
Traceability and Model Checking to Support Safety
Requirement Verification

Shuanglong Kan
College of Computer Science and Technology

Nanjing University of Aeronautics and Astronautics, Nanjing, China
kanshuanglong@nuaa.edu.cn

ABSTRACT
Ensuring safety-critical software safety requires strict verifi-
cation of the conformance between safety requirements and
programs. Formal verification techniques, such as model
checking and theorem proving, can be used to partially re-
alize this objective. DO-178C, a standard for airborne sys-
tems, allows formal verification techniques to replace certain
forms of testing. My research is concerned with applying
model checking to verify the conformance between safety
requirements and programs. First, a formal language for
specifying software safety requirements which are relevant to
event sequences is introduced. Second, the traceability infor-
mation models between formalized safety requirements and
programs are built. Third, the checking of a program against
a safety requirement is decomposed into smaller model check-
ing problems by utilizing traceability information model be-
tween them.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Model checking ; D.2.1 [Software Engineering]:
Requirements/Specifications—Languages

General Terms
Verification,Languages,Reliability

Keywords
Safety-critical software, safety requirements, model checking,
traceability, event automata

1. RESEARCH PROBLEM
Safety-critical software is typically subject to strict safety

verification process. Since an occurrence of an error in such
software may lead to unacceptable results, such as death,
injury, loss of property, or environmental harm. The de-
velopment of safety-critical software must be in compliance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

with applicable safety standards [22] , e.g., IEC 61508 [8]
for various kinds of programmable devices, DO-178B [12]
for airborne systems, and ISO 26262 [9] for the automotive
industry.

Formal methods are powerful techniques to verify pro-
grams, and they are gaining wide industrial acceptance. DO-
178C [13], the new standard for airborne systems, includes
a supplement on formal methods compared with DO-178B.
Model checking, which is largely automatic when compared
with other formal techniques (e.g. theorem proving), can be
applied to verify programs against safety requirements.

However, there are some hard problems in applying model
checking to safety requirement verification.

(1) Software safety requirements are usually derived from
system-level safety analysis, e.g., Failure Mode and Effect
Analysis (FMEA) [11] and Fault Tree Analysis (FTA) [7].
These requirements are expressed in natural language or
semi-formal language statements and coarse-grained. So a
method for decomposing safety requirements should be pro-
vided so that they can be traced into programs. For example,
a safety requirement from [22] is “avoidance of falling metal
blanks”. It is hard to identify which elements of a program
contribute to this requirement, since it is too coarse-grained.
The requirement can be decomposed as ”(a) the feed belt con-
veys a blank to a table (b) if the table is in load position”.
The decomposed requirement consists of an action (a) and
a state (b) which are sufficient to be traced in programs.

In addition, in order to verify safety requirements with
model checking, the requirements must be converted into
formal specifications. So a formal language which can ex-
press decomposed software safety requirements should be
provided, and the translation from safety requirements into
formal specifications should also be discussed.

(2) There is a gap between safety requirements and pro-
grams. Traceability between safety requirements and pro-
grams can bridge this gap, and traceability is a prerequisite
of model checking safety requirements. Traceability can be
seen as a relation between the elements in safety require-
ments and the elements in programs. There are two prob-
lems should be considered: (1) the representation of trace-
ability information (or traceability information model) and
(2) the method for building accurate and complete traceabil-
ity between safety requirements and programs.

(3) Safety requirements are usually not expressed in con-
ventional model checking specifications such as assertions
and Linear-time Temporal Logic (LTL). So model checking
techniques cannot be used directly, and safety requirement
verification must be decomposed into problems which can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2666606

783

solved by existing model checking techniques. The decompo-
sition method and the selection of model checking techniques
should be considered.
I present a formal language called Event Automata (EA)

for formalizing safety requirements related to event sequences,
since most safety-critical systems are discrete-event systems.
Traceability information models and conformance verifica-
tion are based on the definition of EA.

2. RELATED WORK
There are three research fields related to my work: (1)

formalization of software safety requirements, (2) traceabil-
ity links from requirements to programs, (3) model checking
techniques.
Formalizing a safety requirement is a prerequisite for model

checking. Hansen et al. [15] proposed a method to derive
software safety requirements from the results of fault tree
analysis and formalize the software safety requirements into
real-time interval logic formulae.
Traceability is one of the core principles mandated by

all safety standards [8, 12, 9]. There is some recent liter-
ature concentrating on safety requirement traceability man-
agement [22, 2]. Nejati et al. [22] and Briand et al. [2] pro-
posed a methodology for establishing traceability between
safety requirements and SysML designs. The traceability in-
formation between a safety requirement and a design can be
used to extract a design slice related to the safety require-
ment. The design slice is easy to understand and inspect.
Moreover, Ariss et al. [10] proposed a translation from

a safety requirement expressed in fault tree into a state-
chart. The traceability between the statechart and a func-
tional model is established during the translation. Then the
statechart is integrated into the functional model by trace-
ability information. The integration results in a integrated
functional and safety specification model which is easy to
validate. Different traceability information models are for
different objectives (e.g., [22, 2] is for design slices and [10]
for integration).
There is a lot of work on software model checking tech-

niques. Spin [17] and Verisoft [14] are two model check-
ers for concurrent software using explicit model checking
[4]. Symbolic Model Checking (SMC) [20] based on Satis-
fiability Modula Theory (SMT) is efficient and widely ac-
cepted in software model checking. Bounded Model Check-
ing (BMC) [5] is an efficient SMC for finding bugs in pro-
grams, but it cannot provide proofs for the correctness of
programs. In order to prove the correctness of a program,
most SMC techniques construct an inductive invariant for
the program. Predicate abstraction [6] uses predicates to
construct an inductive invariant. Lazy abstraction [16] con-
structs an inductive invariant by unwinding a program into
an Abstract Reachability Tree (ART). The abstract state
spaces of the nodes in the tree can be generated by inter-
polants [21] or predicates [6]. A recently proposed model
checking technique called IC3 [1] is proved to be efficient in
the verification of hardware. Cimatti et al. [3] investigated
IC3 in the setting of software verification and experimental
results demonstrate its great potential.
My research is concerned with defining a traceability infor-

mation model for model checking and constructing a proof
for the correctness of a program. The model checking tech-
niques used in my work include lazy abstraction and inter-
polants.

3. A SKETCH OF PROPOSED APPROACH
Most safety-critical systems are discrete-event systems, and

system safety analysis (e.g., FMEA and FTA) is closely rele-
vant to events. So my work concentrates on model checking
programs with respect to properties which are related to
event sequences generated by the programs. The framework
of my research is illustrated in Fig 1. Rectangles represent
artifacts indexed from 1 to 8. Arrows represent actions in-
dexed from a to e. The details of five actions are as follows.

formalize: A software safety requirement arising from sys-
tem safety analysis must be translated into a formal
specification, and the specification is event sequence
oriented.

build: The traceability between the formal specification and
a program must be built. The elements of the for-
mal specification that should be traced in the program
must be decided. The traceability information model
is sufficient for conformance verification.

comprise: The formal specification, the program, and the
traceability information model (elements in thick dashed
rectangle) are the three necessary parts of conformance
verification.

reduce: The program can be reduced with respect to the
requirement. Nejati et al. [22] proposed to use safety
requirements to extract design slices. There are vari-
ous state space reduction techniques that can be used
to reduce the program.

decompose: The conformance verification between the safety
requirement and the program must be decomposed
into smaller model checking problems which can be
solved by existing model checking techniques.

4. EXPECTED CONTRIBUTIONS
My work expects to provide a traceability information

model to bridge the gap between software safety require-
ments and programs so that model checking techniques can
be applied to check the conformance between them. The
expected contributions are as follows.

‚ Giving a formal language which is event-driven and
state-of-art. The formal language can also specify infi-
nite state properties and safety requirements are con-
veniently formalized into it.

‚ Defining traceability information model whose objec-
tive is for model checking safety requirements.

‚ Methodologies for building the traceability between
formal safety requirements and programs.

‚ Methodologies for decomposing safety requirement ver-
ification into problems which can be solved by existing
model checking techniques.

5. RESEARCH METHODS AND CURRENT
STATUS OF WORK

Safety requirements, specified by FTA or FMEA, have
their own distinguish features. Firstly, a safety requirement
represents a set of error paths which should be eliminated

784

1. A Software Safety

Requirement

2. Formal

Specification

3.A Program

4. Traceability

Information Model

6. Conformance

Verification with

Reduced

Program

7. Model

Checking

Problem 1

8. Model

Checking

Problem n

5. Conformance

Verification

Problem

a

b c d eActions:

a: formalize

b: build

c: comprise

d: reduce

e: decompose

…
 …

…
 …

Figure 1: Framework of Model Checking Safety Requirements

in systems. Secondly, the basic elements of safety require-
ments are events and states. These elements constitute a
set of error paths. The formal language should take into
account these features so that safety requirements can be
easily formalized. A formal language, which is event-driven
and state-of-art, fits the above features.

5.1 Event Automata
I introduce a formal language called Event Automata (EA)

to specify software safety requirements. An EA represents
exactly a set of error paths which result in a failure in sys-
tems. A program is correct with respect to an EA if and
only if all event paths generated by the program are not ac-
cepted by the EA. The definition of EA retains the notions
of states, initial states, and accepting states of Finite State
Automata (FSA). In addition, it contains variables and two
new important notions.
The first important notion in EA is events and events are

parameterized. An event consists of a name and a parameter
list. Each parameter in a parameter list can be a variable
or a concrete value. For example, receivep1q is an event.
receive is its name and concrete value 1 is its parameter.
An event with all its parameters being concrete values is
called ground event. If at least one parameter of an event e
is a variable then the event can be seen as a set of ground
events, where each ground event in the set replaces each
variable parameter in e with a concrete value. Though all
events generated by an program are ground events, events
with variable parameters can simplify the specifications of
safety requirements.
The second important notion is transitions. A transition

in an EA is a five tuple pq, event, guard, actions, q1q, where q
is the source state, q1 is the target state, event is the trigger
event and it drives the EA to move from q to q1, guard is
the condition, and actions is a sequence of assignments. Its
semantics is as follows: suppose the EA is in state q, when
it encounters event, and guard is evaluated to be true, then
the transition is enabled. When the transition is enabled,
actions is executed and the EA enters state q1.
The formalization of safety requirements can be partially

automatic. Ariss et al. [10] proposed an automatic method
to translate safety requirements into statecharts. statecharts
and EAs are similar in syntax and semantics.

5.2 Traceability
Defining traceability information model between an EA

and a program should first decide which elements of the EA

should be precisely traced in the program. My current work
indicates that if all events defined in the EA and the initial
state of the EA are precisely traced in the program then
other elements of the EA, such as transitions and states,
can be automatically traced, and with the traceability in-
formation, it is sufficient to apply existing model checking
techniques to verify the conformance between the EA and
the program. The traceability information model between
an EA and a program is defined as the relationship between
the program elements, such as program locations and state-
ments, and the elements in the EA. A program location can
be seen as the beginning of an execution or the ending of an
execution. A program statement can be seen as the execu-
tion of a statement, and this semantics is corresponding to
an event. There is a set of elements in a traceability infor-
mation model which must be built manually. With this set
of elements, other elements of the model are built automat-
ically.

Since traceability information models are built manually,
the accuracy of the human participation process must be
considered. Because verification results are closely related to
the accuracy and completeness of traceability information.

5.3 Model Checking
Conformance checking between an EA and a program is

to verify whether there exists an event path generated by
the program accepted by the EA. Conformance checking in
my work is based on lazy abstraction paradigm [16]. Based
on this paradigm, conformance checking is decomposed into
three levels: tree level, path level, and edge level.

In the tree level, the algorithm focuses on constructing
an unwinding of the combination of an EA and a program
without considering whether the unwinding is well-labeled
or not. Depth-first Search (DFS) is applied to construct
the unwinding. Once an possible error path is found (i.e.,
the path is possible an accepting event path), the tree level
algorithm applies path level algorithm to refute the path.
If the path level algorithm returns that the path is feasible
then a counterexample is found else the path is refined to
reduce the state space of the path.

In the path level, the algorithm concentrates on deciding
whether a path is feasible. If a path is feasible then it is
an error path. In other words, the program does not satisfy
the safety requirement. If a path is not feasible then the
information obtained during refuting the path can be used
to refine and strengthen the state space of the path. Since a

785

path is a sequence of edges in an unwinding, the treatment
of an edge in the path level applies the edge level algorithm.
In the edge level, the algorithm concentrates on the treat-

ment of an edge in a path. An edge in a path is the com-
bination of a transition t in the EA and a program frag-
ment cut by t. The edge is associated with a precondi-
tion and a postcondition. The edge level includes two op-
erations: Strenthenging and Preimage. Strenthenging
checks whether a clause in the precondition also holds in
the postcondition. Preimage computes the preimage of the
postcondition with respect to the edge and the precondition.
These two operations can be obtained by adapting existing
model checking algorithms.
The current status of my work has proceeded to the edge

level. The future work is to give a description for the two
edge level operations and implement a prototype to evaluate
the efficiency and effectiveness of my method.

6. EVALUATION STRATEGIES
The preliminary strategies for evaluating my technique

consist of two aspects: (a) the cost of using EAs to formal-
ize software safety requirements and the cost of building the
traceability between EAs and programs. (b) the effective-
ness of model checking the conformance between EAs and
programs.
The evaluation of (a) will be based on the practices in

industrial case studies. For each case study, the effort of
translating software requirements into EA specifications and
building the traceability are manageable, and how many
man-hours of a case study is recorded. The effort compar-
isons of different case studies will also be provided.
The evaluation of (b) will be based on experiments. For

the two edge level operations, the experiments evaluate dif-
ferent techniques (e.g. IC3 and interpolants) supporting the
operations. In addition, for different programs, the experi-
ments will compare run times and memory consumption of
the conformance checking for these programs.

7. LIST OF PUBLICATIONS
I have been a PhD student for one and a half years. I have

an accepted paper [19] and a submitted paper [18].

8. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China under Grant No. 61272083. I also
want to thank my advisor Professor Huang from Nanjing
University of Aeronautics and Astronautics for the guidance
and support he provides to me.

9. REFERENCES
[1] A. R. Bradley. SAT-Based Model Checking without

Unrolling. In R. Jhala and D. A. Schmidt, editors,
VMCAI, volume 6538 of Lecture Notes in Computer
Science, pages 70–87. Springer, 2011.

[2] L. C. Briand, D. Falessi, S. Nejati, M. Sabetzadeh,
and T. Yue. Traceability and SysML Design Slices to
Support Safety Inspections: A Controlled Experiment.
ACM Trans. Softw. Eng. Methodol., 23(1):9, 2014.

[3] A. Cimatti and A. Griggio. Software Model Checking
via IC3. In P. Madhusudan and S. A. Seshia, editors,
CAV, volume 7358 of Lecture Notes in Computer
Science, pages 277–293. Springer, 2012.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2001.

[5] E. M. Clarke, D. Kroening, and F. Lerda. A Tool for
Checking ANSI-C Programs. In K. Jensen and
A. Podelski, editors, TACAS, volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer,
2004.

[6] E. M. Clarke, D. Kroening, N. Sharygina, and
K. Yorav. Predicate Abstraction of ANSI-C Programs
Using SAT. Formal Methods in System Design,
25(2-3):105–127, 2004.

[7] U. N. R. Comm. Fault Tree Handbook. NUREG-049,
1981.

[8] I. E. Commission. Functional Safety of
Electrical/Electronic/Programmable Electronic
Safetyrelated Systems (IEC 61508). 2005.

[9] I. Draft Standard. Road VehicleślcFunctional Safety.
2009.

[10] O. el Ariss, D. Xu, and W. E. Wong. Integrating
Safety Analysis with Functional Modeling. IEEE
Transactions on Systems, Man, and Cybernetics, Part
A, 41(4):610–624, 2011.

[11] C. Ericson. Hazard Analysis Techniques for System
Safety. John Wiley & Sons, 2005.

[12] R. T. C. for Aeronautics (RTCA) Inc.
DO-178B-Software Considerations in Airborne
Systems and Equipment Certification. 1992.

[13] R. T. C. for Aeronautics (RTCA) Inc.
DO-178C-Software Considerations in Airborne
Systems and Equipment Certification. 2011.

[14] P. Godefroid. Software Model Checking: The Verisoft
Approach. Formal Methods in System Design,
26(2):77–101, 2005.

[15] K. M. Hansen, A. P. Ravn, and V. Stavridou. From
Safety Analysis to Software Requirements. IEEE
Trans. Software Eng., 24(7):573–584, 1998.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy Abstraction. In J. Launchbury and
J. C. Mitchell, editors, POPL, pages 58–70. ACM,
2002.

[17] G. J. Holzmann. The Model Checker SPIN. IEEE
Trans. Software Eng., 23(5):279–295, 1997.

[18] S. Kan, Z. Huang, Z. Chen, and W. Li. Partial Order
Reduction for Checking LTL Formulae with the
Nexttime Operator. Journal of Logic and
Computation.

[19] S. Kan, Z. Huang, Z. Chen, and B. Xu. Bounded
Model Checking of C Programs Using Event
Automaton Specifications. Journal of Software.

[20] K. L. McMillan. Symbolic Model Checking. Kluwer,
1993.

[21] K. L. McMillan. Lazy Abstraction with Interpolants.
In T. Ball and R. B. Jones, editors, CAV, volume 4144
of Lecture Notes in Computer Science, pages 123–136.
Springer, 2006.

[22] S. Nejati, M. Sabetzadeh, D. Falessi, L. C. Briand,
and T. Coq. A SysML-based Approach to Traceability
Management and Design Slicing in Support of Safety
Certification: Framework, Tool Support, and Case
Studies. Information & Software Technology,
54(6):569–590, 2012.

786

