
A Software Lifecycle Process for Context-Aware Adaptive
Systems ∗

Marco Mori
IMT Institute for Advanced Studies Lucca

Lucca, Italy
marco.mori@imtlucca.it

ABSTRACT
It is increasingly important for computing systems to evolve
their behavior at run-time because of resources uncertainty,
system failures and emerging user needs. Our approach
supports software engineers to analyze and develop context-
aware adaptive applications. The software lifecycle process
we propose supports static and dynamic decision making
mechanisms, run-time consistent evolution and it is amenable
to be automated.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.9 [Software Engineering]: Management

General Terms
Design, Verification

1. RESEARCH PROBLEM AND MOTIVA-
TION

As ubiquitous computing systems are becoming increas-
ingly popular, software engineers have to deal with different
variability dimensions such as the heterogeneity of the un-
derlying communications, executing environment and chang-
ing user needs. In addition even the system may be modeled
as a source of changes taking into account the possible soft-
ware failures [2].
In the software engineering arena, adaptive systems are stud-
ied in order to define methodologies and theories to effi-
ciently and consistently support their evolutions at run-time
[31, 7]. Context plays a key role for the evolution since it
represents the portion of the environment that is beyond
the control of the system but it may influence the system
behavior. Designers define a set of alternative behaviors at
design time while the actual evolution decisions are taken at

∗My research is under the supervision of prof. Paola Inver-
ardi, Università dell’Aquila (paola.inverardi@di.univaq.it)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the firs page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

run-time when the context information are available. Since
the context is not always predictable it is necessary to sup-
port also dynamic adaptations by providing mechanisms to
update the logic of evolution [28]. To this end, the context
needs to be explicitly modeled as proposed in contemporary
research of context-aware systems [5, 18, 25].
We propose context-aware adaptive systems to deal with the
uncertainty shown by the environment, the user and the sys-
tem itself. Indeed, their main ability is to perform run-time
adaptations driven by the ”context”thus promoting software
evolution to the norm rather than considering it as an ex-
ception. Context is characterized by foreseen and unforeseen
variations to which correspond foreseen and unforeseen sys-
tem evolutions. In the foreseen case the system evolves in
order to keep satisfied a fixed set of requirements while in
the unforeseen case the system evolves in order to respond to
requirements variations that are unknown at design-time.
A consensus is emerging in the SE community that these
kind of applications demand for a different software engi-
neering process where the traditional distinction in phases
and their characterization as static activities versus dynamic
ones is disappearing [14, 23]. A challenging research prob-
lem is to define a software lifecycle process to enable software
engineers to design context-aware adaptive applications re-
silient to context and user needs variations. This process
should support consistent system evolutions, thus maintain-
ing the system goal satisfaction in the face of new environ-
mental conditions. To this end, evolutions should be both
functional and non-functional. Run-time and consistent evo-
lutions are achieved exploiting traceability links among sys-
tem models at the different software engineering phases. Re-
quirements, design and implementation artifacts have to be
preserved at run-time along with a unified context model
that supports the management of the evolution logic.

2. BACKGROUND AND RELATED WORK
The notion of context has been exploited in the soft-

ware engineering field in order to define context-aware re-
quirement models, context-aware architectural models and
context-aware implementation models. In the literature dif-
ferent approaches address requirement engineering problems
for context-aware adaptive systems. In [3] the authors have
proposed a framework to explain the relations among the
main concepts concerning requirement engineering for context-
aware adaptive services. The approaches presented in [12]
and [8] describe two different attempts to deal with the
requirement elicitation problem for context-aware adaptive
systems. They define requirement artifacts by means of

412



first-class context entities. In [36] and [34] the authors pro-
pose two different formal representations of context-aware
requirements by including a notion of uncertainty. In [30]
the authors define a complete framework for requirement
engineering to distinguish activities at design-time from ac-
tivities at run-time. They provide a mechanism to evolve the
requirement specification at run-time driven by the user. In
[32] it is claimed that requirements represent the adequate
level to enact the system evolution, thus systems should be
requirement-aware. The authors also show how to achieve
the traceability from requirements to the design in order to
actually achieve the reconfiguration.
Architectural representations for context-aware system have
been surveyed in [5, 11]. Finally at implementation level
Hirschfeld et al. [17] propose a new programming tech-
nique called Context-oriented Programming (COP) in or-
der to adapt the behavior of software entities to the current
execution context. They surveyed different mechanisms to
treat the context explicitly and to achieve the consequent
adaptation for the implementation artifacts at run-time.
Several frameworks address the problem of achieving system
evolution at different granularity level. The Rainbow frame-
work [13] enables architecture-based self-adaptation for soft-
ware systems. It proposes adaptation rules to specify how to
reconfigure system components whenever certain situations
arise. The framework supports non-functional adaptation
whereas it does not consider requirements management at
run-time. In addition there is no notion of consistency check
for the system evolution and there is no explicit definition
of context. The PLASTIC approach [4] applies reconfigu-
ration strategies at implementation level by exploiting an
explicit definition of context. The approach supports non-
functional reconfiguration to statically defined Java artifacts
driven by current context variations. Nevertheless a notion
of consistency check is still missing. A common aspect for
the above mentioned frameworks [13, 4] is that whatever is
the grain of reconfiguration, they do not support evolutions
arising at run-time. They only consider evolution strategies
that are statically analyzed at design-time; thus making the
system unable to achieve reconfigurations required by un-
anticipated user need variations arising at run-time.
In [35] the authors present a three-layered conceptual model
to support the architectural reconfiguration of self-managing
systems. This model entails a Component layer, a Change
Management layer and a Goal Management layer. The Goal
layer identifies the action to perform while the Change layer
executes the required action and interacts with the Compo-
nent layer to add/remove/reconnect components. Through
the Goal Management layer, requirements are managed at
run-time by generating new plans to perform whenever the
deployed ones are not suitable for the current context sit-
uation. This feature supports reconfigurations required by
new requirements arising at run-time. Even if the framework
provides functional and non-functional evolutions there is no
definition of context and a definition of consistency check for
the composition of components is still missing.
To the best of our knowledge the frameworks presented in
the literature do not consider a complete software lifecycle
process for context-aware adaptive systems. They address
only a few of the issues arising from the three software en-
gineering phases. Moreover most approaches are not based
on an explicit context model to support system evolution in
all phases of the software lifecycle process.

3. APPROACH AND UNIQUENESS
My research work concentrates in defining a framework to

support a general lifecycle process for the development and
the evolution of context-aware adaptive systems. We focus
on context-aware requirements, context-aware design mod-
els and context-aware implementations mechanisms.
We have identified two different types of evolutions each
one addressing a different nature of context variability. On
one hand, designers deal with foreseeable context variations
by providing the required system evolutions at design-time.
They statically define the logic of evolution to the foresee-
able context by means of different system variants that have
to be deployed and un-deployed at run-time in order to keep
satisfied a fixed set of system requirements. The selection
among the system variants is driven by the context require-
ments and the non-functional properties that characterize
each variant. On the other hand, the context may change
unpredictably thus causing the change of user needs that can
be expressed as a variation to the requirement set to satisfy.
The user may specify a new requirement as a consequence
of the unforeseen context variation. Therefore the evolution
logic should be revisited at run-time by updating the space
of system variants provided by the designer at design time.
We refer to the first case as foreseen evolution because the
evolution logic is embedded inside the system models and
the foreseeable contexts have been completely characterized
at design time. The second case is called unforeseen evolu-
tion as the evolution logic and the context is not known at
design time and the user is placed into the evolution feed-
back loop. Fig.1 shows how the context affects system evo-
lutions. While in the foreseen evolution the system evolves
to keep satisfied a fixed set of system requirements in dif-
ferent known contexts, the unforeseen evolution is driven by
new requirements arising from unforeseeable contexts.

Figure 1: System Evolutions

Our approach to support context-aware adaptive applica-
tions is inspired by the Software Product Line Engineering
(SPLE) perspective. Among the possible ways to model a
system, SPLE is amenable to represent system variability
and it supports a notion of consistency. In SPLE the basic
unit of behavior is the so called feature that is the smallest
part of a service that can be perceived by the user. The sys-
tem variability is expressed through the space of the system
variants. Each variant is obtained by putting together two
or more features and it shows the feature interaction phe-
nomenon if its features run correctly in isolation but they
give rise to undesired behavior when jointly executed [26,
1, 6]. The work [10] has already shown common research
questions between SPLE and adaptive system and the ne-
cessity to dynamically manage features at run-time. Most

413



recently, Dynamic Software Product lines (DSPL) have been
presented as a new direction in SPL engineering field to deal
with software capable of adapting to changing user needs
and evolving context environment at different binding time
[16, 29]. However in the DSPL field dealing with evolutions
arising at runtime is still an open issue.
Our intention is to take advantage of the methodologies pro-
posed in SPLE to support consistent evolutions for context-
aware adaptive systems. We define a context-aware adap-
tive application in terms of sets of features each one imple-
mented with a component and / or a service. We define a
feature as composed by a context-independent requirement,
a context-dependent requirement, and an implementation
part. The notion of requirements we adopt is inspired by
the taxonomy proposed by Glinz in [15]. A feature is a triple
fi = (Ri, Ci, Ii) where each element is defined as follows:

• Ri is a conjunction of functional, performance and spe-
cific quality requirements (context-independent)

• Ci is a context-dependent constraint requirement

• Ii is the feature implementation expressed as Java code.

The definition above is inspired by [9] which has been in
turn inspired by the Problem Frame approach defined in
[24]. Differently from these approaches we refer to C as the
context requirement instead of the domain assumption.
Each system variant is represented as a different combina-
tion of features expressed as GF = (RF , CF , IF ). At this
level of description we do not explain how to combine fea-
tures. We just suppose to have an abstract union operator
among features which is defined in terms of union operators
for context-independent requirements, context-dependent re-
quirements and implementation components. In concrete
instantiations of the framework these operators will take a
precise form.
We represent the space of admissible system variants by us-
ing the feature diagram defined in the SPLE with a tree
structure [33]. We adopt the absence of feature interaction
as the notion of consistent evolution for a system variant. A
certain variant GF shows a feature interaction phenomenon
if the features in F run correctly in isolation but they give
rise to undesired behavior when they are jointly executed.
The feature interaction for GF is checked as: IF , CF � RF .
This formula is automatically verified at design time to cope
with foreseen evolutions and at run-time in order to support
the unforeseen evolutions. We have defined the consistency
check formula by means of three different problems: the sat-
isfiability for the context requirement C, the satisfiability for
the requirement R and the validation/verification problem
of I against R. The context model is a key aspect in per-
forming the system evolution; it has to be monitored and
updated at each evolution step. It entails the set of entities
based on which our context requirements are defined. Since
in ubiquitous computing the unpredictability of the context
is the main cause of system failures, we believe that the
problem of checking the satisfiability for the context require-
ments plays a key role in supporting consistent evolutions.
In addition we consider the three problems to be run-time
problems since we support a notion of run-time unforeseen
evolution. As a consequence computational issues become
important to actually achieve the consistency check at run-
time. Furthermore we assume that requirements artifacts
are available.

4. RESULTS AND CONTRIBUTIONS
We have defined a general lifecycle process for context-

aware adaptive systems in order to support the consistent
evolutions based on two decision making mechanisms. The
static decision making mechanism supports foreseen evolu-
tions whereas the dynamic decision making mechanism sup-
ports unforeseen evolutions. As shown in our preliminary
work [19] we have provided easy-to-use modeling techniques
for software engineers along with preliminary ideas to enact
run-time evolutions. We have presented an explicit model
of context and we have shown how the system can evolve its
behavior at run-time based on context changes and changing
user needs. We have dealt with the problem of selecting and
executing the most suitable system configuration in a given
context and how to reconfigure the system to augment it
with un-anticipated behavior arising from new requirements
at run-time. We have formalized a notion of consistent evo-
lution based on the context-dependent requirements.
In [22] we have designed and partially implemented a frame-
work that supports our general lifecycle process for context-
aware adaptive systems. We have defined a generic inter-
face architecture that can be implemented by any evolution
framework to support our kinds of evolution.
Our framework is generic and it is amenable to augment the
system with new requirements arising at run-time. Since
new requirements may interact with deployed requirements
we have provided the support to keep those entities at run-
time and check their correctness jointly. In [21] we have for-
malized three consistency checks to provide high-assurance
guarantee to the evolution. In this paper we have also pro-
posed a technique to check context requirements at run-time
with respect to the variations of context resources. In [20]
we have shown how to verify context-independent require-
ments with respect to implementation artifacts. We have
defined a practical technique which exploits the Java Path
Finder tool1.
As far as static decision making mechanisms are concerned
in [27], we have proposed a practical support for context-
aware system reconfiguration based on changing user prefer-
ences. In order to select the best configuration to deploy we
have defined a multi-criteria selection problem by means of
an aggregative objective function that combines user benefit
and cost. This function accumulates the perceived current
user benefit and the probable future user benefit evaluated
exploiting a state-based context prediction model. The re-
configuration cost measures the distance between two sys-
tem variants in terms of features to deploy and un-deploy.
We have validated this approach by simulating the reconfig-
uration process at large scale in order to capture the rele-
vance of considering future contexts. The proposed selection
algorithm performed satisfactory in the set of experiments
that we carried out.
Currently, we are implementing an instance of our frame-
work with specific technologies to define requirements spec-
ifications and implementation artifacts and technologies to
carry out the consistency check. We will also extend the
PLASTIC approach [4] to achieve system reconfigurations
on Java implementation artifacts at run-time for our un-
foreseen evolution. My research will result in a new method-
ological approach in developing and evolving context-aware
adaptive applications. I will show the applicability of the

1http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

414



proposed lifecycle process by applying the target framework
to large scale systems.

5. REFERENCES
[1] M. Alférez, A. Moreira, U. Kulesza, J. Araújo,

R. Mateus, and V. Amaral. Detecting feature
interactions in spl requirements analysis models. In
FOSD, pages 117–123, 2009.

[2] J. Andersson, R. de Lemos, S. Malek, and D. Weyns.
Modeling dimensions of self-adaptive software
systems. In SEAMS, pages 27–47, 2009.

[3] A. F. Andrea and A. Savigni. A framework for
requirements engineering for context-aware services. In
STRAW 01, pages 200–1, 2001.

[4] M. Autili, P. D. Benedetto, and P. Inverardi.
Context-aware adaptive services: The plastic
approach. In FASE, pages 124–139, 2009.

[5] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. IJAHUC, 2(4):263–277,
2007.

[6] J. Bisbal and B. H. C. Cheng. Resource-based
approach to feature interaction in adaptive software.
In WOSS, pages 23–27, 2004.

[7] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
and J. Magee, editors. Software Engineering for
Self-Adaptive Systems, volume 5525 of LNCS, 2009.

[8] J. Choi. Context-driven requirements analysis. In
ICCSA (3), pages 739–748, 2007.

[9] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s
in a feature: A requirements engineering perspective.
In FASE, pages 16–30, 2008.

[10] A. Classen, A. Hubaux, F. Sanen, E. Truyen,
J. Vallejos, P. Costanza, W. De Meuter, P. Heymans,
and W. Joosen. Modelling variability in self-adaptive
systems: Towards a research agenda. In Proc. of
McGPLE at GPCE08, pages 19–26, 2008.

[11] P. D. Costa, L. F. Pires, and M. van Sinderen.
Architectural patterns for context-aware services
platforms. In IWUC, pages 3–18, 2005.

[12] B. Desmet, J. Vallejos, P. Costanza, W. D. Meuter,
and T. D’Hondt. Context-oriented domain analysis. In
CONTEXT, pages 178–191, 2007.

[13] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer, 37(10):46–54, 2004.

[14] C. Ghezzi, P. Inverardi, and C. Montangero.
Dynamically evolvable dependable software: From
oxymoron to reality. In Concurrency, Graphs and
Models, pages 330–353, 2008.

[15] M. Glinz. On non-functional requirements. In RE,
pages 21–26, 2007.

[16] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, and
T. Sintefict. Dynamic software product lines. IEEE
Computer, 41(4):93–95, 2008.

[17] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125–151, 2008.

[18] J. Hong, E. Suh, and S.-J. Kim. Context-aware
systems: A literature review and classification. Expert
Syst. Appl., 36(4):8509–8522, 2009.

[19] P. Inverardi and M. Mori. Feature oriented evolutions
for context-aware adaptive systems. In
EVOL/IWPSE, pages 93–97, 2010.

[20] P. Inverardi and M. Mori. Model checking
requirements at run-time in adaptive systems. In
ASAS at ESEC/FSE, 2011.

[21] P. Inverardi and M. Mori. Requirements models at
run-time to support consistent system evolutions. In
Technical Report, University of L’Aquila, Department
of Computer Science, 2011.

[22] P. Inverardi and M. Mori. A software lifecycle process
to support consistent evolutions. In Tec. Rep. Univ. of
L’Aquila, Department of Computer Science, 2011.

[23] P. Inverardi and M. Tivoli. The future of software:
Adaptation and dependability. In ISSSE, pp 1–31,
2008.

[24] M. Jackson. Problem Frames: Analyzing and
structuring software development problems.
Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 2000.

[25] G. M. Kapitsaki, G. N. Prezerakos, N. D. Tselikas,
and I. S. Venieris. Context-aware service engineering:
A survey. JSS, 82(8), 2009.

[26] D. O. Keck and P. J. Kühn. The feature and service
interaction problem in telecommunications systems. a
survey. IEEE TSE, 24(10):779–796, 1998.

[27] M. Mori, F. Li, C. Dorn, P. Inverardi, and S. Dustdar.
Leveraging state-based user preferences in
context-aware reconfigurations for self-adaptive
systems. In SEFM, 2011.

[28] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime
software adaptation: framework, approaches, and
styles. In ICSE Companion, pages 899–910, 2008.

[29] C. A. Parra, X. Blanc, and L. Duchien. Context
awareness for dynamic service-oriented product lines.
In SPLC, pages 131–140, 2009.

[30] N. A. Qureshi and A. Perini. Requirements
engineering for adaptive service based applications. In
RE, pages 108–111, 2010.

[31] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. TAAS, 4(2), 2009.

[32] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein. Requirements-aware systems: A
research agenda for re for self-adaptive systems. In
RE, pages 95–103, 2010.

[33] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Generic semantics of feature diagrams.
Computer Networks, 51(2):456–479, 2007.

[34] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson,
and J. Mylopoulos. Awareness requirements for
adaptive systems. In SEAMS, pages 60–69, 2011.

[35] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From
goals to components: a combined approach to
self-management. In SEAMS, pages 1–8, 2008.

[36] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng,
and J.-M. Bruel. Relax: Incorporating uncertainty
into the specification of self-adaptive systems. In RE,
pages 79–88, 2009.

415




