Workshop on Web Services Modeling
and Testing, 2006.

[15] Gartner and Forrester: Use of Web services
skyrocketing, 2003.
www.utilitycomputing.com/news/404.asp.

[16] Health Level Seven. http://www.hl7.org/, accessed
Oct. 9, 2008.

[17] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, and N. M.
Mitsumori. Business-process-driven gray-box soa
testing. IBM Syst. J., 47(3):457–472, 2008.

[18] H. Lu, W. Chan, and T. Tse. Testing context-aware
middleware-centric programs: a data flow approach
and an RFID-based experimentation. Symposium on
Foundations of Software Engineering, pages 242–252,
2006.

[19] L. Mei, W. Chan, and T. Tse. Data Flow Testing of
Service-Oriented Workflow Applications. In TestCom
2008, volume 5047 of LNCS, pages 371–380. Springer,
2008.

[20] OASIS Reference Model for Service Oriented
Architecture 1.0, Official OASIS Standard, Oct. 12,
2006. http://www.oasis-open.org.

[21] OASIS WSBPEL Technical Committee. Web services
business process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.pdf, 2007.

[22] M. Pascale, M. Roselli, U. Rugani, C. Bartolini,
A. Bertolino, F. Lonetti, E. Marchetti, and A. Polini.
Automated testing of healthcare document
transformations in the PICASSO interoperability
platform. In Software Engineering in Practice, 2009.

[23] M. Pezzè and M. Young. Software Testing and
Analysis: Process, Principles and Techniques. Wiley,
2007.

[24] PLASTIC Validation Framework Tools homepage.
http://plastic.isti.cnr.it/wiki/doku.php/tools.

[25] A. Sinha and A. Paradkar. Model-based functional
conformance testing of web services operating on
persistent data. In Workshop on Testing, analysis, and
verification of web services and applications, pages
17–22, 2006.

[26] Torry Harris Business Solutions. White Paper. SOA
test methodology.

[27] W. Xu, J. Offutt, and J. Luo. Testing web services by
xml perturbation. In International Symposium on
Software Reliability Engineering, pages 257–266, 2005.

[28] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang.
BPEL4WS unit testing: Test case generation using a
concurrent path analysis approach. In International
Symposium on Software Reliability Engineering, pages
75–84, 2006.

[29] Y. Yuan, Z. Li, and W. Sun. A graph-search based
approach to BPEL4WS test generation. In
International Conference on Software Engineering
Advances, 2006.

170

