
Hotspot Symbolic Execution of Floating-Point Programs

Minghui Quan
College of Computer, National University of Defense Technology, Changsha, China

minghui_quan@163.com

ABSTRACT
This paper presents hotspot symbolic execution (HSE) to
scale the symbolic execution of floating-point programs. The
essential idea of HSE is to (1) explore the paths of some
functions (called hotspot functions) in priority, and (2) di-
vide the paths of a hotspot function into different equiva-
lence classes, and explore as fewer path as possible inside the
function while ensuring the coverage of all the classes. We
have implemented HSE on KLEE and carried out extensive
experiments on all 5528 functions in GNU Scientific Library
(GSL). The experimental results demonstrate the effective-
ness and efficiency of HSE. Compared with the baseline,
HSE detects >12 times of exceptions in 30 minutes.

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation;

Keywords
Symbolic Execution; Floating point; Hotspot

1. INTRODUCTION
Floating-point programs are easy to have bugs [18]. Though

symbolic execution [10] is often used in automatic testing
[17] and bug finding [7, 3], existing symbolic executors [12, 3]
barely support analyzing floating-point programs. The rea-
son is the shortage of the backend solvers in floating-point
solving. There exist a few SMT floating-point solvers [5, 4],
but the scalability, usability and stability of using them in
symbolic execution are still a problem.

This paper uses a lightweight method (denoted by ML)
[15] to support the symbolic execution of floating-point pro-
grams. ML uses an integer implemented floating-point li-
brary to replace floating-point operations. For example,
when encountering a floating-point add instruction FAdd,
symbolic executor executes an integer implemented function
of FAdd (denoted by Funcadd), instead of executing FAdd di-
rectly. Inside Funcadd, no floating-point variable, expression
or statement exists. In this way, floating-point expressions

are converted into integer expressions. Without much effort,
a symbolic executor (e.g., SPF and KLEE) that does not
support floating-point solving can be improved to analyze
floating-point programs. Though ML has the advantage in
implementation, it naturally enlarges the space of paths, be-
cause each floating-point operation is converted to a function
call. The effectiveness of the method may be embarrassed.

To evaluateML, we have implemented it based on KLEE
[3]. Extensive experiments are carried out on all 5528 func-
tions in GSL [8]. Based on the evaluation, we propose
hotspot symbolic execution (HSE) to tackle the path explo-
sion problem, aiming to improve coverage further and detect
more exceptions. The main idea of HSE is to: 1) explore
the path space of a hotspot function in priority; 2) inside
each hotspot function, the paths of the function are divided
into equivalence classes, and are explored as fewer as pos-
sible while ensuring the coverage of each class. We have
implemented HSE, and the results of extensive experiments
demonstrate the effectiveness and efficiency of HSE.

The main contributions of this paper are as follows: 1)
the algorithm of HSE, which scales symbolic executor by
the balance between floating-point programs and integer im-
plemented floating-point library; 2) the implementation and
the extensive experiments on all 5528 functions in GSL, and
the experimental results show that HSE detects >12 times
of floating-point exceptions in 30 minutes, and achieves >2
times of the average function coverage in one minute on the
GSL functions whose coverage is no more than 20%.

2. EVALUATING LIGHTWEIGHT METHOD
We have implementedML based on the improved version

of KLEE (denoted by KLEE-B) in our group. KLEE-B imple-
ments under-constraint symbolic execution [6, 14] and lazy
initialization [9]. The integer implemented floating-point li-
brary is SoftFloat [16]. This implementation is denoted as
KLEE-F. The latest stable version of GSL [8] is used. Each
GSL function is analyzed in 1, 10, 30 minutes.

Table 1: The result of evaluating KLEE-F

Average Coverage Rate
#Exp≤ 100% ≤ 80% ≤ 50% ≤ 20%

1m
#Funs 5528 2155 1367 442
KLEE-B 74% 42% 27% 13% 540
KLEE-F 71% 43% 33% 20% 637

10m
#Funs 5528 2050 1317 422
KLEE-B 76% 42% 28% 13% 548
KLEE-F 77% 52% 44% 29% 3958

30m
#Funs 5528 2001 1273 419
KLEE-B 76% 42% 27% 13% 588
KLEE-F 78% 55% 46% 33% 5671

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983966

1112

Table 1 shows the results of evaluation. The big column
“Average Coverage Rate” shows the average coverage rates
of different function sets. The column ≤ 100% displays the
average coverage rate of the functions whose coverage is less
than or equal to 100% using KLEE-B, i.e., all the functions.
The numbers of the functions having different coverages are
shown in #Funs rows. The column #Exp shows the num-
ber of detected exceptions. Four types of exceptions [1] are
detected: Overflow, Underflow, Divide-by-Zero and Invalid.

Table 1 shows that KLEE-F and KLEE-B have an almost
same average function coverage of all functions. The reason
is GSL has many functions having no or fewer floating-point
operations, and KLEE-B already performs well on these func-
tions. When using 30 minutes, KLEE-F increases 20% av-
erage coverage for the functions whose coverage is no more
than 20% with KLEE-B, and detects 9.6 times (5671/588) of
exceptions, demonstrating the effectiveness of KLEE-F.

However, when using 1 minute, KLEE-F achieves minimum
profit. The improvement in average coverage is less than 7%,
and the number of exceptions only increases 77. The reason
is KLEE-F often stucks into the functions in SoftFloat, which
results in a small improvement or even decrease (e.g., the
average coverage of 5528 functions in 1 minute) when the
analysis time is short. Hence, we need to guide KLEE-F to
smartly explore the paths of the functions in SoftFloat.

3. HOTSPOT SYMBOLIC EXECUTION
Though symbolic executor needs to jump out from the

functions in SoftFloat to avoid stucking, too fewer paths ex-
plored in the library may also produce a poor result. Hence,
a balance is needed. The main intuition of HSE is that the
behaviour of a function can be classified into different equiv-
alence classes. In practice, one path in each class is enough.

The procedure of HSE is mainly the same with that of
state-based symbolic execution [3]. If there is a hotspot
function FH executed, the states generated by FH will be
explored in priority. The exploration inside FH will be guided
by the information of equivalence classes of FH to produce
states as fewer as possible while ensuring the coverage of
all the classes. After covering all the classes, the remaining
states of FH will be explored in a lower priority, making
symbolic executor leave FH quickly.

1

2

3

4

5 6

7 8 9 10

floatgt(a, b)

Figure 1: Example of hotspot execution

Take the greater than (a > b) function floatgt(a, b) for an
example. Figure 1 shows the hotspot execution of floatgt(a, b).
A circle represents a state in symbolic execution. A method
call to floatgt(a, b) is executed at state 2. floatgt(a, b) has
four paths: 4-5-7 (p1), 4-5-8 (p2), 4-6-9 (p3) and 4-6-10 (p4),
divided into two equivalence classes (denoted by c1 and c2)
representing true and false cases, respectively. p1 and p2
belong to c1, and the rest two belong to c2. At the begin-
ning, state 4 will be explored in priority. Inside floatgt(a, b),
the states will be randomly selected. If the first finished path
is p1, a state will be selected from states 8 and 6. Suppose
state 6 is selected and then p3 is finished, which makes c2
be covered. Then, c1 and c2 are all covered, so the priorities

of the remained states, i.e., 8 and 10, are lowed. Next, sym-
bolic executor will explore the states outside of floatgt(a, b).

HSE is implemented based on KLEE-F. The hotspot func-
tions are those in SoftFloat corresponding to the comparison,
arithmetic and converting LLVM floating-point instructions.
This implementation is denoted as KLEE-HS, whose evalua-
tion is shown in the following table.

Table 2: The result of evaluating KLEE-HS

Average Coverage Rate
#Exp≤ 100% ≤ 80% ≤ 50% ≤ 20%

1m
#Funs 5528 2540 1450 411
KLEE-F 71% 43% 28% 12% 637
KLEE-HS 71% 49% 36% 25% 1768

10m
#Funs 5528 2172 1100 202
KLEE-F 77% 48% 30% 12% 3958
KLEE-HS 76% 53% 39% 20% 5660

30m
#Funs 5528 2070 1012 184
KLEE-F 78% 49% 31% 12% 5671
KLEE-HS 77% 54% 40% 20% 7087

Table 2 indicates KLEE-HS outperforms KLEE-F in most
cases. In one minute, KLEE-HS increases the rate from 12% to
25% (>2 times) on the functions whose coverage is no more
than 20% using KLEE-F, and detects 2.7 times (1768/637)
of exceptions. It demonstrates the effectiveness of HSE.
Even with a longer time, KLEE-HS can detect more excep-
tions (1702/1416 in 10/30 minutes).

540 548 588637

3958

5671

1768

5660

7087

0

1000

2000

3000

4000

5000

6000

7000

8000

1 minute 10 minutes 30 minutes

th
e

nu
m

be
r o

f e
xc

ep
tio

ns

KLEE-B KLEE-F KLEE-HS

Figure 2: Detected exceptions
Figure 2 shows KLEE-HS detects more exceptions. When

using 30 minutes, KLEE-HS detects >12 times of exceptions
than KLEE-B. For all the three, the number of detected excep-
tions (denoted by #) increases with the increase of time, but
the increase of #KLEE-B is slow, which means increasing time
to detect more exceptions is not effective without floating-
point support. #KLEE-HS/#KLEE-B increases when increas-
ing the time, which demonstrates the effectiveness and effi-
ciency of KLEE-HS. #KLEE-HS/#KLEE-F decreases with the
increasing of time, indicating KLEE-HS is more effective than
KLEE-F to detects exceptions when the analysis time is short.

4. RELATED WORK
Closely related work can be divided into two categories:

1) use the SMT solver with floating-point support for sym-
bolic execution [13]; however, it is a problem for SMT solvers
to support mixed types of constraints, and the integration
of solvers also needs engineering effort. 2) convert floating-
point expressions into rational number expressions, and use
the SMT solver with rational number support for solving [2,
11, 1]. Compared with these work, our approach is more
lightweight, easier to implement and more stable. The ex-
perimental comparison with the existing work, such as [1],
is interesting and left to be the future work.

ACKNOWLEDGMENTS
This work was supported by National 973 (2014CB340703)
and NSFC (61472440, 61632015, 61272140) of China.

1113

5. REFERENCES
[1] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic

detection of floating-point exceptions. In POPL, pages
549–560. ACM, 2013.

[2] B. Botella, A. Gotlieb, and C. Michel. Symbolic
execution of floating-point computations. Softw. Test.,
Verif. Reliab., 16(2):97–121, 2006.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, pages
209–224. USENIX Association, 2008.

[4] A. Cimatti, A. Griggio, B. Schaafsma, and
R. Sebastiani. The MathSAT5 SMT Solver. In
TACAS. Springer, 2013.

[5] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In TACAS, pages 337–340. Springer, 2008.

[6] D. R. Engler and D. Dunbar. Under-constrained
execution: making automatic code destruction easy
and scalable. In ISSTA, pages 1–4. ACM, 2007.

[7] P. Godefroid, M. Levin, D. Molnar, et al. Automated
whitebox fuzz testing. In Proceedings of the Network
and Distributed System Security Symposium, 2008.

[8] GSL 2.1. GNU Scientific Library (GSL).
http://www.gnu.org/software/gsl/.

[9] S. Khurshid, C. S. Pasareanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In TACAS, pages 553–568. Springer, 2003.

[10] J. King. Symbolic execution and program testing.

Communications of the ACM, 19(7):385–394, 1976.

[11] K. Lakhotia, N. Tillmann, M. Harman, and
J. de Halleux. Flopsy - search-based floating point
constraint solving for symbolic execution. In ICTSS,
pages 142–157, 2010.

[12] C. Păsăreanu, P. Mehlitz, D. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and
system-level concrete execution for testing nasa
software. In ISSTA, pages 15–26. ACM, 2008.

[13] J. Ramachandran, C. S. Pasareanu, and T. Wahl.
Symbolic execution for checking the accuracy of
floating-point programs. ACM SIGSOFT Software
Engineering Notes, 40(1):1–5, 2015.

[14] D. A. Ramos and D. R. Engler. Under-constrained
symbolic execution: Correctness checking for real
code. In SEC, pages 49–64. USENIX Association,
2015.

[15] A. Romano. Practical floating-point tests with integer
code. In VMCAI, pages 337–356. Springer, 2014.

[16] SoftFloat 2b. Berkeley SoftFloat.
http://www.jhauser.us/arithmetic/SoftFloat.html.

[17] N. Tillmann and J. De Halleux. Pex–white box test
generation for.NET. Tests and Proofs, pages 134–153,
2008.

[18] Wikipedia. Ariane 5 flight 501.
http://en.wikipedia.org/wiki/Ariane 5 Flight 501.

1114

