Seeing the Forest and the Trees:
Focusing Team Interaction on Value and Effort Drivers

Matthias Book, Simon Grapenthin, Volker Gruhn
paluno — The Ruhr Institute for Software Technology
University of Duisburg-Essen, Gerlingstr. 16, 45127 Essen, Germany
{matthias.book, simon.grapenthin, volker.gruhn}@paluno.uni-due.de

ABSTRACT

Large-scale information system development is often plagued
by defects and deadline overruns that can be traced to insuf-
ficient communication within the project team, particularly
between stakeholders from the business, technical and man-
agement side. Although agile process models put a strong
emphasis on team communication, they provide only little
support for focusing the communication on the most relevant
issues. We therefore introduce the concept of so-called “in-
teraction rooms”, where teams work with a pragmatic com-
bination of model sketches and annotations to foster under-
standing of the system and its business domain, to reveal
risks and uncertainties, and discuss those system aspects
that are most critical for project success.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.9 [Software Engineering]: Management

Keywords

Teams, communication, value-orientation, risks

1. INTRODUCTION

Today, software engineers have at their disposal a multi-
tude of notations to specify virtually all aspects of an infor-
mation system, and tools to support considerable parts of
the development process — and yet software projects in prac-
tice often run over time or budget, do not meet quality or
functionality expectations, or are even aborted before com-
pletion. In most cases, the reason for such wasted efforts can
be traced to communication problems. Curtis et al. identi-
fied the “thin spread of application domain knowledge” as a
major factor contributing to project troubles already almost
25 years ago [4]. While method support has matured con-
siderably since then, the complexity of today’s information
systems has multiplied as well. The increasing flexibility
and interconnection of business processes introduce whole

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT’12/FSE-20, November 11-16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

new levels of complexity and thus an even higher need for
stakeholder communication [6].

This is confirmed by our observations of industrial soft-
ware development practice in a multitude of medium- and
large-scale projects, mostly in the insurance, financial ser-
vices and healthcare industry, over the past years: While
domain experts and technical experts both strive for a joint
understanding of the information system that shall be built,
more or less obvious barriers and negligence soon tend to
impede communication. These observations suggest that
better support for team members’ communication and col-
laboration is required. However, most approaches to provide
collaboration support revolve around development tools in-
stead of addressing the underlying cognitive aspects [10].

Agile process models have been introduced to ensure more
frequent and consistent alignment of business and technical
stakeholder positions through continuous feedback cycles [7].
However, while agile process models encourage (and actually
depend on) intensive communication, they typically do not
provide explicit operational support for it. Instead, we ob-
serve that the different background, expertise, culture and
goals of different stakeholder groups (software engineers, do-
main experts, managers) often lead to poor communication
and thus the following effects, which we believe to be the
prime contributors to project risk:

e Poor understanding/overview of business domain
requirements and technical design rationales: Domain
experts tend to be sidelined once the initial require-
ments analysis process has been completed, with dis-
cussion shifting to the technical aspects. This usually
does not occur consciously, but implicitly due to the
choice of more technical modeling notations, focus on
technical design decisions, etc. However, without a
consistent and continuous understanding of both busi-
ness and technical aspects of the system, conflicts and
errors become apparent only at late stages when they
are costly to fix.

e Negligence of value and effort drivers: We often
observe that teams focus on those aspects of a system
that are well understood, since it is easy to produce
voluminous specifications and functioning artifacts for
them. However, this often keeps the team’s attention
on the more trivial aspects of a system, while a blind
eye is turned (consciously or subconsciously) to the
actual value and effort drivers — i.e. those components
that hold particular value for the viability and effec-
tiveness of the system, or those that demand higher



effort due to their intrinsic complexity or special re-
quirements. The negligence of the value and effort
drivers in favor of boilerplate functionality generates
an illusion of project progress that is dangerous be-
cause those system aspects that would merit most at-
tention, and should shape the design of the rest of the
system, are not addressed until project resources are
more scarce, and possibly conflicting design decisions
have already been established.

The above issues are related to a lack of understanding of
project aspects that are not explicitly expressed in typical
models of software systems, but crucial to project success.
In order to prevent these issues from growing unnoticed until
they pose significant risks to a project, we aim to make them
more visible and tangible for all stakeholders, and thus bring
them into the focus of interaction before they can develop
into problems.

2. THE INTERACTION ROOM

In order to achieve this, we advocate the creation of so-
called “interaction rooms” for complex software projects. An
interaction room is a physical room that is outfitted to vi-
sualize and facilitate discussion of key aspects of an infor-
mation system: Surrounding a conference table, the walls of
the room are covered with large sketches of models describ-
ing those system aspects that are most critical for project
success. Each of the four walls is dedicated to a particu-
lar modeling perspective, as described below — however not
displaying it in the dreaded fine-printed wallpaper-size com-
pleteness, but focusing on those aspects that are essential for
orienting the team members’ discussions, in order to keep
the models clear and the approach pragmatic:

e Process map: One wall is dedicated to the dynamic
aspects of the business domain, i.e. the relevant parts
of the business processes that the system shall support.
It provides a visual overview of the system’s main func-
tional requirements, and can thus serve as a reference
for understanding the system and its context, making
high-level design decisions, prioritizing artifacts, etc.

e Data map: Another wall is dedicated to the static
aspects of the business domain, i.e. the relevant parts
of the entities, documents etc. that the processes work
on. These models should initially just visualize the
business relationships so as not to anticipate design
decisions; however, these relationships may evolve to
more closely reflect the technical data structures as the
project progresses.

Complex software projects are typically not implemented
on a clean slate — rather, a new system is usually replacing
a legacy system that is integrated in an existing enterprise
software landscape. While the previous two maps focus on
the vision of the system being built, the next two focus on
particular challenges of brown-field software development:

e Migration map: Replacing a legacy system requires
careful planning of the transition from the old data
structures to the new ones. One wall of the inter-
action room is therefore dedicated to visualizing the
legacy data structures already in place, and mapping
out their transitions to the new system’s structures.

This involves determining entities, attributes and re-
lations that should be added, converted, removed, re-
structured etc. — operations that require thorough un-
derstanding of the business and technical aspects of
both systems, and can be discussed here side by side.

e Integration map: Another wall is dedicated to vi-
sualizing the application landscape that the new sys-
tem will be integrated in — this includes other in-house
or external systems and services, and their interfaces.
The map does not aim to be a detailed interface spec-
ification, but a guide to the communication and coor-
dination requirements that the new system will have
to satisfy.

To intuitively create and manipulate these maps, we prefer
the room’s walls to be furnished with large magnetic white-
boards to draw and stick model fragments on. It might
seem tempting to augment the room with digital technol-
ogy, and we certainly recognize that e.g. large interactive
screens and tables promise considerable opportunities for
integrating and visualizing complex project information, or
even supporting collaboration between distributed teams —
opportunities for pragmatic augmentation therefore also are
a topic of our ongoing research. For most teams, however,
we believe a non-digital room that can be easily set up with-
out large investments into technology and training will al-
ready make a considerable contribution to more effective
team communication in industrial development practice.

3. COMMUNICATION CATALYSTS

Outfitting the walls of the interaction room with model
fragments is just the most basic prerequisite for fostering
understanding, discussion and resolution of project issues
with team members who may be from different domains, but
should all be “on the same page.” In addition, we combine
the maps with visualization techniques that directly address
the typical risk factors we described earlier:

3.1 Joint Understanding of the System

Many software projects produce copious amounts of de-
tailed specifications, some of which may describe trivial stan-
dard aspects, while others spell out important details of a
system’s static and dynamic properties. In either case, the
sheer volume of information makes it difficult for team mem-
bers from different backgrounds to keep an overview of the
whole system, have a firm grasp of the larger dependencies
between features, components and data structures, and no-
tice the important details and pitfalls among the trivia.

The process, data, migration and integration maps
address this challenge by deliberately remaining incomplete,
and instead showing only the most critical aspects of a sys-
tem. This does not preclude business and technical experts
from having more detailed, more complete models on their
own desks, or temporarily bringing them into the room for
discussion. The interaction room’s maps, however, should
not be treated as a complete specification, but as an overview
that provides orientation on the project’s goal, state, and
interdependencies, and thus makes the more detailed, ac-
tual specifications accessible. For this purpose, we also do
not prescribe particular modeling languages for the various
maps, but let teams choose a notation that all stakehold-
ers understand (we do recommend notations that provide
constructs for hierarchical abstraction though).



Value annotations

Effort annotations

- exposed to high number of users | “# requires high availability
-4 =
®  involves financial responsibility w24 subject to time constraints
@ . am . .
. affects company image W resource-intensive
() m
( ! ) executed frequently @4 special storage requirements
.
! implements company policies subject to legal regulations

other value- or effort-driving factors that are not immediately obvious from the model

Table 1: Value and effort annotations for model elements

3.2 Identifying Value and Effort Drivers

As we have said earlier, the interaction room is all about
focusing the team’s attention on those aspects of a system
that are most crucial for the project’s success. To identify
these aspects, we took inspiration from value-based software
engineering [2], i.e. focusing resources on those features that
add particular value to the system. In the interaction room,
we encourage this approach by letting stakeholders annotate
model elements with icons that indicate process segments or
artifacts that merit particular consideration. Table 1 shows
an overview of the icons we use (in the form of magnetic
buttons to be stuck on whiteboards).

Value annotations are typically business-oriented and
denote a particularly important element of the system — for
example, an activity that performs calculations involving
large amounts of money, a report that is sent out to thou-
sands of customers, or a process that will reflect strongly
on the company’s image. In addition, we use effort anno-
tations as warning signs for system elements that can be
expected to require more work than immediately meets the
eye. Examples of such annotations include particular per-
formance or storage requirements, the need for compliance
with legal regulations, etc. While these annotations seem
to be more relevant for technical stakeholders at first sight,
they also help to point out effort drivers that may not be
immediately obvious to business or management stakehold-
ers, and thus foster better overall understanding of design
decisions and effort estimates.

As the examples suggest, the value and effort annotations
can be loosely associated with non-functional requirements,
but are often more fuzzy. We therefore find it more intu-
itive for business and technical stakeholders to simply attach
these “heads up” icons to models in the course of their dis-
cussion. Once in place, the annotations continually help to
focus attention away from the trivia and onto those elements
that will actually make or break the system.

4. INTERACTION ROOM IN PRACTICE

To illustrate how all the elements and techniques we have
described work together in practice, Fig. 1 shows a process
map from the example of a new claims processing component
for an insurance company. The business process is sketched
as a UML activity diagram on a relatively high abstraction
level here, so business and technical experts can come to a
joint understanding of the key claims management steps and
the component to be built.

Here, the appraise case including history activity has been
annotated with an “affects company image” icon, indicating
that the details of the case appraisal procedure pose not just

a technical question, but involve more far-reaching customer
relationship implications. Similarly, the calculate insurance
benefit activity is annotated with an “involves financial re-
sponsibility” icon. While the details of this activity seem to
be well understood already (as it has a UML sub-activity
indicator referring to an existing detail specification), the
annotation indicates that particular care should be taken
in implementing and testing this step, as calculation errors
could have considerable financial consequences. While the
models on the walls of an interaction room cannot accom-
modate sufficient detail to work out the solutions to these
warnings in situ, the annotations ensure that they are con-
sidered by developers as the models are refined further.

Note that the process map in the example also contains
additional elements that were not described in detail here
for the sake of brevity, such as cloud shapes to explicitly
indicate uncertainty, and artifact printouts to visualize im-
plementation progress and “solidity” of artifacts.

We are currently in the initial stages of applying the inter-
action room’s concepts in practice, through projects with a
large software development company, an insurance company,
and a large bank. Managers and developers have been very
open to the idea in each case, expressing that the room ad-
dresses a real issue that has been troubling them. In the case
of a complex migration project away from a legacy system,
we already observed that applying just a subset of the visual-
ization concepts relevant to migration, combined with guid-
ance by an interaction room “coach”, yielded significantly
better understanding between stakeholders on that team.
The other projects are still in phases too early to evaluate.

S. RELATED WORK

Joint Application Design [5] and explicit documentation of
design rationale [3] were notable earlier approaches to make
different project stakeholders more aware of what they are
building, and why. The concept of “team rooms” is also
proposed in agile methodologies such as Scrum [9], how-
ever, apart from planning tools such as Kanban boards and
burndown charts, their walls are typically not dedicated to
visualizing particular aspects of the system. Although agile
methods encourage interaction between stakeholders, they
provide virtually no methods for focusing it on other aspects
than progress. In fact, as Petre et al. observed, there are
striking differences between how agile vs. traditional teams
use their room walls to visualize system aspects and project
progress [8]. One aim of our research is to integrate these
perspectives on a project and its environment.

Facilitating interaction is also at the core of the computer-
supported collaborative work (CSCW) community. Works



alieud L1050y case InSufas ce rate

(Wsualify (wsurance W* [ncladed 7 poidh Fiuce by T
Aonivn A - ’\_/c-«-b/f s

\ —7 | docuws

e— (/d

ecubatn
wth?

[
l

queos wissiff

Jocumeuts

conced Dreaud)

| contfract
[( ATO pawy | Y?
. \
i CE )

(&=

< Cu.s&t_)umer‘ 9) y
profitel .

S~

awmi&( (asq
51 Incladin lnistory
¢ —g

luconsSisency or V,\}L

ot AT [l (o] agewent?

‘ msirda ce | = piel [ )y )
e puchibiiy . A ¢ [, et
L @ = i

deade. ol t i
| recuteton 1
&’pe/} Jrewe i w

s

53

o

(Conma] mcéﬁjgxr\ﬁ(b\ :
\/

Tra)

AV

sehée

Figure 1: Process map for an insurance claims processing component

such as ReticularSpaces [1] provide a lot of enabling tech-
nology that we can build on when developing augmented
interaction rooms. Most CSCW approaches however are
domain-independent and thus provide only limited support
for the concrete challenges of software engineering.

In the software engineering field, related works can also be
found in the software visualization and program comprehen-
sion communities. However, most of these approaches tend
to focus on existing software, work closer to the source code
level, and are therefore more exclusively geared toward de-
velopers. In contrast, we strive to foster joint understanding
of the overall system by technical and business stakeholders.

6. CONCLUSIONS

Although the walls of a typical interaction room are cov-
ered with models, the room is not intended as a replacement
of existing modeling techniques or a tool for creating com-
plete system specifications. Instead, the novel aspect of the
interaction room is that it pragmatically uses sketches of
system aspects to identify, discuss, understand and resolve
critical issues that are often not made explicit or obvious in
traditional specifications.

We believe that the main effects of such improved commu-
nication — understanding the business domain and its techni-
cal implementation better, and raising awareness of critical
system aspects (in terms of value and effort) — can benefit
business and technical stakeholders in traditional and agile
software processes alike. Even if the underlying complex-
ity of a system and its business domain can never be com-
pletely overcome, we expect that the use of an interaction
room should help all team members to adopt a pragmatic,
accessible perspective of their project that enables easier un-
derstanding of its details and better control of its risks.

Our ongoing research and evaluation will focus on how
teams work with the different walls and elements of an in-
teraction room, and which other project aspects should be
visualized on its walls; how the room is integrated into dif-
ferent software process models, how different roles use the
room, and if a dedicated facilitator is needed; if the room’s
usage barrier is as low as we aspire to make it, especially
for non-technical stakeholders; if there are measurable im-
provements in software quality and project velocity, and how
these compare to the organization’s investment in setting
up an interaction room for a particular team. Further re-

search will examine how digital augmentation can alleviate
observed shortcomings of a physical interaction room, and
if the necessary added investment is justifiable. We also be-
lieve many approaches dealing with human factors in soft-
ware engineering could be anchored in an interaction room,
and are looking for opportunities to examine this in practice.

7. REFERENCES

[1] J. Bardram, S. Gueddana, S. Houben, and S. Nielsen.
ReticularSpaces: activity-based computing support for
physically distributed and collaborative smart spaces.
In Proc. 2012 ACM Conf. on Human Factors in
Computing Systems, CHI '12, pages 2845—2854, New
York, NY, USA, 2012. ACM.

[2] B. Boehm and K. Sullivan. Software economics: A
roadmap. In Proc. Future of Softw. Eng., FOSE ’00,
pages 319-343. ACM, 2000.

[3] J. Burge, J. Carroll, R. McCall, and I. Mistrik.
Rationale-Based Software Engineering. Springer, 2008.

[4] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems. Comm.
ACM, 31(11):1268-1287, Nov 1988.

[5] E. Davidson. Joint application design (JAD) in
practice. Journal of Systems and Software,
45(3):215-223, Mar 1999.

[6] K. Kautz, S. Madsen, and J. Ngrbjerg. Persistent
problems and practices in information systems
development. Information Systems Journal,
17(3):217-239, Jun 2007.

[7] C. Larman and V. Basili. Iterative and incremental
developments — a brief history. IEEE Computer,
36(6):47-56, Jun 2003.

[8] M. Petre, H. Sharp, and S. Freudenberg. The mystery
of the writing that isn’t on the wall: Differences in
public representations in traditional and agile software
development. In Proc. 5th Intl. Workshop on
Cooperative and Human Aspects of Software
Engineering, CHASE ’12. ACM, 2012.

[9] K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall, 2002.

[10] J. Whitehead. Collaboration in software engineering:
A roadmap. In Proc. Future of Softw. Eng., FOSE ’07,
pages 214-225. IEEE Computer Society, 2007.





