
EvoSE: Evolutionary Symbolic Execution

Mauro Baluda
Fraunhofer SIT

Darmstadt, Germany
mauro.baluda@sit.fraunhofer.de

ABSTRACT
Search Based Software Testing (SBST) and Symbolic Exe-
cution (SE) have emerged as the most effective among the
fully automated test input generation techniques. However,
none of the two techniques satisfactorily solves the problem
of generating test cases that exercise specific code elements,
as it is required for example in security vulnerability testing.

This paper proposes EvoSE, an approach that combines
the strengths of SBST and SE. EvoSE implements an evo-
lutionary algorithm that searches the program control flow
graph for symbolic paths that traverse the minimum number
of unsatisfiable branch conditions. Preliminary evaluation
shows that EvoSE outperforms state-of-the-art SE search
strategies when targeting specific code elements.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Verification

Keywords
Test automation, search-based software testing, symbolic
execution

1. INTRODUCTION
Test automation has the potential to drastically reduce

the cost of quality assurance in software development. With
this motivation, a great amount of research has been devoted
in particular to the problem of generating test input values
that thoroughly exercise a software system. Search Based
Software Testing (SBST) and Symbolic Execution (SE) are
two of the most popular approaches to generate test suites
automatically [1].

The problem of finding an input that exercise a specific
code element and the dual problem of proving that a code

element is infeasible are well known undecidable problems. To
avoid wasting resources towards infeasible goals, most recent
SBST and SE approaches aim to maximize code coverage
measures instead of focusing on specific code elements [4,
7]. EvoSE instead aims to generate test cases targeting
specific code elements as this is required, for example, in
security testing where one wishes to exploit a presumable
vulnerability or test the validity of an assertion.

A number of goal oriented SE search strategies have been
proposed to address the problems of testing software patches,
improve code coverage and exploiting security vulnerabili-
ties [12, 13, 14]. These approaches employ ad hoc heuristic
to rank the program branches that should be expanded first
in the next SE iterations with the goal of reaching quickly
the target code elements. EvoSE instead implements a meta-
heuristic exploration of the program execution space thus
overcoming the well known limitations of deterministic best-
first search algorithms.

EvoSE follows the recent line of work that combines SBST
and SE approaches to benefit from their complementary
strengths and weaknesses [17, 3, 8, 5]. However, instead of
searching in the numeric space of program inputs, EvoSE
considers the combinatorial space of the program execu-
tion paths. Metaheuristic algorithms have been successfully
applied in the context of combinatorial problems like the
traveling salesman problem and software model checking [11,
9]. To the best of our knowledge, EvoSE is the first approach
that investigates the use of evolutionary algorithms to guide
the exploration of symbolic execution paths.

2. THE EVOSE APPROACH
EvoSE is a novel test generation approach that combines

SBST and SE aiming to exercise specific program elements.
The main departure from existing SBST approaches is the
identification of a different search space. While classic SBST
techniques perform a search in the input space of a program,
EvoSE considers the space of the program execution paths
that may lead to the target program element.

Classic SBST techniques try to minimize a fitness function
that measures the distance between the concrete execution
and the target code element, this is because most of the pro-
gram inputs produce executions that do not reach the target
code element. Instead EvoSE considers the program execu-
tion paths that reach the target code element in the program
Control Flow Graph (CFG). The CFG is an approximation
of the program behavior and also includes infeasible paths,
that is, paths that cannot be executed under any program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804325

16

input. In essence, EvoSE implements a search in the CFG
for feasible program paths that reach the target code element.

Evolutionary algorithms come in different forms, we de-
signed EvoSE as a memetic algorithm, a metaheuristic al-
gorithm that combines a classic Genetic Algorithm (GA)
with systematic local optimization. In the following we de-
scribe the EvoSE design and in particular we focus on the
problem representation, the fitness function, the crossover
and mutation operators, and finally on the systematic local
search algorithm. The description as well as the current
implementation are limited to the intraprocedural case.

2.1 Problem Representation
EvoSE searches for feasible paths in the program CFG.

The individuals that compose the evolving population are
represented by variable-length lists of branches that are con-
tiguous in the CFG graph. Each list begins with the program
entry point and ends with the target program element. The
initial population of candidate solutions is seeded performing
random walks in the CFG.

1: int s=read();

2: for(int i=0; i < s; i++) {

3: if(i > 100) {

4: exit(ERROR);

5: } else {

6: ...

7: }

8: }

9: exit();

(a) Example program

2

3

4

6

Ind2Ind1

9

CFG

2

3

4 4

3

2

6

3

(b) CFG of the program in Figure 1a and two individuals
of the GA population Ind1 and Ind2

PC1: i=0 && i<s && i>100
PC2: i=0 && i<s && i<=100 && i+1<s && i+1>100

(c) Path conditions of the GA individuals in Figure 1b

Figure 1: Example EvoSE problem

As an example, consider the code in Figure 1a and the
corresponding CFG in Figure 1b. The CFG nodes are la-
beled by the corresponding line numbers in the code, dashed
lines represents CFG portions that can be ignored as they
cannot be part of a path reaching the target node 4. In this
program, the only feasible path that reaches the target is
one that enters the loop 100 times. The two infeasible paths
encoded by the individuals Ind1 and Ind2, constitute the
initial population of the GA, they enter the loop one time
and two times respectively.

2.2 Fitness Function
It is well known that metaheuristic search techniques per-

form better when the search landscape is smooth, that is,
when elements that are nearby in the search space have
similar fitness values [6]. For this reason, state of the art
SBST techniques employ fitness functions that combine two
different metrics: approach level and branch distance. The
approach level is a discrete distance value that is computed
by counting the nodes that separate the exercised path and
the target element in the program CFG. The branch distance
is a smooth measure that, considering the branch with the
smallest approach level, tells how far the execution went from
taking the opposite side of the conditional (the interested
reader can refer to [15] for more details). Similarly, the fitness
function adopted in EvoSE is not a binary value that tells
if the considered execution path is feasible or not, but is in-
stead a continuous value obtained by performing a Dynamic
Symbolic Execution (DSE) of the program along that path.

Classic SE allows to map a certain program execution path
to a program input, if it exists, that produces an execution
following the same path. This can be achieved automatically
by solving the conditions that appear on the path with the
help of an SMT solver. EvoSE uses a MaxSMT solver and
can therefore obtain a smoother measure of how far the path
is from being feasible. Given a list of constraints, MaxSMT
solvers identify the largest subset of elementary constraints
that is satisfiable. The fitness function is computed dynami-
cally by executing the program along the desired path using
as input the solution provided by the MaxSMT.

EvoSE guarantees that the dynamic symbolic execution
follows the desired path by forcing the concrete evaluation of
branch conditions in the style of execution hijacking [16]. The
symbolic evaluation of branch conditions instead is computed
as usual. EvoSE defines a graded feasibility measure by
counting the number of branches that are not in the subset
identified by MaxSMT, this measure is used to direct the
search towards maximally satisfiable paths and eventually
identify feasible execution paths. Graded feasibility can be
regarded as a replacement for the approach level metric.
EvoSE computes the classic branch distance measure for
each unsatisfiable branch along the execution and normalizes
it according to the formula proposed by Arcuri in [2].

In summary, given an execution path p, the fitness value
f(p) that needs to be minimized is the sum of the path’s
graded feasibility grad feas(p) and the normalized branch
distance b dist(p, bi) for all the branch conditions bi that
are not satisfied by the MaxSMT solution maxsmt(p) to the
symbolic constraints collected for path p:

f(p) = grad feas(p) +
∑

bi /∈maxsmt(p)
norm(b dist(p, bi))

(1)

17

Consider the GA individuals Ind1 and Ind2 in Figure 1b.
Both their respective path conditions PC1 and PC2 reported
in Figure 1b are infeasible and their MaxSMT solutions
contains all but the last branch condition (represented with
a bold line). Both the individuals have therefore graded
feasibility 1. The branch distance however is smalled for P2
because the value of i is 0 and thus the expression i + 1 is
closer to 100 compared to i. This matches our intuition that
an execution that gets closer to executing the loop 100 times
should be favored in the population evolution.

The fitness function used in EvoSE, while being closely
related to the classic branch distance, is computed for each
unsatisfied condition along the path and not only for the
branch that is closest to the target code element. For this
reason, the genetic algorithm favors individuals that con-
tain a large number of jointly-satisfiable branch conditions,
independently of their position in the path. In light of Gold-
berg’s building block hypothesis, we suggest that sequences of
jointly-satisfiable branch conditions constitute the fundamen-
tal building blocks of the optimal, fully satisfiable, execution
path.

2.3 Crossover Operator
Cut and splice is a typical choice as a one-point crossover

operator for individuals of variable length like the paths in a
graph. Given two individuals of the form A|B (list A followed
by list B) and C|D, the new offsprings will have the form A|D

and C|B respectively.
To guarantee that the newly generated offsprings encode

existing paths in the CFG, EvoSE combines cut and splice
with a repair strategy that uses the CFG to connect part A of
the first individual with the longest possible postfix of part D
of the second individual. In the example from Figure 1, the
crossover operator could try to join the prefix [2,3] of Ind1
with the postfix [3,6,3,4] of Ind2. Such crossover produces
the path [2,3,3,6,3,4] which is not a valid path and needs to
be repaired.

The repair strategy would use the CFG to reconnect the
two sub-paths and would produce the individual Ind3 that
encodes the path [2,3,6,3,6,3,4]. If connecting the last branch
in the prefix of Ind1 to the first branch in the postfix of Ind2
is not possible, the repair strategy would consider the next
branch in the postfix of Ind2. Eventually the process will
produce a valid individual as Ind1 and Ind2 share at least
the last branch, that is, the target code element.

2.4 Mutation Operator
The EvoSE mutation operator selects randomly a branch

in the individual and replaces it with the paired branch in the
CFG. This produces an individual that encodes an execution
path in which one branch condition evaluates differently
respect to the original individual. Consider Ind3 from the
previews paragraph, the mutation operator might decide for
example to replace branch 4 with the paired branch 6 (the
execution of branch 4 or 6 being the two possible outcomes
of the evaluation of the condition at line 2).

As for the case of the crossover operator in Section 2.3,
the individual obtained after the mutation might not encode
a valid CFG path. This is the case in our example where the
mutated path would end on branch 6 and not on the target
branch 4. The repair strategy described earlier is finally
used to reconnect branch 6 to branch 4 producing the valid
individual Ind4 that encodes the path [2,3,6,3,6,3,6,3,4].

2.5 Local Search
GA can be very effective in finding solutions that ap-

proximate the global optimum but might miss some local
optimization opportunity due to their stochastic nature. To
overcome this limitation, memetic algorithms combine GA
with deterministic local optimization [10].

For a given notion of neighborhood, a local search is per-
formed by systematically evaluating all the neighbors of a
candidate solution, retaining the individual with the best
fitness. The process is repeated until no further improvement
is possible. In our problem representation we could identify
as neighbor of a given individual, any individual produced
by flipping one of the conditions along the path, that is,
any individual that can be obtained by a single application
of the mutation operator defined in Section 2.4. This defi-
nition however produces a very large neighborhood that is
impractical for a deterministic local search.

In EvoSE we included a local search strategy that visits
all the neighbors that can be obtained by replacing one of
the infeasible branches along the individual’s execution path.
We called this simple strategy regret minimization and we
applied it as a fourth genetic operator operator after selec-
tion, crossover and mutation. Our preliminary evaluation
showed that regret minimization is effective in improving
the optimization process and does not affect negatively the
EvoSE performance.

Consider again the individual Ind1 from Figure 1b. The
only unsatisfied condition in the encoded path is the last one:
i>100. Flipping this condition produces the individual Ind2
that has a better fitness then Ind1 as the only unsatisfied
condition (i.e. i+1>100) leads to a smaller branch distance.

3. PRELIMINARY EVALUATION
We implemented EvoSE with the help of the open source

evolutionary algorithms framework DEAP 1 and the sym-
bolic execution engine CREST 2. We implemented the evo-
lutionary operators described in Section 2 using the DEAP
infrastructure . We modified CREST to symbolically execute
(possibly) infeasible paths using execution hijacking, inte-
grate the MaxSMT solver Yices 3, and compute the fitness
function from Equation 1.

1: extern char *curr_ptr;

2: GetKeyword(char *kw) {

3: char word[KWDSLEN+1];

4: char ch=getchar(curr_ptr);

5: int i=0;

6: while((isalnum(ch)||ch==’_’) && i<KWDSLEN) {

7: word[i++]=ch;

8: ch = getchar(curr_ptr);

9: }

10: word[i]=0;

11: if(strcmp(kw, word) == 0) {

12: printf("TARGET!");

13: }

14: }

Figure 2: A two-pass text parser.

1 https://deap.readthedocs.org
2 https://code.google.com/p/crest
3 http://yices.csl.sri.com

18

We evaluated EvoSE on the function GetKeyword that
implements a two-pass text parser. A simplified version of
the parser code is in Figure 2. The function execution reaches
the target branch at line 12 when the keyword pointed by the
variable kw is found on the input buffer pointed by curr_ptr.
The loop at lines 6—9 filters out the input characters that
are not alphanumeric.

From our experience, it is very hard for classic SE to gener-
ate an input buffer that reaches line 12. This is because the
decision at line 11 depends from which branch was traversed
earlier at line 6. Only characters that are alphanumeric in
fact, can match the alphanumeric keyword kw, this relation
however cannot be observed by an analysis that explores
paths independently. In EvoSE, paths that correspond to in-
puts with many alphanumeric characters will produce smaller
fitness values due to the small branch distance at line 11 and
will therefore be favored in the evolutionary process.

We compared EvoSE against the different SE search strate-
gies implemented by CREST. We used keywords kw of vari-
able lengths and limited the execution time to 60 minutes for
each of the experiments. We found that EvoSE could discover
keywords of length up to 50 characters while CREST could
only identify keywords up to 4 characters long. The anal-
ysis of the results revealed that EvoSE needed to generate
paths over 1000 branches long to reach the target line, such
depth analysis of the symbolic execution space is normally
considered out of reach. These first empirical results indicate
that evolutionary algorithms can be effective in directing the
exploration of SE paths towards target program elements.

4. CONCLUSION
EvoSE is a novel, goal-oriented test generation technique

that combines SBST and SE. The core of the technique is a
metaheuristic search strategy to efficiently explore program
executions paths. Preliminary experimental results indicate
that EvoSE can be more effective then classic SE strategies
in producing test inputs that exercise specific code elements.

Future research directions include the extension of the
genetic operators to the interprocedural case, the investi-
gation of alternative population seeding strategies and a
thorough evaluation of the EvoSE effectiveness, in particular
for problems arising in the context of security testing.

5. REFERENCES
[1] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.

Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and
P. Mcminn. An orchestrated survey of methodologies for
automated software test case generation. J. of Systems
and Software, 86(8):1978–2001, 2013.

[2] A. Arcuri. It really does matter how you normalize the
branch distance in search-based software testing.
Software Testing, Verification and Reliability,
23(2):119–147, 2013.

[3] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia,
P. McMinn, P. Tonella, and T. Vos. Symbolic
search-based testing. In Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference
on, pages 53–62, Nov 2011.

[4] M. Baluda, P. Braione, G. Denaro, and M. Pezzè.
Enhancing structural software coverage by incrementally
computing branch executability. Software Quality
Journal, 19(4):725–751, 2011.

[5] P. Dinges and G. Agha. Solving complex path conditions
through heuristic search on induced polytopes. In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE 2014, pages 425–436, New York, NY, USA, 2014.
ACM.

[6] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. SpringerVerlag, 2003.

[7] G. Fraser and A. Arcuri. Whole test suite generation.
IEEE Transactions on Software Engineering, 39(2):276
–291, feb. 2013.

[8] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving
search-based test suite generation with dynamic
symbolic execution. In IEEE International Symposium
on Software Reliability Engineering, 2013.

[9] P. Godefroid and S. Khurshid. Exploring very large state
spaces using genetic algorithms. In J.-P. Katoen and
P. Stevens, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 2280 of
Lecture Notes in Computer Science, pages 266–280.
Springer Berlin Heidelberg, 2002.

[10] H. Ishibuchi, T. Yoshida, and T. Murata. Balance
between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop
scheduling. Evolutionary Computation, IEEE
Transactions on, 7(2):204–223, April 2003.

[11] P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, and
S. Dizdarevic. Genetic algorithms for the travelling
salesman problem: A review of representations and
operators. Artificial Intelligence Review, 13(2):129–170,
1999.

[12] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks.
Directed symbolic execution. In Proceedings of the 18th
International Conference on Static Analysis, SAS’11,
pages 95–111, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] P. D. Marinescu and C. Cadar. Katch: High-coverage
testing of software patches. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 235–245, New
York, NY, USA, 2013. ACM.

[14] S. Sidiroglou-Douskos, E. Lahtinen, N. Rittenhouse,
P. Piselli, F. Long, D. Kim, and M. Rinard. Targeted
automatic integer overflow discovery using goal-directed
conditional branch enforcement. SIGPLAN Not.,
50(4):473–486, Mar. 2015.

[15] N. Tracey, J. Clark, K. Mander, and J. McDermid. An
automated framework for structural test-data generation.
In Proceedings of the 13th IEEE International
Conference on Automated Software Engineering, ASE
’98, Washington, DC, USA, 1998. IEEE Computer
Society.

[16] P. Tsankov, W. Jin, A. Orso, and S. Sinha. Execution
hijacking: Improving dynamic analysis by flying off
course. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing,
Verification and Validation, ICST ’11, pages 200–209,
Washington, DC, USA, 2011. IEEE Computer Society.

[17] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and

Networks (DSN 2009), pages 359–368, June-July 2009.

19

