
Symbolic Execution of Programs with Heap Inputs

Pietro Braione§, Giovanni Denaro§, Mauro Pezzè§]

§ University of Milano-Bicocca] Università della Svizzera italiana (USI)
Viale Sarca, 336 Via Giuseppe Buffi, 13

Milano, Italy 20126 Lugano, Switzerland 6900
{braione, denaro}@disco.unimib.it pezzem@usi.ch

ABSTRACT
Symbolic analysis is a core component of many automatic
test generation and program verification approaches. To ver-
ify complex software systems, test and analysis techniques
shall deal with the many aspects of the target systems at
different granularity levels. In particular, testing software
programs that make extensive use of heap data structures
at unit and integration levels requires generating suitable
input data structures in the heap. This is a main challenge
for symbolic testing and analysis techniques that work well
when dealing with numeric inputs, but do not satisfactorily
cope with heap data structures yet.

In this paper we propose a language HEX to specify in-
variants of partially initialized data structures, and a deci-
sion procedure that supports the incremental evaluation of
structural properties in HEX. Used in combination with the
symbolic execution of heap manipulating programs, HEX
prevents the exploration of invalid states, thus improving
the efficiency of program testing and analysis, and avoiding
false alarms that negatively impact on verification activities.
The experimental data confirm that HEX is an effective and
efficient solution to the problem of testing and analyzing
heap manipulating programs, and outperforms the alterna-
tive approaches that have been proposed so far.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic Execution

Keywords
Symbolic execution, lazy initialization, data structure in-
variants

1. INTRODUCTION
Many approaches for automatic test case generation and

program verification exploit symbolic execution, which con-
sists of executing a program with symbolic values, to com-

pute the execution conditions of program paths (path condi-
tions) [26]. Path conditions are used to both generate test
cases that execute the specific paths and verify programs
against code assertions on those paths.

Symbolic execution handles well programs with numeric
input values like integers and reals, but does not cope well
with heap data structures, thus limiting the efficacy of pro-
gram testing and verification approaches. Many popular
embodiments of symbolic execution can analyze complete
programs with numeric inputs, but experience limitations
when testing software programs that make extensive use of
heap data structures at the unit, integration and subsystem
levels [19, 6, 7, 29, 14, 5, 4]. For example, intra- and inter-
class object oriented testing challenges symbolic execution
with objects that depend on parameters and state variables
of structured data types in the heap.

The few attempts to extend symbolic execution to analyze
object oriented programs deal with dynamic heap structures
by enriching the path conditions with assumptions on the
objects in the initial heap. Such assumptions identify the
heap configurations that determine the execution of the dif-
ferent paths [18, 31, 8, 30, 3, 13]. For example, when ana-
lyzing a program that accesses the first node of an input list,
symbolic execution distinguishes the case of an empty list,
which causes an exception, from the case of a non-empty
list, which results in accessing the first item of the list. The
mainstream approach, referred to as lazy initialization, con-
sists in the brute force enumeration of all heap objects that
can bind to the structured inputs accessed by the program,
for example either the empty or the non-empty list. When
symbolic execution accesses for the first time a reference to
an input object, it systematically enumerates all the possible
input objects that can bind to that reference, and identifies
an alternative path condition for each binding.

The brute force enumeration of the input objects may
identify many invalid heap configurations that violate prop-
erties of the data structures in the heap. Possible properties
include data type invariants, class contracts, implicit pro-
gram assumptions and method preconditions. Symbolic ex-
ecution approaches that overlook the structural properties
can engage in the extensive exploration of invalid program
executions that depend on inputs that contradict the prop-
erties, thus diverging and raising false alarms.

For example, let us consider the class NodeTraversal of
the Google Closure Compiler1 that takes as input a parse
tree encoded as an object of type Node. Objects of type
Node refer to a (linked) list of children Nodes, which can

1https://code.google.com/p/closure-compiler

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786842

602

recursively refer to other generations of Nodes. The soft-
ware system maintains the implicit property that the Nodes
of any parse tree form indeed a tree-shaped data structure.
Symbolically executing class NodeTraversal with the lazy
initialization approach enumerates many non-tree shaped
parse trees, thus leading to exploring several invalid pro-
gram traces rooted in the symbolic states that include these
invalid parse trees. The enormous amount of invalid traces
may exceed by orders of magnitude the number of valid ones,
and thus analyzing the invalid traces wastes most of the
verification budget. For example symbolically executing (to
generate test cases) class NodeTraversal with lazy initial-
ization and a time budget of 6 hours led to the exploration
of millions of invalid traces, that is, invocations of the class
with invalid inputs, without producing any valid test case
(we report more details in Section 4). With reference to the
buggy version of class NodeTraversal reported by Just et
al. in [17], the invalid traces led to many false alarms, that
is, invalid tests cases that incorrectly reveal the bug. The
readers should notice that we refer to unit testing, where the
input values are not filtered by the compiler API. System
testing exercises the compiler APIs that builds only valid
parse trees, but it is infeasible to build a symbolic unit test
generator that affords the cost of symbolically analyzing all
the compiler software to generate test cases for a single class.

The problem of representing and reasoning about heap
data structures with rich structural constraints is widely
studied in the context of logic-based automated verification
of heap manipulating programs [25, 24, 32, 27, 21, 1, 22, 11].
The different proposals compete on their ability to handle
specific kinds of data structures, for instance lists or trees.
Conversely, the symbolic execution community has payed
little attention to this problem so far. There exist only few
preliminary proposals to reason about the properties of heap
data structures in the context of symbolic execution [31, 8,
30, 3, 13]. These approaches either re-evaluate the consis-
tency of the whole heap structure after every new assump-
tion, or enumerate in advance the sets of valid structures.
The experimental data reported in Section 4 indicate that
none of the existing approaches provides a satisfactory solu-
tion to the problem.

In this paper, we present a novel approach for symbolically
executing programs that take as input both numeric values
and heap data structures, and require rich representation
constraints over these inputs. We thus provide a new tool to
effectively generate test cases and verify software programs
by means of symbolic execution. The core of the approach is
a language and a corresponding decision procedure, jointly
referred to as HEap eXploration Logic (HEX). The language
specifies the properties of the data structures as structural
constraints in a way that enables to check the constraints
against the incremental assumptions on the input objects
that emerge during symbolic execution. Symbolic execution
augmented with HEX evaluates the constraints incremen-
tally, as the heap is progressively refined by symbolic exe-
cution, with advantages on both precision and scalability.
This radically differs from previous approaches.

We evaluated HEX in terms of both analysis speedup
and effectiveness in supporting the automatic generation
of test cases for software programs, and compared the re-
sults with competing approaches based on structural prop-
erties encoded as executable methods of the data struc-
tures [31, 8] and based on bounded/unbounded heap reach-

ability provers [25, 16]. We estimated the relative analysis
speedup referring to a set of recursive data structures (lists,
trees, etc.) to investigate the different aspects of the ap-
plication domains in breath. We evaluated the effectiveness
of test case generation referring to a set of third-party Java
components with structured input data to gain empirical
evidence of the applicability of the approach in practical
software engineering contexts.

In previous work, we introduced LICS, a framework that
allowed us to experiment the preliminary ideas on a case
study [3]. In this paper we explicitly introduce and define
HEX, and present an extensive evaluation, which indicates
that HEX improves on the state-of-the-art approaches. The
new results provide evidence that HEX outperforms previ-
ous approaches along different dimensions of precision and
performance.

The paper is organized as follows. Section 2 overviews
lazy initialization to make the paper self-contained. Sec-
tion 3 presents HEX and the decision procedure based on
HEX that we propose in this paper. Section 4 presents the
techniques considered in the experiment. Section 5 discusses
the results and the empirical comparison of the different ap-
proaches. Section 6 surveys the related work, and Section 7
summarizes the main contribution of the paper and indicates
future research directions.

2. LAZY INITIALIZATION
Symbolic execution supports test case generation and pro-

gram analysis by identifying the execution conditions of the
paths that we want to cover in testing and verify in analysis.
The execution conditions, also known as path conditions, are
symbolic expressions where symbols represent the input val-
ues. When dealing with programs that refer to heap data
structures, like the getList program in Figure 1 that we
use as working example in the paper, symbols may repre-
sent structured objects, for instance a list that contains a
given number of generic objects.

Current symbolic executors handle accesses to heap data
structures by means of a technique commonly referred to as
lazy initialization [31, 8]. Lazy initialization enumerates all
the different structures of the heap objects that can bind
to the references accessed while executing the program. For
example, Figure 2 shows the symbolic data structures cre-
ated while symbolically executing the getList program in
Figure 1. These symbolic data structures correspond to the
assumptions that lazy initialization incrementally adds to
the path conditions while symbolically executing the pro-
gram. The figure presents the assumptions graphically, by
indicating the objects and the relations among them that
are incrementally assumed during the execution.

1 L i s t g e t L i s t (L i s t l i s t , int f oo){
2 i f (foo < 0) {
3 L i s t f i r s t = l i s t ;
4 L i s t second = f i r s t . next ;
5 return second . next ;
6 }
7 else {
8 i f (foo > 10) return null ;
9 i f (foo > 5) return new L i s t () ;

10 }
11 }

Figure 1: A program that manipulates heap objects.

603

1. list ?

1.1 list null

1.2 list ?n0
next

1.2.1 list nulln0
next

1.2.2 list

1.2.3 list ?n1n0
next next

1.2.3.1 list nulln1n0
nextnext

1.2.3.2 list n0
next

1.2.3.3 list n1n0
next

next

next

1.2.3.4 list ?n2n0
next

n1
next

n0

next
n1

n0

Figure 2: Symbolic data structures analysed during
symbolic execution.

When starting symbolically executing the program, the
lazy initialization algorithm does not make any assumption
on the input data structure list. This corresponds to a list
that can link to any value, and is concretized in the data
structure labeled 1 on the top of Figure 2.

When executed with negative values of the input param-
eter foo, the program getList navigates through the list
by accessing the field next of the nodes of the list. To ex-
ecute the statement that accesses the first node of the list
(line 3), the symbolic executor must distinguish whether the
parameter list has value null or points to a non empty
list. Lazy initialization analyses these two cases separately,
by branching the execution in two distinct traces that cor-
respond to the assumptions 1.1 and 1.2 in the figure, re-
spectively. These two assumptions represent the different
behavior of the program that leads to a runtime exception
when executed with data structures that correspond to the
assumption 1.1, and proceeds with a normal execution with
data structures that correspond to the assumption 1.2.

The execution of line 4 with the assumption 1.2 navi-
gates field next to access the second node of the list, and
the symbolic execution branches into three assumptions la-
beled 1.2.1 (next is null), 1.2.2 (next points to a com-
patible heap object – we have only one so far) or 1.2.3
(next points to a heap object that has not been met in the
analysis yet). Similarly when executing line 5 from state
1.2.3, the symbolic execution branches into the assumptions
1.2.3.1, 1.2.3.2, 1.2.3.3 and 1.2.3.4. The readers should no-
tice that in this case there are two heap objects compatible
with next that are treated separately (assumptions 1.2.3.2
and 1.2.3.3). The analysis of the statements at lines 8 and 9
does not depend on new assumptions on the data structure,
and thus proceeds with the initial assumption 1 without
distinguishing further subcases.

As illustrated in the example, lazy initialization exhaus-
tively enumerates all possible assumptions on objects and
references when needed to symbolically execute a statement.
Enumerating all possible assumptions without considering
the program invariants that characterize the semantics of the
data structures may produce many data structures infeasi-
ble in the specific analysis context. For example if getList

required a circular list, the assumptions 1.2.1, 1.2.3.1 and
1.2.3.2 would correspond to invalid inputs that can generate
false alarms and reduce the efficiency of symbolic execution.

The scalability and precision problems of plain lazy initial-
ization have been addressed by either enumerating the valid
symbolic data structures before starting symbolic execution
or by interleaving symbolic execution with checking engines
that evaluate structural properties. The current approaches
that we discuss in more details in Section 4 address either
scalability or precision, but not both aspects. In the next
section, we introduce the HEap eXploration Logic (HEX), a
property specification language that provides a scalable and
precise solution to the lazy initialization problem by sup-
porting the incremental evaluation of structural properties
on partial heaps.

3. HEap eXploration Logic (HEX)
We address the problems that derive from the explicit

enumeration of all possible assumptions on the heap data
structures by defining a new language HEX that specifies
structural constraints over heap data structures in a way
particularly suited to handle input objects during symbolic
execution. HEX specifies the structural properties of the
heap objects as constraints on the incremental refinements
that derive from the lazy inizialization process. The seman-
tics of HEX is given with a decision procedure that is partic-
ularly efficient to evaluate the satisfiability of a HEX spec-
ification over partial heap models, as the ones considered
during symbolic execution.

3.1 Partial Heaps
HEX is a language to specify invariants to be verified on

partially initialized data structures that we refer to as partial
heaps. Partial heaps are heap structures where some objects
and references may be missing. They represent infinitely
many complete heaps, that is, the heaps that include all the
objects and references in the partial heap, and may differ in
other objects and references.

Definition 3.1. A partial heap H ≡ 〈O, root, R〉 is a
structure where O is a finite set of typed heap objects, root
models the external environment that holds the initial refer-
ences to heap objects, and R ⊆ (O ∪ {root})× (O ∪ {null})
is a set of (named) object references, where null models the
null value. All objects in O must be reachable from root
through some sequence of references in R. �

Partial heaps are well suited to model the symbolic data
structures that we described in Section 2. For instance, we
can model the symbolic state 1.2 of Figure 2 with the partial
heap 〈{n0}, root, list = {root → n0}〉 that assumes the
existence of the object n0 and the reference list from root
to n0.

The initial state of symbolic execution in general, and in
particular the symbolic state 1 in Figure 2, can be modeled
as the most abstract partial heap H> = 〈∅, root, ∅〉. H> rep-
resents a partial heap that does not assume any object and
reference. The incrementally refined symbolic data struc-
tures along a program path, as for instance the sequence of
symbolic states 〈1, 1.2, 1.2.3, 1.2.3.4, ...〉, result in an ordered
set of incrementally refined partial heaps.

The readers should notice that the most abstract heap
H> is the top element of a partial order ≤ on partial heaps,

604

where Ha ≤ Hb if the sets of objects and references in Hb

are subsets of the ones in Ha, that is, Ha is more concrete
(more refined) than Hb. Complete heaps are the minimal
elements of the partial order. The order is partial because
not all heaps are comparable.

Partial heaps can be interpreted as connected directed
graphs of objects linked by references rooted in root. Refer-
ring to this graph interpretation, a partial heap H can be
covered by a finite number of directed spanning trees rooted
in root, which we refer to as the backbones of H. Informally,
a backbone is the structure induced by a visit of the partial
heap starting from root. From hence we will write BH for
the sets of the possible backbones of H.

3.2 HEX Language
A HEX specification describes structural properties of heap

data structures by introducing constraints on the possible
visits of the partial heaps. A HEX specification is inter-
preted by a verifier that either accepts of refuses a partial
heap by visiting the heap starting from root. At each step
of the visit, the verifier visits a (not yet visited) reference,
r ∈ R, that may point to null (null-reference), to a previ-
ously visited object (alias-reference) or to a not yet visited
object (expand-reference), and infers the acceptability of the
structures visited so far. The expand-references of a visit
define a backbone on the heap. HEX sentences specify on
which paths the verifier should expect to find null-, alias- or
expand-references.

We now define HEX in three steps. We first define the
HEX formulas, i.e., the atomic propositional formulas of
HEX predicating over sets of heap paths, and their seman-
tics for a generic partial heap H relative to a specific visiting
order (Definition 3.2). We then extend HEX with proposi-
tional connectives, and specify the language for path ex-
pressions that identify sets of heap paths (Definition 3.3).
We finally generalize the semantics of HEX sentences for all
possible visiting orders of H (Definition 3.4).

Definition 3.2. Let H be a partial heap, B ∈ BH be a
backbone of H, B̂ be the set of all the rooted paths of B,

Ĥ
def
= {p̂ · (o → o′) | p̂ ∈ B̂, o → o′ ∈ R, target(p̂) = o} be

the set of the backbone paths leading to all the references, π
and π′ be path expressions denoting two sets of paths π̂, π̂′

respectively, and type be a data type. Then HEX formulas
and their respective semantics are:

HEX formula φ = 〈H,B〉 |= φ iff

π not null null /∈ target(π̂ ∩ B̂)

π expands to nothing target(π̂ ∩ B̂) \ {null} = ∅
π expands to type target(π̂ ∩ B̂) \ {null} ⊆ JtypeK
π aliases nothing π̂ ∩ (Ĥ \ B̂) = ∅
π aliases some type target(π̂ ∩ (Ĥ \ B̂)) ⊆ JtypeK
π aliases π′ target(π̂ ∩ (Ĥ \ B̂))

⊆ target(π̂′ ∩ B̂)

π aliases max π′ target(π̂ ∩ (Ĥ \ B̂))

⊆ target(max(π̂′ ∩ B̂))

where target(π̂) is a function that returns the objects reached
by paths π̂; max(π̂) is a function that selects the maximal
paths in π̂, i.e., the path that cannot be extended by any
suffix to other paths in π̂; J−K is the extension of a data
type, defined as the set of the heap objects of that type. �

Informally, the not null HEX formula accepts a partial
heap where the references visited through the paths π̂ do
not point to null. Similarly, the expands to nothing for-

mula forbids the paths π̂ to point to newly visited objects
via expand-references. The expands to formula accepts the
partial heaps only if the expand-references visited through
the paths π̂ point to objects of a given type. The first two
aliases formulas accept the partial heaps only if the refer-
ences visited through the paths π̂ are never alias-references
(first formula) or, if they are, they point to objects of a given
type (second formula), respectively. The last two aliases

formulas accept the partial heaps only if the alias-references
visited through the paths π̂ point to objects visited through
either paths π̂′ or max(π̂′), respectively.

Definition 3.3. HEX is the propositional logic language
whose path language is the language of regular expressions
over sequences of reference names. �

Definition 3.4. Let H be a partial heap and φ be a HEX
sentence. Then φ is true for H iff H |= φ iff ∀B ∈ BH :
〈H,B〉 |= φ. �

For example, the HEX sentence

root.list(.next)+ not null ∧ (1)

root.list(.next)+ aliases root.list (2)

specifies that the list in Figure 2 is circular by requiring a
verifier that scans the chain of next fields (identified with the
regular expression root.list(.next)+) to reject the structure
should it meet a null-reference (1) or an alias-reference that
does not point to the first node of the list root.list (2).
This leaves as acceptable only expand-references to unseen
list nodes, or a backlink to the first node, and leads to re-
jecting the symbolic states 1.2.1, 1.2.3.1 and 1.2.3.2 in Fig-
ure 2. As a final remark note that (1) does not predicate
anything on expand- and alias-references, nor (2) predicates
on null- and expand-references—in particular (2) does not
force root.list(.next)+ references to be alias-references.

3.3 HEX Incremental Checking
HEX supports the incremental evaluation of structural

properties on partial heaps, thus improving symbolic exe-
cution. We now present an inductive decision procedure
to evaluate HEX formulas on incrementally refined partial
heaps, and we discuss the use of this decision procedure dur-
ing symbolic execution to efficiently check the validity of the
symbolic states.

The HEX decision procedure determines whether a partial
heapH satisfies a HEX formula φ with respect to a backbone
B ∈ BH . We denote this decision problem as 〈H,B〉 |=? φ.
From the HEX definition (Definition 3.2), we can demon-
strate that we can solve the decision problem 〈H,B〉 |=? φ
by proving the formula φ separately against each reference
of the partial heap H. We formalize this result in Defini-
tion 3.5 and Theorem 3.6. Definition 3.5 indicates how the
decision procedure evaluates a HEX formula with respect to
a single reference of a partial heap. Theorem 3.6 demon-
strates that we can solve a decision problem by proving the
formula for all references in the partial heap.

Definition 3.5. Let 〈H,B〉 |=? φ be a HEX decision

problem; B̂, Ĥ, π̂ and π̂′ the sets of rooted paths as de-
fined in Definition 3.2; r be a reference of the partial heap
H; pr ∈ Ĥ be the path that leads to the visit of the refer-
ence r starting from the backbone; p′r ∈ B̂ be the backbone

605

path that reaches the object target(r). Then, the function
φ̄(H,B, r) evaluates the HEX formula φ with respect to the
single reference r of the partial heap H as:

HEX formula φ φ̄(H,B, r)
def
=

π not null pr /∈ π̂ ∨ r /∈ B ∨ null /∈ target(pr)
π expands to nothing pr /∈ π̂ ∨ r /∈ B ∨ null ∈ target(pr)
π expands to type pr /∈ π̂ ∨ r /∈ B ∨ null ∈ target(pr)

∨ target(pr) ⊆ JtypeK
π aliases nothing pr /∈ π̂ ∨ r ∈ B
π aliases some type pr /∈ π̂ ∨ r ∈ B ∨ target(pr) ⊆ JtypeK
π aliases π′ pr /∈ π̂ ∨ r ∈ B ∨ p′r ∈ π̂′
π aliases max π′ pr /∈ π̂ ∨ r ∈ B

∨ target(pr) ∈ target(max(π̂′ ∩ B̂))

Theorem 3.6. Let 〈H,B〉 |=? φ be a decision problem.
Then: 〈H,B〉 |= φ iff ∀r ∈ H : φ̄(H,B, r) �

Informally, the theorem is a consequence of the fact that
the definition of φ̄ is a direct interpretation of the semantics
of HEX (Definition 3.2) against the heap path that reaches
a given reference in one step from the backbone. Thus eval-
uating φ̄ for all the references of a partial heap is equivalent
to evaluating the formula for all paths Ĥ and B̂ considered
in Definition 3.2. The readers interested in the proof of the
theorem can find the details in our online report on HEX.2

Theorem 3.6 allows us to solve the decision problem in-
crementally when dealing with incrementally refined partial
heaps. For a partial heap Hb that is more refined (less ab-
stract) than a heap Ha, we decompose the decision problem
〈Hb, Bb〉 |=? φ in two parts: The first part corresponds to
solving the decision problem 〈Ha, Ba〉 |=? φ for some back-
bone Ba that is a prefix of the backbone Bb. The second
part corresponds to proving the formula on the references of
Hb that are not in Ha.

We instantiate the above decision procedure inductively
to efficiently evaluate the structural properties against heap
structures that are incrementally assumed during symbolic
execution, thus preventing the exploration of invalid sym-
bolic states.

As discussed in the previous section, the symbolic exe-
cution of a program both produces an ordered sequence of
incrementally refined partial heaps and identifies incremen-
tal backbones of the partial heaps in the sequence. Thus,
our inductive decision procedure evaluates the validity of the
partial heaps produced during symbolic execution starting
from the empty partial heap H> that represents the input
objects at the beginning of the execution. For the partial
heap Hn that represents the assumptions on the input data
structures at a given symbolic state Sn, the decision proce-
dure deals with the decision problem 〈Hn, Bn〉 |=? φ, where
Bn is the backbone of Hn identified on the symbolic trace
that led to Sn. To solve this problem, the decision pro-
cedure assumes that the problem 〈Hn−1, Bn−1〉 |=? φ has
already been solved at the immediate predecessor symbolic
state Sn−1, and evaluates the formula under concern against
the single reference assumed in Hn after the last execution
step.

Working incrementally, our decision procedure radically
differs from previous approaches that either re-evaluate the
consistency of the whole input structures upon any single
new assumption on the heap structures, or enumerate the
sets of valid assumptions in advance. In the experiments
reported in Section 4, we present empirical evidence that

2http://www.lta.disco.unimib.it/tools/hex/

HEX outperforms state-of-the-art other approaches that can
be used to prevent the exploration of invalid data structures
in symbolic execution.

The inductive decision procedure may produce some false
positives due to backbone generalization and aliases max

propositions. The decision procedure works on the back-
bones identified during symbolic execution, and the satis-
fiability verdicts cannot be always generalized to all possi-
ble backbones, as required in Definition 3.4. The incremen-
tal embodiment of the decision procedure over-approximates
the decisions involved in aliases max propositions. In fact,
the satisfiability verdicts computed with respect to the max-
imum paths of a backbone could be invalidated after ex-
tending the backbone with new paths in some future sym-
bolic state. As discussed in Section 4, none of these sources
of unsoundness manifested in our experiments, indicating
that these issues are rare in many practical situations. Con-
versely, our empirical data indicate that the imprecision due
to the other approaches can be high.

3.4 HEX Prototype Implementation
We implemented the HEX incremental decision procedure

in our JBSE3 symbolic executor [3]. The implementation of
the HEX decision procedure augments the symbolic states
with assumptions on the consistency between numeric inputs
and the data structures in the partial heaps. For example,
if the data type List of Figure 2 would maintain an integer
field size to cache the size of the list, it might be neces-
sary to enforce the assumption that field size is always at
most/exactly equal to the number of list nodes in the par-
tial/complete data structure assumed in the partial heaps.
JBSE accepts an extension of HEX where an atomic pred-
icate can be associated with a companion method : When
the incremental decision procedure computes the satisfiabil-
ity of a refined partial heap, JBSE executes the compan-
ion methods associated with the atomic predicates whose
path expressions were satisfied by the last reference assumed
in the heap. The users can exploit this mechanism to en-
code the assumptions on the numeric fields as assume state-
ments in the companion methods. Our experiment repli-
cation package2 includes several examples of data structure
properties specified in HEX.

4. DESIGN OF THE EXPERIMENT
We experimentally evaluate the precision and efficiency

of HEX with respect to both the plain lazy initialization
algorithm that we refer to as baseline, and the alternative
state-of-the-art approaches. The precision of the different
approaches is the ability to identify executions that do not
violate the constraints on the input data structures. We
quantify the precision of an approach in terms of valid ver-
sus invalid symbolic states identified by the corresponding
decision procedure, sizing the set of invalid states that result
in false alarms. We measure the efficiency of the approaches
comparing the time overhead on symbolic execution.

We executed the experiments on a benchmark that in-
cludes third party implementations of classic data structures
and classes of open source programs. In the next subsec-
tions, we discuss the approaches that we considered in the
experiment, the programs used as inputs to the symbolic

3http://pietrobraione.github.io/jbse/

606

executor and the metrics that we collected to measure effec-
tiveness and efficiency.

4.1 Techniques
We identify the main classes of alternative approaches

as enumerating the valid (non-partial) symbolic data struc-
tures before starting symbolic execution [8], and interleav-
ing symbolic execution with checking engines that evaluate
structural properties. The latter approaches include execut-
ing checking programs that encode the structural proper-
ties operationally [31] and querying some established satisfi-
ability prover that evaluates property specifications in some
logic [16, 25, 21, 27, 24, 32, 1, 22, 11]. The provers may ad-
dress either bounded (for instances specified in Alloy [16])
or unbounded (for instance specified in PALE [25]) satis-
fiability problems. In detail, our experiments consider the
following set (T) of techniques:

Lazy: The plain lazy initialization algorithm, outlined in
Section 2, without techniques for dealing with constraints.
This is the baseline to evaluate the different approaches.

HEX: The HEX approach, that is, the technique that instan-
tiates the decision procedure presented in the previous sec-
tion to incrementally check structural properties specified in
HEX.

PrEP: The classic approach of pre-evaluating executable prop-
erties that consists of enumerating the valid symbolic data
structures in advance by symbolically executing their con-
straints encoded as executable properties [8]. Encoding the
representation invariants of an abstract data type in the
form of executable methods, referred to as repOk methods,
is a common practice in object oriented programming [20].
As an example, the code on white background in Figure 3
illustrates a possible repOk method for the class LinkedList
partially reported in the figure: repOk returns false if the
header is null (line 7), the next and previous references do
not match between the data nodes (line 15) or the value of
the field size differs from the count of data nodes (line 19).
Technically, given a program P that takes as input the data
structures ini with invariants encoded as repOk methods,
the technique PrEP consists of symbolically executing the
program if(

∧
i ini.repOk()) P(in1, . . . , inn). As a drawback,

this technique can over-constrain the symbolic inputs, foster-
ing the analysis of multiple distinct assumptions on objects
and fields that are not accessed by the program.

ConsP: The extension of the repOk approach proposed by
Visser et al. that consists of evaluating the executable prop-
erties during (rather than before) symbolic execution [31].
The approach relies on the concept of conservative repOk

methods, an extended version of the executable properties
that can be evaluated against partially initialized data struc-
tures. As an example, Figure 3 reports the conservative
extensions of the repOk method on grey background. The
conservative repOk method returns true either if the field
header is not initialized (line 6) or if field next of the tra-
versed node is not initialized (line 11). The conservative
repOk skips the next-previous check if the field ”previous”
of the next node is not initialized (line 14). The effectiveness
of this technique depends on the quality of the conservative
properties, since a direct extension of the original repOk may
miss some invalid partial models, for instance, the imple-
mentation in Figure 3 misses the invalid partial models in

1 class LinkedList { . . .
2 int s i z e = 0 ;
3 Entry header = new Entry () ;
4 class Entry{Entry next , prev ious ; . . . }
5 boolean repOk (){

6 i f (σ (header)) return true ;

7 i f (header == null) return fa l se ;
8 Entry e = header ;
9 int pos = 0 ;

10 do{

11 i f (σ (e . next)) return true ;

12 i f (e . next == null) return fa l se ;
13 i f (

14 !σ (e . prev ious . next) &&

15 e . prev ious . next != e) return fa l se ;
16 e = e . next ;
17 i f (e != header) pos++;
18 } while (e != header) ;
19 return pos == s i z e ;
20 }
21 }

σ(·) denotes a query to the symbolic executor on whether a reference

holds a symbolic (not yet initialized) value in the current state.

Figure 3: Class LinkedList with a repOk method and
its conservative version.

which nodes are linked through field previous while some
fields next are not initialized yet. A further limitation is
that the conservative repOk evaluates single data structure
instances and cannot enforce constraints over multiple struc-
tures, and this may impact on the final results, as discussed
in Section 4.

Alloy: The approach of using a bounded satisfiability prover
to verify the validity of the data structures explored during
symbolic execution. We instantiate this approach with Al-
loy, a relational logic language to describe the properties of
object structures [16]. We rely on the Alloy analyzer to ver-
ify the satisfiability of the properties in conjunction with the
structural assumptions that emerge during symbolic execu-
tion. The Alloy analyzer computes the satisfiability of the
formulas provided an upper bound to the number of objects
that can be assumed in the initial heap. As all bounded
verifiers, Alloy can decide the satisfiability of a problem if
it identifies a solution, otherwise the result is inconclusive,
since a solution may always exist in a larger scope. Alloy

requires the user to specify the bound limit, and accepts
only the symbolic states whose satisfiability can be proved
within the given bound limit. The choice of the upper bound
impacts on the precision and performance of symbolic execu-
tion: small bounds increase the likelihood of rejecting valid
symbolic states, big bounds slow down the process.

PALE: The approach of expressing the structural properties
in some logic that comes with a decision procedure for un-
bounded problems. We instantiate the technique with the
Pointer Assertion Logic Engine (PALE [25]). PALE builds
on monadic second order logic to express properties for tree-
shaped graphs of objects. The decision procedure is imple-
mented on top of MONA, an established tool to address de-
cision problems over a restriction of monadic second order
logic [15]. PALE can yield conclusive results both against
satisfiable and unsatisfiable problems, while the possible in-

607

Table 1: Size of the subject programs
P1 P2 P3 P4 P5 P6 P7 All

LOC 361 514 322 211 607 7,972 5,972 15,959

LOC = Non-comment lines of code in the class under analysis and in

the classes invoked by the class under analysis.

conclusive outcomes depend on the incompleteness of the
decision procedure. For example, PALE does not handle
numeric constraints and cyclic graphs of objects. The tech-
nique PALE rejects the symbolic states with conclusive unsat-
isfiability results, and accepts all others as either satisfiable
or potentially satisfiable.

For the experiment reported in this paper, we extended
the symbolic executor JBSE [3] to support the techniques
HEX, PrEP, ConsP, Alloy and PALE. We would like to em-
phasize that only Lazy, PrEP and ConsP have been already
proposed in the context of the symbolic execution of heap
data structures. HEX is proposed in this paper, and Alloy

and PALE are experimented in the context of symbolic exe-
cution for the first time in this paper.

4.2 Subject Programs
In the experiments, we challenge symbolic execution to

analyze third party Java programs. The subject programs
include both classes that incapsulate classic recursive data
structures and open source Java components with structured
input data. We consider the following subject programs,
whose size is reported in Table 1:

P1: Class LinkedList taken from the SIR repository [10]
that implements doubly linked lists.

P2: Class TreeMap taken from the SIR repository that im-
plements red-black trees, a type of balanced binary trees.

P3: An implementation of AVL trees taken from the exper-
imental benchmark used by Galeotti et al. [12].

P4: A caching circular double linked list that implements
the interface List from the Apache Commons project, taken
from the experimental benchmark used by Galeotti et al. [12].

P5: Class TrajectorySynthetizer of the TSAFE prototype
described in [9] that takes as input the position coordinates
of a flight and the flight plan represented as a linked list
of flight points, and computes the current trajectory of the
flight.

P6: Class NodeTraversal of the Google Closure-compiler for
JavaScript (Git hub commit 509fec1) that takes as input a
parse tree encoded as an object of type Node and refers to a
linked list of function control flow graphs, and implements
a traversal of the nodes in the parse tree.

P7: Class RenameLabels of the Google closure-compiler for
JavaScript (Git hub commit 393fceb) that takes as input
a parse tree encoded as an object of type Node and some
external Nodes, and processes the nodes of type LABEL.

The experiments on the methods of the recursive data
structures (P1—P4) study the relative strengths of the dif-
ferent approaches in breath, since these methods take ob-
jects of the type of the considered data structures as input

and make several different computations that rely on the
implicit assumption that the input objects satisfy the struc-
tural properties of the data structures. For these subject
programs, we symbolically executed all single methods and
pairs of method calls for a total of 274 analysis targets.

The experiments on the open source components (P5—P7)
provide preliminary evidence of the effectiveness of the dif-
ferent approaches when using symbolic execution for testing
and verification in practical software engineering contexts.
For these programs, we symbolically executed methods with
either correctness properties or known faults, referring to
the correctness properties of P5 described in [3] and to the
faults of P6 and P7 mined by Just et al. and identified as
bug37 and bug72, respectively [17].
P1 and P2 include the repOk implementation of the repre-

sentation invariant of the data structures, P3 and P4 include
JML representation invariants. P5 and P6 refer to a linked
list and share the same invariant of P1. P6 and P7 refer to
a parse tree, and thus we implemented the invariant that
encodes the tree properties.

For all programs, we rephrased the structural properties
as required by the considered technique: We implemented
the logic specifications of P3 and P4 as executable predicates;
We adapted all the executable predicates to a conservative
version, by relaxing the constraints of the fields not yet ini-
tialized; We implemented the HEX and Alloy versions of all
the representation invariants, and the PALE version of the
representation invariants of P2 and P3. The invariants of
the data types P1, P4, P5, P6 and P7 cannot be modelled in
PALE that does not handle cyclic graphs of objects, thus we
do not experiment technique PALE on these programs. All
property specifications are available as part of the experi-
ment replication package.2

We executed the experiments with the JBSE symbolic
executor ([3]) suitably extended to deal with the different
techniques. Each experiment corresponds to an execution
of JBSE instantiated with a technique in T on a method
or a pair of methods of a subject program. We allocated a
maximum time of 2 hours for each experiment with the re-
cursive data structures P1—P4 that include many small size
analysis targets, and of 6 hours for the experiments with the
open source components P5—P7 that represent medium size
analysis targets.

Some subject programs include loops and recursive calls,
and thus the symbolic execution may not terminate. To en-
force termination, we bound both the number of objects in
the explored partial heaps, and the maximum depth of the
execution traces. In the experiments, we bounded the size
of the input list or tree of P1—P7 to 5, 3, 4, 4, 3, 4 and 4,
respectively. The bounds take into consideration the com-
plexity of the data structure that impacts on the duration
of the symbolic execution.

The experiments with Alloy required us to specify a veri-
fication bound for the Alloy analyzer. This bound expresses
the maximum number of objects that can be used to show
that there exists a valid concrete heap that satisfies a par-
tial heap assumed during symbolic execution. To avoid false
negatives, the Alloy bound must be set higher than the heap
bound of symbolic execution that constrains the size of the
partial heaps. In all experiments with Alloy, we carefully op-
timized the Alloy bound as the minimal value to achieve the
maximum precision, that is, to exclude all spurious traces
without incurring false negatives.

608

4.3 Metrics
We quantify the precision of the symbolic execution in

terms of the avoidance of invalid symbolic states and the
side-effects induced by the techniques T on the valid sym-
bolic states. We quantify the efficiency in terms of the
time elapsed to complete the symbolic execution of the valid
states.

We measure the avoidance of invalid symbolic states as the
number of end-of-trace symbolic states that depend on some
invalid initialization of the input objects. If there are no
invalid end-of-trace symbolic states the precision is optimal,
that is, the symbolic execution explores only valid symbolic
states. Increasing amounts of invalid end-of-trace symbolic
states correspond to increasingly less precise approaches.

We measure the side-effects induced by a given technique
as the ratio R between the number of valid end-of-trace
symbolic states counted when using the technique and us-
ing no technique (Lazy), respectively. The ratio R indi-
cates if the technique T̄ ∈ T interferes with the ability
of the symbolic executor to discriminate the valid inputs.
The interferences may result in either under-approximating
or under-generalising the results of the symbolic execution.
The technique T̄ under-approximates the results if the sym-
bolic executor explores less valid symbolic states when us-
ing the technique T̄ than when using no techniques. The
technique under-generalizes the results when some symbolic
states computed when using T̄ are subsumed by smaller sets
of symbolic states when using no technique, meaning that
the technique reduces the ability of generalising the symbolic
execution. Under-approximation corresponds to R < 1, no
effect to R = 1 and under-generalization to R > 1. The
readers should notice that, when under-approximation and
under-generalization effects interfere, values of the ratio R
that strongly differ from 1 capture the dominance of either
type of effect.

We measure the efficiency as the time required to complete
the symbolic execution of each program, aiming to quantify
the relative impact of the specific technique on the time cost
of the symbolic execution.

We designed a measurement infrastructure that evaluates
the structural properties of the final states. The experiments
were executed on a linux server equipped with 4 Intel Xeon
8-core CPUs and 64 GB of RAM memory, using a make-
file to parallelize the symbolic execution of the benchmark
programs.

5. DATA ANALYSIS
This section presents the results of the experiments. Each

of the 6 techniques in T is experimented against both the 274
analysis targets of P1—P4 and the methods related to cor-
rectness properties or faults in P5—P7. Some experiments
ran out of memory, and are not included in the results. The
final dataset includes data from 1,352 experiments.

5.1 Invalid Symbolic States
Figure 4 plots the distribution of invalid end-of-trace sym-

bolic states that we measured across the experiments, and
Table 2 reports the details of the experiments with the sub-
ject programs P5 — P7 that represent practical software
engineering cases. The experimental data confirm that the
lazy initialization algorithm produces a huge amount of spu-
rious symbolic traces in the presence of structural proper-
ties of the symbolic data structures. The technique Lazy

Table 2: Experiments on the open source subjects
Elapsed
minutes

#Traces #Invalid
traces

#Alarms #False
alarms

P5

Lazy timeout 23,854 23,675 12,434 12,434
HEX 2 290 0 0 0
PrEP 9 2,250 1,690 0 0
ConsP 52 1,130 840 0 0
Alloy 56 290 0 0 0

P6

Lazy timeout 2,419,860 2,419,860 62,260 62,260
HEX 7 2,856 0 128 0
PrEP 154 96,256 90,240 4,096 3,840
ConsP 41 6,426 3,570 288 160
Alloy 306 2,856 0 128 0

P7

Lazy timeout 41,723 41,717 14,494 14,494
HEX 2 925 0 30 0
PrEP 12 26,960 25,850 2,130 2,100
ConsP 251 25,045 24,120 2,100 2,070
Alloy 17 925 0 30 0

yielded invalid symbolic traces in 184 experiments with a
median value of 2,114 invalid traces and up to a maximum
of over 2,419,860 traces (in P6 where, due to the time limit, it
yielded invalid traces only). The techniques ConsP and PALE

yielded invalid symbolic traces in 110 and 53 experiments,
with third quartile values of 301 and 186 invalid traces, and
maximum of 48,267 and 2,328, respectively, thus perform-
ing better than pure lazy initialization but still incurring
precision problems in several cases. The techniques PrEP

does not yield spurious traces for the recursive data struc-
tures (P1 — P4) but computes several invalid traces for the
open source programs P5 — P7, as shown in Table 2. The
techniques HEX and Alloy do not produce any false positive
across all subject programs, that is, they always succeed in
discarding the invalid symbolic structures produced by the
lazy initialization algorithm.

With reference to the faults and the verification goals in-
volved with the analysis of the programs P5 — P7, the last
two columns of Table 2 indicate that the spurious traces
computed during the symbolic execution can result in large
amounts of annoying false alarms that may impact on the
software engineering practice.

The PrEP technique fails in discarding all the invalid traces
because of the inability of the repOk methods to deal with
alias relationships between distinct input structures. For
example, the conservative repOk of the two parse tree pa-
rameters of class RenameLabels fails to identify illegal aliases
between the input trees. This limit of the repOk approach
with inter object constraints affects the ConsP technique too.
Furthermore, the ConsP technique suffers from the incom-
pleteness of the considered conservative predicates derived
as straight adaptation of the repOk methods. For example,
we already commented that the conservative adaptation of
the repOk of class LinkedList of Figure 3 iterates only for-
ward on the list, and cannot enforce the invariant on the
partial data structures computed when analysing target code
that accesses the list in the opposite direction. Thus our ex-
periments provide empirical evidence that relying on repOk

methods is not sufficient to discard all the invalid traces
produced by the lazy initialization algorithm.

The invalid traces in PALE depend on the limits of PALE
in accounting for the numeric constraints in the invariants.

5.2 Under-Generalization Effects
Figure 5 plots the distribution of the portion of valid end-

of-trace symbolic states measured when using a given tech-

609

The box-plots report the minimum, the first quartile, the median (in
bold), the third quartile and the maximum number of invalid traces.

Figure 4: Distribution of the invalid end-of-trace
states yielded by symbolic execution when combined
with the considered techniques.

nique with respect to the baseline case of relaying on lazy
initialization only. Only PrEP incurs in under approximation
effects, meaning that it causes symbolic execution to explore
less traces than when using Lazy (values less than 1 in Fig-
ure 5). The reason is that enumerating all objects in the in-
put data structures beforehand results in over-constraining
the scalar fields that depend on such objects, for instance,
the field size of class LinkedList.

Both PrEP and HEX incur some under generalization ef-
fect, meaning that they cause symbolic execution to explore
more traces than when using Lazy (values greater than 1 in
Figure 5), PrEP to a large and HEX only to a partial extent.
The relevant under generalization effects in PrEP depend on
the early enumeration of the possible input structures that
competes with the goal of lazy initialization of reducing the
number of traces to be analyzed by delaying the resolution
of the symbolic references.

The under generalization of the HEX approach manifests
only for the red-black tree case study (P2), and depends on
the tight relation between the valid shapes of the data struc-
ture and the scalar values that represent the red/black status
of the internal data nodes: Evaluating the valid initializa-
tions of the data nodes requires HEX companion methods
that foster the symbolic executor to enumerate the possible
configurations of red and black nodes for the incrementally
assumed partial heaps. Table 2 confirms that HEX does not
incur any under generalization on the considered open source
programs.

5.3 Efficiency
Figure 6 presents the time for completing the symbolic

execution of the subject programs when using each consid-
ered technique with respect to HEX. We observe that only the
performance of PALE is comparable with the average execu-
tion time of HEX, while the median execution times of PrEP,
ConsP and Alloy are 2.4, 3.4 and 4.3 times the execution
time of HEX, respectively.

Table 2 emphasizes the performance advantages of HEX

Figure 5: Distribution of the ratio between the valid
end-of-trace states yielded by symbolic execution
when combined with the considered techniques with
respect to plain lazy initialization.

with respect to Alloy, the only competing technique in line
with HEX in terms of precision: For the analysis of the sub-
jects P5, P6 and P7, HEX is faster than Alloy of a factor
28, 44 and 8, respectively. The data confirm the well-known
problem that the performance of a bounded verifier quickly
falls down with the increase of the bound value, and indi-
cate that Alloy can result in unacceptable performance even
with medium bound values, for instance the optimal Alloy
bound was 13 for P5 and P6 and 9 for P7, that are likely to
be minimal requirements in the case of realistic applications.

5.4 Summary
The experimental data confirm that the main merit of

HEX is the scalability of the approach without giving up
precision. The HEX approach outperforms PrEP, ConsP and
PALE in terms of precision, in that it does not incur any false
positive or false negative, and does not result in under gen-
eralization effects for 6 out of the 7 subject programs. Alloy
shares similar precision figures as HEX, but the performance
of the analysis is significantly better with HEX than with
Alloy. The good performance of HEX is a result of the incre-
mentality of its decision procedure that represents a major
improvement of HEX on the state of the art approaches.

5.5 Threats to Validity
A main threat to the validity of the results springs from

the dependence of the ConsP approach on the implementa-
tion of the conservative properties. We mitigate this threat
in two ways: In the experiments with P1—P4 we use the
transformation of the properties specified by the developers
into conservative properties according to the approach of the
ConsP proposers [31]; In the experiments P5—P7 we have
implement optimal versions of the conservative properties
based on our experience with the partial models generated
during the symbolic execution of the target programs. The
results of the experiments confirm that different implemen-
tation choices do not affect the results of the experiments.

The quality of the measurements depends on the relia-

610

Figure 6: Distribution of the relative time spent to
complete the symbolic execution when using either
a technique T̄ or HEX for the experiments where both
T̄ and HEX complete within the time budget.

bility of both the symbolic executor and the measurement
infrastructure used in the experiments. We have been devel-
oping and testing JBSE for several years. The implementa-
tion of the techniques HEX, ConsP, Alloy and PALE in JBSE
is new, but the consistent number of valid traces that JBSE
computes when these techniques are activated and deacti-
vated, supports the trustability of the current implementa-
tion. We have crosschecked the results from the different
techniques and manually verified samples of the traces iden-
tified as spurious to increase our confidence in the reliability
of the measurements.

We are aware that the result of few experiments cannot
be directly generalized. Nonetheless, the consistency of the
measured data across the subject programs is a promising
indication that our results may generalize. Our future plans
include extending the experiment to other data structures
and beyond the experimental samples of this paper.

6. RELATED WORK
In this section we briefly survey the main approaches to

deal with the symbolic representation of dynamically allo-
cated structured data. The problem of limiting the assump-
tions on heap structures by considering their structural con-
straints has been considered in the context of both symbolic
execution and logic-based automated verification of heap
manipulating programs.

In the context of symbolic execution, the problem has
been initially investigated by Visser et al., who proposed
the lazy initialization approach [18, 31] that has been fur-
ther extended by Deng et al. [8]. We discussed the com-
parison of HEX with Visser’s PrEP and Deng’s ConsP ap-
proaches in Section 5. Boyapati et al., Galeotti et al. and
Majumdar et al. proposed approaches that enumerate the
valid data structures through a bounded search of the input
space [2, 12, 23]. Recently, Geldenhuys et al. instantiated
the approach of Galeotti et al. to pre-compute the sets of
possibly valid inter-object edges for the objects of the in-
put structures, and exploited this information within the

lazy initialization algorithm to evaluate the validity of the
incrementally assumed references [13]. Being based on a
bounded verifier, the precision of this approach depends on
the choice of the bound value, with similar implications to
the ones that we discussed in Section 4.1 with reference to
Alloy. Furthermore, the set of pre-computed inter-object
edges over approximates the edges that are valid for any
path condition, and thus the approach of Geldenhuys et al.
cannot guarantee the precision figures observed with Hex
and Alloy in our experiments.

In the context of logic-based automatic verification, sev-
eral authors proposed logics and decision procedures to ad-
dress heap manipulating programs that must maintain reach
invariants for the data structures in the heap [16, 25, 21, 27,
24, 32, 1, 22, 11]. Bounded checkers, like Alloy, compute the
satisfiability of structural properties within bounded scopes
of objects in the solution, translating the decision problems
in boolean logic and using a SAT-solver to find a satisfying
assignment for the boolean formula [16]. The need to accept
a bounded solution is the main limit of this approach. Logics
like PAL (the Pointer Assertion Logic) and STRAND (the
STRucture ANd Data logic) build on monadic second order
logic to prove unbounded properties of graphs of objects [25,
21]. STRAND combines the ability to reason on graph struc-
tures, with the ability to reason on the numeric data encap-
sulated in the objects. Other authors restrict their logics to
selected types of reachability properties to enable the imple-
mentation of the corresponding decision procedures within
SMT solvers [27, 24, 32]. Yet other researchers investigate
the use of separation logic, aiming to take advantage of the
local and compositional reasoning provided by the separa-
tion logic [28, 1, 22, 11]. These approaches have not been
exploited in the context of symbolic execution yet. In this
paper we have experimented with the techniques Alloy and
PALE as representatives of this class of approaches.

7. CONCLUSIONS
Symbolic execution is the core component of many ap-

proaches to automatically generate test cases and verify sys-
tem properties. While symbolic execution has been success-
fully exploited to generate test cases for complete programs
with numeric inputs, generating unit, integration and sub-
system test cases for programs that make extensive use of
heap data structures is still an open challenge. The main-
stream approach to deal with heap data structures, referred
to as lazy initialization, does not take into account satis-
factorily the structural constraints of data structures, and
results in a waste of effort and in many false positives that
limit its effectiveness.

In this paper we propose a new approach that prunes in-
put data structures that violate structural constraints incre-
mentally while symbolically executing the target program.
In this way symbolic execution focuses on valid data struc-
tures, avoiding wasting effort and resources with invalid data
structures, and preventing many consequent false alarms.

The experimental results reported in the paper confirm
that the HEX approach improves over lazy initialization and
over the most relevant state-of-the-art approaches.

We believe that the different approaches can be further
strengthened by exploring their complementarities, and we
are currently working on combining the different approaches
in light of the results obtained so far.

611

8. REFERENCES
[1] A. Bouajjani, C. Drǎgoi, C. Enea, and M. Sighireanu.

Accurate invariant checking for programs
manipulating lists and arrays with infinite data. In
S. Chakraborty and M. Mukund, editors, Automated
Technology for Verification and Analysis, LNCS, pages
167–182. Springer, 2012.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
automated testing based on java predicates. In
International symposium on Software testing and
analysis. ACM, 2002.

[3] P. Braione, G. Denaro, and M. Pezzè. Enhancing
symbolic execution with built-in term rewriting and
constrained lazy initialization. In Proc. of the 2013 9th
Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 411–421, New
York, NY, USA, 2013. ACM.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In USENIX
Symposium on Operating Systems Design and
Implementation, 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: automatically generating
inputs of death. In ACM Conference on Computer and
Communications Security. ACM, 2006.

[6] L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Trans. on Soft.
Eng., 2(3):215–222, Sept. 1976.

[7] A. Coen-Porisini, G. Denaro, C. Ghezzi, and
M. Pezzè. Using symbolic execution for verifying
safety-critical systems. In Proceedings of the Joint
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, 2001.

[8] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A
k-bounded symbolic execution for checking strong
heap properties of open systems. In International
Conference on Automated Software Engineering, 2006.

[9] G. D. Dennis. TSAFE: Building a trusted computing
base for air traffic control software. Master’s thesis,
Massachusetts Institute of Technology, 2003.

[10] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal,
10(4):405–435, 2005.

[11] C. Enea, V. Saveluc, and M. Sighireanu.
Compositional invariant checking for overlaid and
nested linked lists. In Proceedings of the European
Conference on Programming Languages and Systems,
ESOP’13, pages 129–148. Springer-Verlag, 2013.

[12] J. P. Galeotti, N. Rosner, C. G. López Pombo, and
M. F. Frias. Analysis of invariants for efficient bounded
verification. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA
’10, pages 25–36, New York, NY, USA, 2010. ACM.

[13] J. Geldenhuys, N. Aguirre, M. Frias, and W. Visser.
Bounded lazy initialization. In G. Brat, N. Rungta,
and A. Venet, editors, NASA Formal Methods, LNCS
7871. Springer Berlin Heidelberg, 2013.

[14] P. Godefroid, N. Klarlund, and K. Sen. DART:

directed automated random testing. In ACM
Conference on Programming language design and
implementation. ACM, 2005.

[15] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen,
N. Klarlund, R. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In
Proc. of the Int. Workshop on Tools and Algorithms
for Construction and Analysis of Systems, TACAS.
Springer-Verlag, 1995.

[16] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

[17] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A
database of existing faults to enable controlled testing
studies for Java programs. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA), pages 437–440, 2014.

[18] S. Khurshid, C. S. Pǎsǎreanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In Tools and Algorithms for Construction
and Analysis of Systems, LNCS 2619. Springer, 2003.

[19] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[20] B. Liskov and J. Guttag. Program Development in
Java: Abstraction, Specification, and Object-Oriented
Design. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 2000.

[21] P. Madhusudan and X. Qiu. Efficient decision
procedures for heaps using strand. In Proc. of the 18th
International Conference on Static Analysis, SAS’11,
pages 43–59. Springer-Verlag, 2011.

[22] P. Madhusudan, X. Qiu, and A. Stefanescu. Recursive
proofs for inductive tree data-structures. In
Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 123–136, New York,
NY, USA, 2012. ACM.

[23] R. Majumdar and R.-G. Xu. Directed test generation
using symbolic grammars. In Proc. of the Int.
Conference on Automated Software Engineering, ASE
’07, New York, NY, USA, 2007. ACM.

[24] S. McPeak and G. C. Necula. Data structure
specifications via local equality axioms. In Proc. of the
17th International Conference on Computer Aided
Verification, CAV’05. Springer-Verlag, 2005.

[25] A. Møller and M. I. Schwartzbach. The pointer
assertion logic engine. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01,
pages 221–231, New York, NY, USA, 2001. ACM.

[26] C. S. Pasareanu and W. Visser. A survey of new
trends in symbolic execution for software testing and
analysis. International Journal on Software Tools for
Technology Transf., 11(4):339–353, Oct. 2009.

[27] Z. Rakamarić, R. Bruttomesso, A. J. Hu, and
A. Cimatti. Verifying heap-manipulating programs in
an SMT framework. In Proc. of the 5th International
Conference on Automated Technology for Verification
and Analysis, ATVA’07, pages 237–252.
Springer-Verlag, 2007.

[28] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer

612

Science, LICS ’02, pages 55–74, Washington, DC,
USA, 2002. IEEE Computer Society.

[29] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In European Software
Engineering Conference and ACM Symposium on
Foundations of Software Engineering, 2005.

[30] J. H. Siddiqui and S. Khurshid. Staged symbolic
execution. In ACM Symposium on Applied Computing,
2012.

[31] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test

input generation with Java PathFinder. In Proceedings
of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2004),
pages 97–107. ACM, 2004.

[32] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and
A. Bouajjani. A logic of reachable patterns in linked
data-structures. In Proc. of the 9th European Joint
Conference on Foundations of Software Science and
Computation Structures, FOSSACS’06.
Springer-Verlag, 2006.

613

