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ABSTRACT
In most software projects, resolved bugs are archived for future
reference. These bug reports contain valuable information on the
reported problem, investigation and resolution. When bug triag-
ing, developers look for how similar problems were resolved in the
past. Search over bug repository gives the developer a set of rec-
ommended bugs to look into. However, the developer still needs
to manually peruse the contents of the recommended bugs which
might vary in size from a couple of lines to thousands. Automatic
summarization of bug reports is one way to reduce the amount of
data a developer might need to go through. Prior work has pre-
sented learning based approaches for bug summarization. These
approaches have the disadvantage of requiring large training set and
being biased towards the data on which the model was learnt. In
fact, maximum efficacy was reported when the model was trained
and tested on bug reports from the same project. In this paper, we
present the results of applying four unsupervised summarization
techniques for bug summarization. Industrial bug reports typically
contain a large amount of noise—email dump, chat transcripts,
core-dump—useless sentences from the perspective of summariza-
tion. These derail the unsupervised approaches, which are opti-
mized to work on more well-formed documents. We present an
approach for noise reduction, which helps to improve the preci-
sion of summarization over the base technique (4% to 24% across
subjects and base techniques). Importantly, by applying noise re-
duction, two of the unsupervised techniques became scalable for
large sized bug reports.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; I.2.7 [Artificial Intelligence]: Natural Language Pro-
cessing—Text analysis
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1. INTRODUCTION
Bug management systems are an integral part of any software

project. They are used by the project team to record problems
raised by end users and to track the investigation and resolution
of bugs. As part of root cause analysis, significant amount of com-
munication might happen between the reporter of the bug and the
developers through the bug report. As a result, bug reports often
resemble recorded conversations—messages from multiple people
ordered sequentially where each message is composed of multiple
paragraphs of unstructured text. As the bug gets resolved over a pe-
riod of time, the bug report accumulates useful information about
the problem reported such as the investigation and resolution de-
tails. These resolved bugs are then archived for future reference.
When a new bug is reported, developers first check the archived
bugs to see if similar problem was resolved in the past [11]. Find-
ing a similar bug could help them in multiple ways: (1) in better
understanding of current problem, (2) if the resolution has been
recorded then, reusing it for the new problem. Especially in in-
dustrial projects, a large number of bugs might not require code
changes. The reported problem could be because of some config-
uration or usage issue. In such cases the archived bugs become all
the more indispensable [21]. This is because, the support team can
quickly check if similar problems reported in past required a code
fix or were solved through other means. In most cases this either
reduces the time taken to solve the issue or enables a developer
with relatively less experience on the project to accurately respond
to the issue.

Search [11] can help a developer identify similar bugs from the
archived repository. However, the developer still needs to follow
the tedious process of going over each of the recommended bug
and identify if the bug report contains any information of interest
or not. Wading through complete contents for each recommended
bug might be too time consuming and frustrating. For example, the
bug reports in our two experiment subjects on an average had 66
and 332 sentences respectively. In [34], the authors suggest that
one way to reduce the time a practitioner takes in identifying the
correct bug report is to provide a summary of each recommended
bug. The ideal way to do this would be that after a bug is resolved,
an assigned developer manually writes out an abstract. Figure 1
shows an example of the bug report and it’s corresponding sum-
mary. This abstract could further be used by other developers in
the system, to get a better understanding of the bug. However, this
ideal method is unlikely to work in practice, since it involves huge
manual effort. Hence, there is a need for automatic summarization
of bug reports.

There are two approaches available for summarizing textual ar-
tifacts. One is a learning based supervised approach—various vari-
ants of which are described in [26, 43, 45, 18]. The essence of
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Figure 1: Example of Bug Reports and it’s Summary

these approaches is as follows: (1) ask users to manually summa-
rize a set of documents (training set), (2) extract out a set of text fea-
tures from these documents and train a statistical model. The model
tries to identify the features that help predict the manual summaries
provided in the training set, (3) for a new document, extract the
features of interest from the document and use the trained model
to predict it’s summary. The other is an unsupervised approach—
various variants presented in [24, 13, 46, 47]. These assign central-
ity and diversity measures to various sentences in a document and
use these measures to select the sentences to be put in the summary.
We describe these measures later in the paper in Section 2.2.

In a prior work [34], Rastkar et al. applied supervised learn-
ing approaches to summarize bug reports. Supervised learning ap-
proaches have their drawbacks as they involve collecting manually
labelled training data and once a model is trained, the efficacy of
the model depends highly on the similarity of the training and ac-
tual data on which it is applied. The practical application of such
a supervised technique in any project could be hampered owing
to the initial training cost involved. The authors reported a pyra-
mid precision([8]) of 63% when the model was trained on bug re-

ports from same subject against 54% precision when the model was
trained on a corpus of mail threads.

In our work, we applied four unsupervised approaches Centroid
[32], Maximum Marginal Relevance (MMR)[5], Grasshopper[48]
and Diverse Rank[23] to the problem of summarization of bug re-
ports on the dataset used in [34]1(SDS) and one internal indus-
trial project dataset (DB2-Bind). Across the two subjects, DivRank
and Grasshopper had convergence problems on 9 large bug reports
which resulted in no summaries being generated for them. For the
remaining bug reports in SDS dataset, when compared to super-
vised techniques, all the unsupervised approaches provided better
recall (an improvement by 16%). There was however a 3% dip
in pyramid precision between the best of unsupervised approach
MMR, GrassHopper and the best of supervised approach i.e when
the approach was trained on bug reports from the same subject.
But, all unsupervised approaches provided comparable precision to
the supervised approaches that were trained on a different dataset
other than the subject where they were applied.

The drop in precision and the convergence issues made us be-
lieve that bug reports have specific type of data that is causing
the generic unsupervised approaches to not perform as well as the
supervised approaches. Bug reports resemble conversations, very
often with email and chat content pasted. This content contains
email headers, salutations like "hello","hi" and closing phrases like
"thank you", "thanks" etc that are not useful from summary per-
spective. There are very often long stack traces, command outputs
pasted that are not that useful from summarization perspective. To
handle this, we augmented our summarization approach by adding
a pre-processing step to filter out such sentences (noise) from the
bug reports. This noise removal step helped improve the precision
of the base unsupervised algorithms. Also, the algorithms DivRank
and Grasshopper which failed to converge and produce any sum-
maries for few large bug reports, successfully generated summaries
for the same bug reports once the noise was filtered from them us-
ing our approach. The main contributions of the paper are as fol-
lows:

• A classification scheme for bug report content and a novel
noise reducer to classify bug report sentences into this clas-
sification automatically. This bridges the gap between theory
and practice.

• Experimental evaluation of four well known unsupervised
summarization algorithms to the problem of summarizing
bug reports. The results indicate that unsupervised approach
generates as good a summary as supervised approach pro-
posed in earlier paper.

• The summarization approach was enhanced to filter out spe-
cific classes of content from bug report that could be per-
ceived as noise from summarization perspective. Experimen-
tal validation of the impact of using a noise filter before ap-
plying the unsupervised techniques indicates that better sum-
maries are generated.

Rest of the paper is organized as follows. In section 2 we de-
scribe our approach. In Section 3, we give a brief overview of
the unsupervised summarization algorithms we used. Section 4 de-
scribes the experimental studies we conducted. We present some
observations and threats to validity in Section 5. The related work
is presented in Section 6 and conclusions in Section 7.

1Available at: http://www.cs.ubc.ca/labs/spl/projects/summarization.html
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Figure 2: Approach for Unsupervised Bug Report Summarization

2. APPROACH
Figure 2 outlines our summarization approach. For a bug that

needs to be summarized, we first pass it through the noise reducer
module. Here, we broadly classify each sentence into question,
investigative sentence, code fragment and others. In different vari-
ants of our approach, we filter out different type of sentences and
pass the filtered set to a summarizer, which applies the unsuper-
vised techniques to extract the summary from the set of "useful"
sentences. For example in one variant, the other sentences are
filtered out and in another, both code and other sentences are re-
moved. The filtered content is passed to the summarizer module.
This modules has 4 different techniques for summarization plugged
in: Centroid based, MMR, DivRank and Grasshopper. In the sub-
sequent subsections we describe the noise reducer and summarizer
module in detail.

2.1 Noise Reducer
We analyzed the nature of content in bug reports and came up

with following classification for information in bug reports.

• Question Sentences: these sentences describe the problem
being reported and are usually contain words such as why,
how, what.

• Investigative Sentences: these sentences describe some op-
tions that the user can try to further investigate the issue
or give more details on understanding the problem. These
sentences would typically contain application specific infor-
mation often indicated by presence of domain specific key-
words.

• Code Sentences: these sentences contain code fragments,
stack traces or command outputs that the user might have
provided as part of initial bug description, or as part of inves-
tigation or solution.

• Others: These are very often greeting sentences, for exam-
ple "Hello", "thank you for your support".

Figure 3 shows the sentence classification for the sample bug
report shown in Figure 1. The bug report consists of series of com-
munication as comments. Each comment in turn contains a set of

sentences. In Figure 3, sentence S3 is classified as Question. Sen-
tence S5 in an example of a Code sentence. Sentences S2, S6,
S7 contain key words like 64-bit, 32-bit, sqlint32, sqluint32, pre-
processor, PRECOMPILE and are examples of Investigative sen-
tences. Sentences S1, S8 and S9 are examples of Other category.

As part of our initial investigation, we had summaries created
manually by 5 different developers. We further analyzed the sen-
tences used in these summaries and found that all these sentences
were either Question and Investigative type. Based on this we con-
cluded that if we were to filter out all sentences from bug reports
which were not of these kinds and then run the summarizer, we
would not lose any useful information, but rather improve the effi-
cacy of the summarization.

In order to implement a system that can classify bug report con-
tent into the above mentioned classes, we had two design choices.
First, follow a supervised approach, where we manually classify
(label) some percentage of the sentences into the four categories,
train a statistical model and then execute the model on remain-
ing set to predict the classification.However, this approach would
have the disadvantage that the model needs to be re-trained for new
subjects. Second option was to follow an unsupervised approach.
Leverage the sentence structure and develop heuristics to come up
with a classification. We chose to follow the latter approach, as
it can be widely applied for different subjects (datasets), and the
effort involved in fine-tuning the heuristics will be way less than
manually classifying (labeling) for new datasets.

The noise reducer works as follows. First, we convert the bug
report into a sequence of sentences. For this we use an off the
shelf english text parser, Stanford NLP parser2. Once we have the
sentences we further classify each sentence into one of the four
categories using heuristics mentioned below. Finally, we filter out
the sentences not useful from summarization perspective, and pass
this filtered set to the summarizer.

2.1.1 Question Sentences
A sentence can be marked as question, if it starts with words such

as "what/why/where" etc and optionally ends with a question mark.
Regular expressions as follows could be used to identify questions.

2http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 3: Example: Sentence Classification of Sample Bug Report

^[Ww]hat.*?*$
^[Hh]ow.*?*$

Another, way to identify questions is to use the parsed syntac-
tic structure of sentences. Sentences that contain node SBARQ or
SQ3in their parse tree, are typically questions. For example, the
parsed structure of S3 in Figure 3 is as follows:

(ROOT
(SBARQ
(WHADVP (WRB How))
(SQ (MD can)

(NP (PRP we))
(VP (VB avoid)

(NP
(NP (NN data) ..)
(VP (VBN faced)

(PP .. )))))
(. .)))}

We used the parsed syntactic structures to classify sentences as
Question type.

2.1.2 Code Sentences
To classify sentences into code, we analyzed the bug report con-

tents and came up with patterns that indicate presence of stack
trace, java code, commands, command output. Some examples of
these patterns are:

starts with : "db2","proc", "publicÓ
contains : "<", "SQL", "{", "}",

"else if.*(*", "if.*(*",
" public static",
" int ", " char Ó

ends with : ";"

If a sentence satisfies any of the above rules, it is classified as a
code sentence. While these patterns are fairly generic, they might
have to be enhanced only in special cases.

2.1.3 Investigative and Other Sentences
The non-question, non-code sentences can be further classified

into Investigative and Other. Investigative sentences give insight
into the problem and/or solution being proposed or implemented.
These typically contain some application specific information, as
indicated by presence of 64-bit, 32-bit in sentence S2 in Figure 3.
Any sentence that does not contain application specific informa-
tion, could potentially be marked as others. To classify sentences
into these two categories, we applied the following heuristic: if a
sentence was of a minimum length of 5 words and contained more
than two application specific keywords, it could be marked as In-
vestigative. We derived the keyword dictionary from the bug report
content itself as explained in the next subsection.
3Penn Treebank Tags http://www.cis.upenn.edu/ treebank/

2.1.4 Keyword Dictionary
Intuitively, what we are trying to achieve here is to identify a

ranked order of words in each bug report, that indicates the discrim-
inating power of that word in the bug report. This relative ranking
is obtained by leveraging the term frequency-inverse document fre-
quency metric [22] typically used in text search.

To create the dictionary, we first extract the terms (i.e. sin-
gle words) from all the bug reports available for a subject. For
each term (t) per bug report (d), we calculate it’s tf-idf(t,d) (term
frequency-inverse document frequency). Term frequency tf(t,d) is
defined as the number of instances of a term in a document normal-
ized by the document size.

tf(t, d) =

∑
t

|d| (1)

The inverse document frequency idf(t), for a term (t) is the mea-
sure of general importance of the term across the subject. It is
obtained by dividing the total number of bug reports (D) by the
number of reports containing the term (d) , and then applying the
logarithm.

idf(t,D) = log
|D|

|d ∈ D : t ∈ d| (2)

Then the tf-idf is calculated as

tf-idf(t,d) = tf(t, d) ∗ idf(t) (3)

For each term per bug report, we further normalize the tf-idf(t,d)
w.r.t. the highest tf-idf obtained for that report. The key words
in the document were then picked up by applying a cut-off on the
normalized tf-idf.

2.1.5 Filter
For each bug report, once the sentences are classified into these

four categories, then we can selectively choose different classes of
sentences or combinations thereof to use as inputs for summariza-
tion. In our experiments, we have evaluated the impact of: (1)
removal of Other sentences and (2) removal of Other and Code
sentences.

2.2 Unsupervised Summarization
Unsupervised summarization refers to the method of summariz-

ing a text or document without using a trained model. This has
the obvious advantage of not requiring any labeled data, which is
usually difficult and/or costly to collect due to the manual effort in-
volved. It is usually classified into two broad types - extractive and
abstractive [15]. An extractive summarization refers to any summa-
rization method in which the sentences in the summary are chosen
from the input document and are used as is. In abstractive summa-
rization, the sentences of the summary are usually different from
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what is present in the original text and could involve paraphrasing.
Majority of automatic summarization techniques developed so far
are extractive in nature. Though abstractive summaries are closer
to what a human would have constructed, the complex nature of the
methods and lower returns in terms of accuracy has greatly reduced
their applicability in various domains [15].

In extractive summarization techniques, an algorithm decides at
the specified granularity level, whether the piece of text in the input
document should be present in the output summary or not. The
granularity can be at the level of a phrase, sentence, or in the case
of bug reports, at a comment level. In this paper, we evaluate the
summaries at the granularity level of a sentence.

Unsupervised summarization methods work by choosing sen-
tences that are central to the input document. This centrality can
be measured in various ways. A simple method for the same is to
compute the ‘centroid’ of the document. Then, the sentences cho-
sen for the summary are based on their distance from the centroid
[30]. In this paper, we refer to this method as Centroid.

A more systematic method of measuring centrality is based on
the amount of similarity to other sentences in the input document.
This is based on the reasoning that, sentences that form the essence
of the document are repeated in different ways, and thus have more
overlapping terms with other sentences, than those that are not cen-
tral to the document. Similarity to other sentences can be consid-
ered as a recommendation by those sentences [24]. For example,
in this paper, a sentence that contains ‘unsupervised summariza-
tion’ and ‘bug reports’ would overlap with a large number of other
sentences, since these phrases form the theme of this paper, thus
making that sentence an important entry in the summary.

Though a centrality measure would suffice to select the impor-
tant sentences of the document, it can make the sentences in the
summary, repetitive. Diversity is an important notion in summa-
rization, where the new objective is to choose sentences that are
central, but at the same time, have low redundancy among them-
selves and fully represents or covers the document. One of the
first works to propose diversity in summarization is the Maximal
Marginal Relevance (MMR) algorithm [5], which is discussed in
Section 3.2. MMR algorithm is also one of the most well-known
works in the area of summarization, but it has been generally re-
garded to be lacking a principled mathematical treatment in its use
of heuristics. The next important work and one of the first ones to
propose a mathematical model, is the Grasshopper algorithm [48].
This method is discussed in Section 3.3. A recent work in summa-
rization which was proposed as an improvement to the Grasshopper
algorithm is the DivRank algorithm [23]. We discuss this in Section
3.4.

In this paper, we employed four extractive unsupervised sum-
marization techniques, namely, Centroid, MMR, Grasshopper and
DivRank, to summarize bug reports. In the next section we give a
brief overview of each of these techniques.

3. OVERVIEW OF UNSUPERVISED ALGO-
RITHMS USED

In this section we give a brief overview of each of the four unsu-
pervised algorithms we used for our experiments.

3.1 Centroid
Centroid method is a simple technique for extracting summary

sentences from the input document. In this, each unit of text is
represented as a weighted vector of TF × IDF (Term Frequency
times Inverse Document Frequency). The unit of text in our paper
is a sentence from the bug report. The algorithm then proceeds by

finding a centroid sentence [30, 32], which is a pseudo-sentence
whose vector has a weight equal to the average of all the sentence
vectors in the report. Sentences that contain words from the cen-
troid are more indicative of the topic of the document and hence
are chosen in the summary. For each sentence Si, the algorithm
defines a term called Centroid Value of Si, which is calculated as
the sum of the corresponding weights in the centroid sentence, of
the terms in Si. Once the centroid values of sentences have been
calculated, the summary is constructed by choosing sentences in
the decreasing order of their centroid values.

3.2 MMR
The Maximal Marginal Relevance (MMR) [5] based summa-

rization proposed by Carbonell et al. suggested that, a sentence
should be included in the summary if it has minimal similarity to
the already chosen sentences, in addition to its centrality. This cri-
teria is expressed as a linear combination of the centrality of the
sentence and its dissimilarity to the already chosen summary sen-
tences. Here, the dissimilarity is computed as the negative of co-
sine similarity, but can be the negative of any general method for
computing similarity of documents. The algorithm proceeds by in-
crementally adding sentences to the summary, where at each step,
it greedily chooses that sentence which has the maximum value for
the above linear combination.

3.3 Grasshopper
Graph Random-walk with Absorbing StateS that HOPs among

PEaks for Ranking (GRASSHOPPER) [48] is a graph based method
proposed for ranking documents, with an emphasis on diversity. It
represents the document to be summarized as a graph, where each
sentence becomes a node. The edges between these nodes are as-
signed a weight equal to the similarity of the sentences. Now, the
algorithm performs random walks on this graph similar to Google’s
PageRank [27] algorithm, to get the stationary distribution of the
graph, which is the probability of the random walk visiting the
node. Nodes with higher probability are more central to the doc-
ument than others. When a random walk reaches a node that is
already included in the summary, the walk is discontinued and a
new node is chosen to start the walk. The next node chosen is the
one that has the highest expected number of visits, before the walk
initiated from that node would end up in an existing summary node.
Here, the reasoning is that, nodes that are closer - highly similar -
to the already chosen nodes, will have only few visits before being
absorbed. In contrast, nodes that are farther to the chosen nodes -
dissimilar to the chosen ones - still allow the random walk to linger
among them, and hence will have more number of visits before
eventually getting completely absorbed.

3.4 DivRank
Diverse Rank (DivRank) [23] is a recent work that also uses ran-

dom walks on graph representation of data. The random walk used
in this method is a time-variant random walk where the probability
of moving from one node to another (transition probability) varies
as time changes. The particular method used in [23], which be-
longs to the family of time-variant random walks, is called a vertex-
reinforced random walk [28], where the basic idea is that, the tran-
sition probability to one state from others is reinforced by the num-
ber of previous visits to that state, which causes the transition prob-
abilities to vary as time passes. Though DivRank was shown to
perform better than MMR and Grasshopper, our experiments tend
to prove otherwise (Section 4).

For the experiments, we used home-grown implementations of
all the four algorithms. Also, it should be noted that, all these al-
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Table 1: Details of the subjects used for our experiments
Average Average

Subjects No. of Comment Comments Total
Bugs Count Size Sentences

SDS 36 6.5 9.5 2361
DB2-Bind 19 21 16 6304

gorithms have one or two hyper-parameters that can be fine tuned
if training data is available. However, we used the default values
to keep it completely independent of the data. The next section
presents the evaluation of our summarization approach.

4. EXPERIMENTS
We conducted three experiments to evaluate our summarization

approach and answer the following research questions :
• RQ1 - Feasibility of Unsupervised techniques for summa-

rization : Are unsupervised techniques applicable for gener-
ating summaries? How do they perform when compared to
supervised techniques presented in earlier work [34]?
• RQ2 - Impact of Noise identifier on effectiveness of Un-

supervised techniques : How does the efficacy of the unsu-
pervised techniques improve for bug summarization after the
noise has been filtered from the bug reports?
• RQ3 - Goodness of Noise Identifier : How good is the noise

identifier based classification of sentences into Question, In-
vestigative, Code and Others?

We first provide the experimental setup followed by the results of
the experiments.

4.1 Experimental Setup
We conducted our experiments on two subjects. The first sub-

ject, referred to as SDS was obtained from [34]. This corpus was
created and used by the authors to evaluate their supervised sum-
marization technique4. The second subject was obtained from IBM
DB2 team. We got 19 bug reports corresponding to the DB2 Bind
component. This subject is referred to as DB2-Bind. In total, our
dataset consisted of 55 bug reports.

Table 1 lists the total number of bugs, average number of com-
ments, average comment size and total number of sentences per
subject. The SDS corpus contains 36 bug reports from four dif-
ferent open-source software projects: Eclipse Platform, Gnome,
Mozilla and KDE (9 from each). The reports vary in length: 25
reports (69%) had between five and fourteen comments; the re-
maining eleven bugs (31%) had 15 to 25 comments each. Nine of
the 36 bug reports (25%) were enhancements to the target system;
the other 27 (75%) were defects. There are a total of 2361 sentences
in these 36 bug reports.

The DB2-Bind corpus contains 19 bug reports. The reports vary
in length : 9 reports (47%) had between two to ten comments; the
remaining nine out of 10 reports had 11 to 50 comments. Only one
bug report had around 114 comments . We chose not to remove the
outlier so as to evaluate the effectiveness of the unsupervised ap-
proaches on very large bug reports. Figure 4 shows the distribution
of bug reports based on the number of comments. There are a total
of 6304 sentences in these 19 bug reports. Even though the number
of bug reports is less, it exceeds SDS in total sentence count.

4.1.1 Oracle Creation
To create the oracle (or ground truth) for our DB2-Bind subject,

we asked two members from the DB2 Bind development team to
manually summarize the 19 bug reports. We asked them to mark
4http://www.cs.ubc.ca/labs/spl/projects/summarization.html

Table 2: Extractive summary manually created for DB2-Bind
by two annotators

Annotator 1 Annotator 2
mean stdv mean stdv

#sentences in the summary 17.3 12 22.2 16.2
#words in the summary 395 296 497 407.3

out the sentences they would want to include in the summary. Ta-
ble 2 lists some basic statistics on the manual summary. We also
performed the Kappa test [14] to measure the level of agreement
between the two members, as typically each individual can sum-
marize the bug report in their own ways. The κ value was 0.415,
showing a moderate level of agreement. For SDS, the summariza-
tion was also provided along with the bug corpus. They had used
three annotators per bug to mark out a summary for the 36 bug
reports. Across the annotators they had a κ value of 0.41, again
indicating a moderate level of agreement.

4.1.2 Metrics to measure Efficacy of Summarization
We use four metrics namely, Precision, Recall, F Score and Pyra-

mid Precision to compare and evaluate our techniques.

• Precision: It is a measure of how accurate the predictions
are. Intuitively, it is the fraction of sentences in the generated
summary that are also present in the oracle set and is formally
defined as:

Precision =
TP

TP + FP
(4)

where TP stands for True Positive and FP is False Positive

• Pyramid Precision (p): This evaluation scheme is used when
multiple reference summaries are available and we used the
one defined in [8]. Let RS(Si) be the number of refer-
ence summaries in which the sentence Si has been included,
GSum be the generated summary of length n and Sum_n
be any summary of length n. Then, it is defined as:

Pyramid Precision =
ΣSi∈GSumRS(Si)

max ΣSj∈Sum_nRS(Sj)
(5)

Denominator in the above equation is the score of the best
possible summary of length n.

• Recall: It is a measure of the ability of algorithm to select
the sentences of the summary. Intuitively, it is the fraction of
summary sentences in the oracle that we also identify in our
generated summary. It is formally defined as:

Recall =
TP

TP + FN
(6)

where FN is False Negative

• F Score: is the harmonic mean of precision and recall. It is
defined as:

F score = 2× precision× recall
precision+ recall

(7)

Rest of the section is organized as follows. In section 4.2 we ap-
ply the unsupervised techniques to both the subjects, and compare
the unsupervised approaches with the supervised approaches for
the SDS subject. In section 4.3 we evaluate the impact of applying
the proposed noise reduction technique on unsupervised summaries
for both SDS and DB2-Bind. Finally, in section 4.4, we present the
results of the goodness of classification of sentences for both SDS
and DB2-Bind.
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Figure 5: Distribution of bug reports in five segments of average pyramid precision with respect to unsupervised techniques for
subjects SDS and DB2-Bind.

Figure 4: Distribution of bug reports for DB2-Bind with respect
to number of comments.

4.2 RQ1 - Feasibility of Unsupervised Tech-
niques for Summarization

In this section, we first evaluate the feasibility of the unsuper-
vised techniques for summarization without applying any noise fil-
tering. Further we compare the results with Supervised techniques
for SDS subject.

4.2.1 Efficacy of Unsupervised Summarization
All unsupervised algorithms, return a ranked list of sentences

from the bug reports. Since our granularity was at sentence level,
we generated the summaries for each bug, by picking the same per-
centage of sentences that the bug had in the reference summaries
(oracle set) created manually. Figure 5 shows the results of ap-
plying the four unsupervised summarization techniques on the two
datasets. X-axis represents the four unsupervised techniques. Each
vertical bar represents the number of bug reports covered by that
technique and each segment represent the range of pyramid preci-
sion.

For SDS, MMR worked the best by summarizing 22 out of 36
bugs with pyramid precision > 0.6. Centroid technique performed
the worst by summarizing almost 26 of the total 36 bugs with preci-
sion < 0.6. Similarly for DB2-Bind, Grasshopper worked the best
– 7 out of 19 bugs with precision > 0.6 and Centroid the worst.

For SDS, DivRank and Grasshopper did not generate summa-
rization for 6 of the bug reports. Similarly for DB2-Bind, DivRank
missed two bug reports and Grasshopper missed one. As discussed
in the method earlier (Section 3), these two techniques work by ap-
plying random walks on a graph. Depending on the nodes in the
graph (size of bug report) and the edges (similarity between sen-

tences), the algorithm might not converge in a finite number of it-
erations or time period. While experimenting we found these were
not converging at all for the 9 bug reports overall.

Based on this experiment, we conclude that though Grasshopper
and DivRank are more sophisticated algorithms and at individual
bug level might give better efficacy, MMR is a safer algorithm to
use for bug reports because it guarantees summarization for any
bug size in finite time period.

4.2.2 Comparison of Unsupervised Summarization
with Supervised Approach

We now compare the results of our unsupervised techniques with
three supervised algorithms used by Rastkar et. al[34] on the SDS
dataset5

• EC : This classifier was basically developed for summarizing
emails [25] and was trained on Enron email corpus [17]. This
was chosen for its similarity to the bug report corpus.
• EMC : This is similar to EC, but was trained on a combina-

tion of email threads and meetings [25], where the meeting
data comes from AMI meeting corpus [9].
• BRC : This is the only classifier that was trained on bug re-

ports from the same projects as the test bug reports. They
used a linear classifier from the Liblinear toolkit6

Table 3 gives the numbers for Pyramid Precision, Precision, Re-
call and F Score for the three supervised techniques and four un-
supervised techniques. Based on this data, following observations
can be made:
• Even though BRC achieves the highest Pyramid Precision

and Precision, both the unsupervised methods MMR and Cen-
troid out-performed it on the overall F score numbers. MMR
was almost at par with BRC in terms of pyramid precision.
• The unsupervised method MMR performed much better than

the EC and the EMC techniques with improvement in all
measured metrics. Centorid was almost at par in precision
and provides better recall and F-Score. This suggests that,
probably the email and meeting corpora are not as similar to
the bug reports, as was perceived before in [34]. Also, this
shows if the domain of the classifier is not similar to the do-
main of the data, then the returns are lower than using an
unsupervised summarizer.
• The unsupervised methods Grasshopper, DivRank, when they

worked, provided much better recall and F-Score than BRC
and almost similar levels for precision.

5We did not apply the learning approach to DB2-Bind dataset, as the im-
plementation of the supervised approach was not available.
6http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table 3: Comparison of the unsupervised approaches against
the supervised technique on SDS dataset

Technique Algorithm Pyramid Precision Recall F
Score

BRC .63 .57 .35 .40
Supervised EC .54 .43 .3 .32

EMC .53 .47 .23 .29
Centroid .52 .42 .43 .43

Unsupervised MMR .60 .47 .49 .48
Grasshopper .60 .49 .51 .50

DivRank .50 .45 .46 .46

Based on the above, we conclude that unsupervised approaches
are viable options to apply to summarize bug reports. They out-
perform learning based approaches that are not trained on bug re-
ports from similar domain.

4.3 RQ2 - Impact of Noise Identifier on effec-
tiveness of Unsupervised techniques

Figure 6 shows the observed change in average pyramid preci-
sion when applying noise reduction. The black bar shows the preci-
sion without applying noise reduction. The gray bar show precision
when only the Others sentences were filtered. White bar shows
the summarization precision when we also filtered out the Code
sentences. The x-axis lists the different summarization algorithms
applied. As is evident, noise reduction was effective in both the
techniques. However, in the SDS dataset, filtering away Code and
Others sentences was more effective. While, on the DB2-Bind sub-
ject, just filtering the Others sentences worked better in three of the
four techniques. Among the different summarization techniques,
noise reduction impacted Centroid the least. This is because, Cen-
troid method inherently uses tf-idf(t,d) scores of terms to choose
the summary sentences and was already filtering out those with low
tf-idf value. The maximum pyramid precision value was obtained
for SDS using MMR (0.63) while for DB2-Bind using Grasshopper
(0.61). On average across the four unsupervised techniques apply-
ing noise reduction improved the summarization efficacy by 11%
for SDS and 15% for DB2-Bind.

A question that arises is: why did precision decrease in some
case when we applied noise filtering. There are two reasons for
this: (1) our classification of sentences is not full-proof. It is likely
that we classify summary sentences as Others and remove them
by filtering. The goodness of classification is discussed in next
section. (2) Code fragments, though they never show up in the
summary, they affect the calculation of centrality measure of other
sentences. By removing code sentences, some oracle summary sen-
tences, which earlier had a high centrality measure, has low central-
ity score and hence were removed from the calculated summaries.

One important thing to note is that after applying noise reduction,
both DivRank and Grasshopper generated summaries for all the
nine bug reports, which they earlier missed across the two subjects.

4.4 RQ3 - Goodness of Noise Identifier
In this section we evaluate the goodness of noise identifier in

terms of how well it is able to auto-classify sentences. We first
present our approach to choose the cutoff value for identifying
whether a word is a keyword or not. Then we present the correct-
ness of the classification technique.

4.4.1 Cut-off Value for Identifying Keywords
As mentioned in the proposed approach (Section 2.1.4), in or-

der to apply noise reduction, we first need to populate the keyword
dictionary. The keyword algorithm requires us to select a tf-idf(t,d)

cut-off to be used. To calculate the cut-off we followed the follow-
ing process.

We extracted the list of keywords for both the subjects. The av-
erage and median for tf-idf scores for the subject SDS was 0.85 and
0.86 and for DB2-Bind was 0.77 and 0.79 respectively. For these
four iterations of cut-off scores 0, 0.7, 0.8 and 0.9, we executed
the following process. For each bug, rank each sentence based on
the sum of tf-idf scores of the keywords present in each sentences.
Then pick top 30% of sentences as the summary and compare with
the manual summaries provided by the annotators. We refer to this
process as the naive summarization.

The average precision, recall and F Score of the naive summa-
rization across all annotators for both subjects is presented in Table
4. For SDS, there was no change in any of the metrics across the
various cut-offs indicating that sentences in the summary oracle had
very high tf-idf scores. Similarly, for DB2-Bind, there was hardly
any difference in precision / recall / F score between 0 and 0.8 cut-
off. With 0.9 cut-off there was larger dip of .04 in recall and .02 in
F score, when compared to 0.8 cut-off. Based on this analysis, we
chose to apply 0.8 as tf-idf(t,d) cut-off score for both the subjects
and populated the keyword dictionary.

4.4.2 Goodness of Classification
Table 5 gives the details on the classification of the sentences

across the four classes Question, Code, Investigative and Others for
both the subjects. Across all bug reports, almost 22% of sentences
for SDS and 54% for DB2-Bind are marked as Others. Also, 5.6%
of sentences for SDS and 14.5% for DB2-Bind are marked as Code.
In order to confirm the goodness of our noise reduction approach,
we calculated the overlap between the identified Others sentences
and the summary sentences in the oracle.

Figure 7 presents the distribution of bug reports across percent-
age of sentences classified as Others, which were actually used by
the annotators in their summary. The X-axis represent the percent-
age distribution and the Y-axis the number of bug reports. Each
segment in the vertical represents the number of bug reports per
subject. The total number of bug reports across both the subjects
for each percentage overlap is listed on top of each bar.

As it is evident from the plot, for DB2-Bind, mo15 of the total
19 bug reports (78%) have only 10% or less summary sentences
classified as Others. Similarly for 77% of SDS bug reports (28 out
of 36) only 20% or less summary sentences are classified as Others.
For 7 of the bug reports across subjects no summary sentences were
classified as Others. However for just 1 bug report of SDS, the
percentage overlap was more than 40%.

To summarize, the keyword based classification scheme, was not
full-proof. For DB2-Bind, 30 out of the 371 sentences (i.e. 8%) in
the oracle summary, were incorrectly classified as Others. Simi-
larly, F=for 195 out of 840 oracle summary sentences (23%) were
incorrectly classified. However this is acceptable as (1) even with
less than 100% correctness we did see an improvement in precision
in both SDS and DB2-Bind after noise filtering and (2) typically
most automatic classification techniques are not completely fool
proof.

5. DISCUSSION
In this section we discuss our choice of unsupervised summa-

rization algorithms and the threats to validity of our experiments.

5.1 Choice of Unsupervised Summarization Al-
gorithms

The summarization algorithms that we used, namely, Centroid,
MMR, Grasshopper and DivRank form a representative set of unsu-
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Figure 6: Effect of Noise reduction in Unsupervised Summarization. Average Pyramid Precision of four unsupervised techniques
using noise reduction for SDS (left) and DB2-Bind (right).

Table 4: Average Precision, Recall and F Score for different
tfidf cut-offs applied for Naive Summarization

Subject Cut-off Precision Recall F Score

0 0.34 0.28 0.30
SDS 0.7 0.34 0.28 0.30

0.8 0.34 0.28 0.30
0.9 0.34 0.28 0.30
0 0.23 0.48 0.31

DB2-Bind 0.7 0.22 0.47 0.29
0.8 0.21 0.45 0.28
0.9 0.2 0.41 0.26

Table 5: Classification of sentences
Subjects Total Question Code Investigative Others

SDS 2361 94 134 1614 519
DB2-Bind 6304 215 917 1720 3452

pervised summarization algorithms in the existing literature, start-
ing from simple earlier methods to recent sophisticated methods.
Out of these four methods, Centroid is the least sophisticated and
is expected to perform the worst, which is evident from the ex-
periments. However, it is still interesting to note that this simple
method is on par with the supervised EC and EMC methods (refer
Table 3).

Also, according to the literature and as discussed in Section 2.2,
DivRank is expected to perform better than Grasshopper, which
is in turn expected to be better than MMR. However, our experi-
ments show that MMR performed the best, when applied without
noise reduction. This could be because, DivRank’s performance
was tuned to the social and citation (author and paper) network data
(in [23]), and may not be reproducible on all datasets. DivRank and
Grasshopper also missed generating summaries for bugs where the
convergence was not attained owing to the graph size. Increasing
the iteration cut-off in the algorithm or reducing the size of the bug
reports can help the algorithm complete. The latter (which required
a research solution) is precisely what we achieved through noise re-
duction. Once the noise reduction was applied, the size of the bug
reports largely reduced and for both these unsupervised techniques,
we were able to generate summaries for all the bugs in the datasets.

5.2 Threats to Validity
Threats to external validity arise when the observed results can-

not be generalized to other experimental setups. In our experiments
we tried to limit this threat by evaluating a bug corpus of 55 bug
reports that had equal number of bug reports from 4 different open-
source eclipse projects and one internal industry project. The num-
ber of sentences required to be summarized per bug report also var-
ied from as low as 17 to a maximum of 3766. However, we cannot
conclude how our observations might generalize to other projects.

Figure 7: Distribution of bug reports with respect to percentage
of sentences classified as Others, which were actually used by
Annotators in their summary.

More empirical evaluation with other projects is required to evalu-
ate how our results may generalize. These we intend to do in future
research.

Threats to internal validity arise when factors affect the depen-
dent variables (the data described in Section 4) without the re-
searchers’ knowledge. In our study, such factors are errors in im-
plementation of noise reduction. Moreover, we used certain heuris-
tics in classification of sentences into classes. These include:
• Patterns for identifying code and question sentences
• Cut-off of three keywords chosen to classify a sentence into

investigative sentence
• Cut-off of 0.8 chosen on tf-idf score, to identify keywords.

These heuristics were based on manual inspection of bug reports
in the test subjects and might not be generalizable to an unseen
population of bugs. They need re-configuration depending on the
subject to which noise reduction is applied.

6. RELATED WORK
Summarization of documents is a well researched area, starting

from the first work published in 1958 by Luhn [20] for creating
literature abstracts. This was followed by a slew of papers that
improved the summarization method from the simple tf-idf based
techniques to more complex natural language processing and ma-
chine learning based methods.

Summarization has been applied successfully to many domains
like news articles [31], social media [19], medical documents [3],
videos [16], and audio [40], in addition to technical documents. It
has also been incorporated into various products like IBM’s Intelli-
gent Miner for Text[1] and Microsoft’s Office Suite[2]

Summarization techniques have been broadly classified into two
types - Extractive and Abstractive, as discussed in Section 2.2. One
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of the earliest methods for abstractive summarization is the SUM-
MONS system [29] which extends a template driven document un-
derstanding method. Abstractive methods have also used language
generation models in the context of summarizing arguments [7] and
controversial statements [6].

Another broad classification of summarization techniques is as
supervised and unsupervised methods. Supervised methods like
those proposed in [26, 43, 45, 18] train a decision tree, SVM etc
to learn sentences that belong to the summary. However, obtain-
ing training data is usually costly, which has led to unsupervised
methods being more popular.

Summarization methods proposed initially, like [24, 13] consid-
ered only centrality of the chosen sentences. However, with the
introduction of the concept of diversity in [5], there has been con-
siderable work in this area like [46, 47]. More recent works have
proposed using different types of random walks on a graph con-
structed out of the document for summarization like [48, 23, 12].

Summarizing bug reports have been previously studied only in
[34] where they used supervised methods. However, text analyt-
ics and machine learning methods have been previously applied to
software repositories and bug reports like [4] for assigning reports
to the correct person, [42] for estimating the time taken to solve a
bug, [35, 41] for detecting duplicate reports, etc. Summarizing bug
reports using unsupervised techniques and dealing with noise in the
reports have not been studied before.

A different but related problem is extracting problem resolution
information from various datasources like online discussion forums
[10, 33], emails [36], problem tickets [44] etc. This is similar in the
sense that, a summary can be constructed out of the extracted solu-
tions. However, these tasks are more tuned to extracting solutions
and are not constrained by any summary size; nor do they give em-
phasis to diversity.

A related research problem is the issue of summarizing source
code. Sridhara et al. developed novel heuristics to automatically
summarize a Java method in the form of natural language com-
ments [38, 37]. They also developed heuristics to automatically
detect and describe high level actions within a method [39].

7. CONCLUSION
In this paper, we evaluated four unsupervised techniques for bug

report summarization. We compared the efficacy of the techniques
with supervised approaches. MMR, DivRank and Grasshopper al-
gorithms, worked at par with the best of the supervised approach.
For both the subjects, the efficacy of the unsupervised techniques
improved by applying noise identifier and filtering out sentences
classified as Useless and Code. Importantly, two of the algorithms
DivRank and Grasshopper which did not converge for 9 bug re-
ports, converged successfully for them and generated summaries
once noise identifier based filtering was applied.

One area of future work is to see if we can improve the precision
of summarization approaches so as to be able to auto-extract Fre-
quently Asked Questions from a bug repository. Another direction
for future work is to evaluate if the text summarization approaches
mentioned in this paper can be used for code summarization. The
heuristics discussed in [38, 37] can be used to summarize methods
to natural language. Given this natural language text, augmented
with comment text, we can consider generating class and package
level summaries.
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