
The Complementary Aspect of Automatically and Manually
Generated Test Case Sets

Auri M. R. Vincenzi
Department of Computing
Federal University of São

Carlos
São Carlos, SP, Brazil
auri@dc.ufscar.br

Tiago Bachiega
Department of Computing
Federal University of São

Carlos
São Carlos, SP, Brazil

628247@comp.ufscar.br

Daniel G. de Oliveira
Instituto de Informática

Universidade Federal de
Goiás

Goiânia, GO, Brazil
dangogyn@gmail.com

Simone R. S. de Souza
Institute of Mathematics and

Computer Sciences
University of São Paulo
São Carlos, SP, Brazil
srocio@icmc.usp.br

José C. Maldonado
Institute of Mathematics and

Computer Sciences
University of São Paulo
São Carlos, SP, Brazil

jcmaldon@icmc.usp.br

ABSTRACT
The test is a mandatory activity for software quality assu-
rance. The knowledge about the software under testing is
necessary to generate high-quality test cases, but to exe-
cute more than 80% of its source code is not an easy task,
and demands an in-depth knowledge of the business rules
it implements. In this article, we investigate the adequacy,
effectiveness, and cost of manually generated test sets versus
automatically generated test sets for Java programs. We
observed that, in general, manual test sets determine higher
statement coverage and mutation score than automatically
generated test sets. But one interesting aspect recognized is
that the automatically generated test sets are complementary
to the manual test set. When we combined manual with
automated test sets, the resultant test sets overcame in more
that 10%, on average, statement coverage and mutation score
when compared to the rates of manual test set, keeping a
reasonable cost. Therefore, we advocate that we should con-
centrate the use of manually generated test sets on testing
essential and critical parts of the software.

CCS Concepts
•General and reference → Empirical studies; Vali-
dation; Verification; •Software and its engineering →
Software testing and debugging; Empirical software
validation;

Keywords
Software Testing; Manual Testing; Automated Testing; Au-
tomated Test Data Generation

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

A-TEST’16, November 18 2016, Seattle, WA, USA

ACM ISBN 978-1-4503-4401-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2994291.2994295

1. INTRODUCTION
The test is a mandatory activity to ensure software quality.

We know that earlier a failure is detected lower the cost of
correction the faults responsible for the failure [5]. Usually,
the test starts at the unit level, followed by the test at
integration level and system level. The emphasis of this
study is testing at unit level.

One important part of the testing activity is the selection of
test cases to evaluate each unit under testing. Such test cases
can be manually generated by the tester or using automatic
test generators. In the latter, in general, it is created only
the test data, i.e., the input of the test case because the
generator has no knowledge about the product business rule
and can not automatically generate the expected output for
each input.

This work presents the results of an evaluation of ade-
quacy, effectiveness, and cost of manually and automatically
generated test sets for a set of 32 software products which
implement data structures. We used the manually generated
test cases from a previous work [8]. According to Souza et
al. [8], a master’s student created the manual test set for each
program based on Equivalence Partitioning and Boundary
Value Analysis testing criteria.

Additionally, we used three different test data generators –
EvoSuite [11], Randoop [17], and CodePro [12] – to generate
test sets automatically. We use EvoSuite [11] because it
represents the state of the art of test data generator [11].
Randoop [17] because it is a random test data generator.
Finally, we use CodePro [12] because, besides it is not an
active project anymore, it integrates easily with Eclipse.
Moreover, these tools generate test sets in JUnit format,
making the data collection automation easier.

The primary purpose is to investigate the quality of the
manual and automatically generated test sets isolated and
combined concerning:

• adequacy, based on the statement coverage criterion;

• effectiveness, based on mutation testing; and

• cost, based on the number of generated test cases.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’16, November 18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4401-2/16/11...$15.00

http://dx.doi.org/10.1145/2994291.2994295

23

Observe that there are several ways to measure the cost,
such as the time spend to generate the test set or the time to
learn/set up automated test generators. Since the programs
we are testing are relatively small, we decided to measure the
cost in terms of number of generated test cases and explore
these different cost metrics on further experiments.

We organized the paper as follows. In Section 2, we pre-
sent the background necessary to understand this article. In
Section 3 we discuss related work. In Section 4, we use the
Goal Question Metric template to define the experiment we
performed. In Section 5, we present the preparation for the
experiment execution. In Section 6, we describe the expe-
riment operational aspects. In Section 7, we introduce the
data and analyze the results obtained. Finally, in Section 8,
we draw the conclusion and point out future work.

2. BACKGROUND
A test case is a tuple 〈I, EO〉 where I is input, also called

test data, and EO is the expected output concerning the unit
specification. When we execute the unit with I it produces
the resulting output, RO. When RO is equal to EO, the
unit under testing behaves as specified, on the other hand, a
failure is detected by the test case.

Observe that the identification of the EO is not an easy
task and, in general, demands human intervention, making
the cost of creating test sets for a huge number of units
prohibitive, because the tester will spend a lot of time on
selecting inputs and determine the expected output for each
one of them.

Automated test generators generate input data I, but not
the expected output data EO. In general, EO is defined later
by the tester, who knows the unit specification and can infer
EO for each automatically generated I.

In the case of the automated generators used in this study,
they adopted the following strategy. First, they read the
source or bytecode of a given unit under testing (UUT).
Second, they generate a set of input data SI for UUT. Third,
they run UUT with each I ∈ SI and collect the resulting
output RO. Forth, they assume RO is the expected output
EO and create the test case 〈I, RO〉.

Observe that, in this situation, all generated test case will
pass in the current implementation of UUT, i.e., no test case
will fail. These test cases, which assume the expected output
as the current resulting output, is called by the authors of
such tools as “regression test cases” [17, 12].

Automatic test data generation is useful when it can gene-
rate a few test cases which improve the coverage of a given
testing criterion. Moreover, the main advantages of using
automatic test data generators are that they can make the
testing process faster, cheaper and reproducible because they
can generate the same test set as many times we need very
quickly. The primary disadvantage is that, in general, they
are not able to generate test data to cover specific business
rule, demanding human intervention in this case.

According to our results, manual and automatically genera-
ted test sets are complementary and should be used together
to improve the test set quality.

3. RELATED WORK
Other researchers have already evaluated the relationship

of manual and automatically generated test sets in a different

context, using a different set of tools and programs. Below,
we described some of these works.

Leitner et al. [14] agree that manual and automated tests
are complementary. They developed a tool, called AutoTest,
which tries to combine the best practices of both worlds.
AutoTest assumes the developers adopt the concept of de-
sign by contract during software development. Contracts
are executable preconditions, postconditions, and invariants
embedded in the software source code. AutoTest uses the
contract information to automatically generate test cases.
Moreover, it also allows the tester to specify manually test
cases for specific purposes such that testing complex busi-
ness rules, while automatically generated test cases test other
parts of the software. Although interesting, to get all benefits
provided by the tool, developers must include the contracts
in the software source code.

Smeets and Simons [20] evaluated the quality of manual
JUnit test set and test sets generated by two automatic test
data generator – Randoop and JWalk [19] – against mutants
generated by MuJava [15]. They argued that automatic test
generators, in general, are better than humans in the sense
they ensure completeness in areas where tests are tedious to
write, or when you are looking for particular cases, hard to
discover. In their study, mutation score determined by both,
manually and automated test sets, are low, below 70%, and
all test sets can be considered incomplete on reaching high
statement coverage and killing mutants.

Kracht, Petrovic, and Walcott-Justice [13] performed an
empirical evaluation of automatically versus manually gene-
rated test suites, aiming at aiding developers in reducing the
cost of the testing process. They used ten programs available
from a software repository [10]. The programs were selected
based on their size and availability of manually generated
JUnit test sets. EvoSuite and CodePro were the automatic
test generators they compared. The quality of test sets was
evaluated based on branch coverage and mutation testing
criteria. Their results showed that EvoSuite is better than
CodePro regarding branch coverage and mutation score but
manually generated test sets obtained a higher strong cor-
relation between branch coverage [18] and mutation score.
Although they used a different mutation testing tool for sup-
porting mutation testing, the results obtained are similar to
the ones we reported below. Moreover, they selected the set
of program for experimentation based on their size regarding
lines of code. Their large program with 18K lines of code
has an average Cyclomatic Complexity (CC) of 2.82, and
the smallest program with 783 lines has an average CC of
2.05. In our study, although we are using small programs
regarding source code lines, the average CC is 3.1.

4. EXPERIMENT DEFINITION
We used Goal Question Metric template [4] for experi-

mental study definition. Its main points are summarized as
follow:

• Object of Study: The objects of study are manual and
automatically generated test sets.

• Purpose: The purpose is to evaluate the complementary
aspects of manual and automatically generated test
sets.

• Quality Focus: The quality focus is the adequacy, effec-
tiveness, and cost of test sets, evaluated against state-

24

ment coverage criterion, mutation testing criterion [1,
2], and number of test cases in the test set.

• Perspective: The perspective of the experimental study
is from the researcher’s point of view.

• Context: The researcher defined the experiment, consi-
dering a set of programs in the data structure domain
and also performed the study. The study involves a par-
ticipant (the first author) working on a set of objects,
i.e., it is a multi-object variation study.

5. EXPERIMENT PLANNING
In the experiment planning, we set out the hypotheses

and variables of the study. The plan is created and guides
the conduction and analysis of the generated data. Next,
we provide an overview of the main steps of the planning
activity.

5.1 Context Selection
As mentioned in the introduction, the primary goal of

our experiment is to investigate the complementary aspects
of manually and automatically generated test sets. In the
investigation, we measure the statement coverage of each test
set, as well the mutation score, i.e., the number of mutants
killed by the test set over the total number of generated
non-equivalent mutants. Also, we evaluate the size of each
test set.

We take a set of 32 Java programs which implement data
structures, and the corresponding test sets from [8]. The
manual test sets were generated based on the program speci-
fication, considering the functional criteria: class partition
and boundary value analysis [18].

Thus, we classified our experiment as an offline study,
performed by a graduate student, addressing a real problem –
identification and comparison of adequacy, effectiveness, and
cost of manual and automatically generated test sets in a
particular context.

5.2 Formulation of Hypotheses
Our experimental study aims at evaluating the comple-

mentary aspect of test sets manually and automatically gene-
rated, looking for evidence that may define new hypotheses
for future research.

We measured the Adequacy of a test set regarding state-
ment coverage test criterion, the Effectiveness of a test set
regarding the mutation score it determines, and the Cost
considering the number of test cases in the test set. All
these measures can be influenced by (i) the testing tools
adopted; (ii) the skill(s) of tester(s) to adequately test the
programs, and (iii) the size and complexity of the programs
under testing.

Item (ii) is the same for all 32 programs because only one
tester produced the manual test sets for these programs [8]. In
this way, we defined the formal hypothesis under investigation
as presented in Table 1:

5.3 Selection of Variables
Based on the context and the established hypotheses, we

defined the independent and dependent variables for the
experiment.

5.3.1 Independent Variables

Table 1: Hypothesis formalized – Adequacy, Effecti-
veness and Cost
Null Hypothesis Alternative Hypothesis
There is no difference of ade-
quacy among the manual (M)
and automated test sets (A).
H10 : Adequacy(M) =
Adequacy(A)

There is a difference of ade-
quacy among the manual (M)
and automated test sets (A).
H11 : Adequacy(M) 6=
Adequacy(A)

There is no difference of effecti-
veness among the manual (M)
and automated test sets (A).
H20 : Effectiveness(M) =
Effectiveness(A)

There is a difference of effecti-
veness among the manual (M)
and automated test sets (A).
H21 : Effectiveness(M) 6=
Effectiveness(A)

There is no difference of cost
among the manual (M) and au-
tomated test sets (A). H30 :
Cost(M) = Cost(A)

There is a difference of cost
among the manual (M) and au-
tomated test sets (A). H31 :
Cost(M) 6= Cost(A)

An independent variable is any variable that can be mani-
pulated or controlled in the process of experimentation [21].
The primary independent variables are: i) the testing to-
ols adopted; iii) the testing criteria used; iv) the size and
complexity of the programs under test; v) the tester’s skills
for applying the testing criteria; vi) the test sets. The last
one, test sets, is the only factor of interest to the experiment.
This factor has two treatments: manual and automated. The
other variables in the experiment were set not to interfere
with the results obtained.

5.3.2 Dependent Variables
The dependent variables are those in which it is possible

to observe the effects of manipulation of the independent
variables [21]. In our study, the dependent variable defined
to describe the adequacy of the test sets is the statement
coverage/program.

The effectiveness of the test set is the mutation
score/program. We use mutation testing as a fault mo-
del to evaluate the capacity of the test sets on detecting
a well-known set of faults represented by the mutants [1].
Greater the number of mutants a test set kills greater its
effectiveness in detecting faults.

The dependent variables defined to describe the costs of
the test set is the number of test cases/test set.

We also collected other metrics as detailed in Section 6.2.

5.4 Experiment Design
The experiment design has a direct impact on how to

analyze the results. A suitable design also serves to minimize
the influence of adverse factors on the results. As established
earlier, our study addresses only one factor of interest, i.e.,
the test set quality.

Figure 1 summarizes the test sets evaluation strategy we
follow. From a program P and specification SP , we create a
manual test set. Using the automatic test data generators,
EvoSuite (E), CodePro (C) and Randoop (R), we generated
three automated test sets for each program P .

Concerning Randoop, we fixed the maximum number of
test case for each program as the maximum number of test
cases generated by manual or generated using optimizations
techniques. We also repeated the random test set generation
30 times and computed the average of the number of test cases
generated and also the average of the statement coverage
and the mutation score obtained.

25

Figure 1: Test sets evaluation strategy.

Mutation testing is supported by Pitest (PIT) [7] which
makes it possible to compute the mutation score and also
statement coverage after each test set execution.

We combined the test sets to evaluate the complementary
aspect between them. For instance, M ∪ E, i.e., a test set
composed of the union of manual with EvoSuite test set. In
another test set, we combined M ∪ E ∪ C, representing the
union of manual, EvoSuite, and CodePro test sets. Finally,
we combined M∪E∪C∪R, representing the union of manual,
EvoSuite, CodePro, and Randoop test sets. In case of the
random test sets, since we generate 30 test sets for each
program, we get one of these 30 test sets at random to create
the combined test sets. For all these combined test sets we
also measured the statement coverage and mutation score.

6. EXPERIMENT OPERATION
The experiment operation includes the preparation of ar-

tifacts and tools, the execution of activities defined in the
experiment plan and the validation of the data collected
during the execution.

6.1 Preparation
As we mentioned, we used 32 Java programs to conduct our

experiment. They implement traditional data structures [22].
Souza et al. [8] also used the same set of programs in their
previous experiment, from where we also took the manual
test sets for each program. More information about them
can be found elsewhere in [8].

Before we use the programs in our experiment, we need
to perform some adjustments. Since all the tools we used
can be called by Maven [3] scripts, we create a Maven Pro-
ject for each program using Eclipse [9]. Moreover, we also
standardized the test set names such that, all test sets of a
given tool have the same name, independently of the program
under testing. The experiment is executed in a notebook
Dell Inspiron, running Linux Ubuntu 16.04 LTS 64 bits, with
8 Gb of RAM and 1 Tb of hard disk.

After these adjustments and configurations, we wrote
Python scripts to call Maven for program and test sets compi-
lation, test sets execution, statement coverage and mutation
testing computation and test report generation. Table 2
summarizes the tools and versions we used and their purpose
in our experiment.

6.2 Execution
The first step in program execution is the computation of

static metrics on each program (Table 3). For each program
we compute the following metrics:

• the Non Commenting Source Statements (NCSS);

• the average Cyclomatic Complecity Number (CCN);

• the number of test cases on each test set Manual (M),
EvoSuite (E), CodePro (C);

• the maximum number of test cases from M, E or C
which is used to fixed the maximum number of random
generated test cases;

• the average number of test cases generated by Randoop
(R);

• the number of requirements demanded to cover state-
ment coverage; and

• the number of generated mutants considering all muta-
tion operators available in PIT.

Table 2: Tools version and purpose
Tool Version Purpose

JavaNCSS 32.53 Static Metric Computation
EvoSuite 1.0.3 Test Generator
CodePro 7.1.0 Test Generator
Randoop 3.0.1 Test Generator

Pitest 1.1.10 Mutation and Coverage Testing
Eclipse 4.5 Integrate Development Environment
Maven 3.3.3 Application Builder
JUnit 4.12 Framework for Unit Testing

Python 2.7.11 Script language

We did not spend time on generating manual test sets.
In the work of Souza et al. [8], a master student created
the manual test sets based on functional testing criteria
Equivalence Partitioning and Boundary Value Analysis for
all 32 programs. We took these test sets to use in our
experiment [8].

The execution time for this experiment corresponds to
the time to execute each test generator on each program,
plus the time to run the scripts to collect testing reports
about the statement coverage and mutation score for each
test set individually, and test set combinations, as explained
in Section 5.4.

An important information here is that we run the test
generators using their default configuration, except for Ran-
doop. For Randoop we generated 30 different test sets for
each program to avoid any bias, fixing the maximum number
of random test cases as the maximum number of test cases
generated by the other ways. So, Randoop takes more time
to create test sets and collect the testing reports.

6.3 Data Validation
Before we run the scripts for automatic data collection, we

run all the tools manually in two different programs to make
sure we will get the necessary information. Later we confront
the manually collected information with the one gathered by
the scripts, as we got no difference in the data we increased
our confidence in our scripts and started the data collection
for all 32 programs.

26

7. DATA ANALYSIS
First, we would like to characterize the programs we used

in our experiment. From Table 3 we can see that they
are, in general, simple programs, implemented by 1 to 3
classes (1.5 on average), 6.2 methods on average, summing
up around 40,5 lines of code. Column CCM corresponds to
the maximum cyclomatic complexity found in the methods
of a given program, and CCA is the average cyclomatic
complexity. CCM varies from 2 (minimum) to 9 (maximum)
cyclomatic complexity, 4.8 on average. CCA ranges from 1.25
(minimum) to 9 (maximum) average cyclomatic complexity,
3.1 on average.

The last two column presents the number of test require-
ments demanded by statement coverage criterion and mu-
tation testing criterion. In the case of mutation testing, we
used all mutation operators implemented on PIT.

The columns labeled M , E, and C correspond to the num-
ber of test cases generated manually (M), automatically by
EvoSuite (E), and automatically by CodePro (C). Column
“R Limit” is the maximum value between M , E and C and is
used as a threshold to limit the number of random test cases
Randoop is allowed to generate in our study. Column R cor-
responds to the average number of test cases on 30 different
random test sets Randoop generates for each program.

Observe that Manual test set has, on average, 9.8 test
cases. EvoSuite generates 5.5 test cases on average; CodePro
generates 13.5 test cases on average, and Randoop generates
10.3 test cases on average. Particularly for EvoSuite and
CodePro, we consider these numbers of test cases manageable
in the sense that if the tester wants to check if they are correct,
it is a feasible task. Moreover, the standard deviation from
M and E test sets is smaller than the ones presented by C
and R. Therefore, in the case of cost, we should accept the
alternative hypothesis H21 that there is a difference of cost
between manual and automated test sets.

Table 4 presents the data about the statement coverage
determined by each test set and the mutation score obtained.

From Table 4, considering individual test sets, from better
to worst, we have M , E, R and C. On average, M obtained a
coverage of 87.8% with standard deviation (SD) of 16.9%. E
obtained a coverage of 81.7% and SD of 29.1. R obtained a
coverage of 77.5% and SD of 17.3; and C obtained a coverage
of 73.0 and SD of 22.6%. But there are specific situations
where one test set performs better than other. We highlight
in grayscale the cells where each test set performs better
than the others. When the coverage is the same, we highlight
all test sets cells with the same value.

Observing the pattern, E generates more test sets with
100% of coverage followed by M . Only for programs 27, 28
and 31, C obtained better results. They are among the most
complex programs, and both M and E test sets could not
overcome C. EvoSuite fails to generate test cases for program
24. Although Table 3 indicates that EvoSuite produced one
test case for program 24, it is an empty test case as presented
in Figure 2.

We could not identify the reason for this until the time
of written this paper. Further, we intend to investigate this
fact.

Considering the hypotheses we have established, we apply
the Shapiro-Wilk normality test based on the data about
coverage, mutation score (Table 4) and number of test cases
(Table 3). The results indicate that the data does not have a
normal distribution with a confidence level of 95% (p-value

≤ 0.05). This suggest the use of a non-parametric test and
we used the Wilcoxon rank sum test to verify the difference
among groups (the manual and automated test sets), con-
sidering a level of confidence of 95% (α = 0.05). Column
“p-value” shows the results of the test for each pair of test
sets (Tables 5 to 7). Since we are testing multiple hypotheses,
we applied the Holm-Bonferroni correction method which
resulted in the column “corrected p-value” (Tables 5 to 7).

public class Evo {

@Test

public void notGeneratedAnyTest() {

// EvoSuite did not generate any tests

}

Figure 2: Empty test case generated by EvoSuite.

7.1 Analysis of Adequacy
Table 5 presents the Wilcoxon test on statement coverage

criterion of manual and automated test sets for all 32 pro-
grams. The statistics suggest that concerning Manual (M)
and EvoSuite (E) test sets, and Manual (M) and Randoop
(R) test sets there is no statistical difference in terms of
adequacy because the corrected p-value is above 0.05. The-
refore, considering these test sets we have to accept the null
hypothesis H10. On the other hand, there is a statistical
difference between Manual (M) and CodePro (C) test sets
because the corrected p-value is below 0.05 and, therefore,
we rejected the null hypothesis, in this case, accepting the
alternative hypothesis H11.

7.2 Analysis of Effectiveness
Table 6 presents the Wilcoxon test on mutation score of

manual and automated test sets for all 32 programs. In this
case, observe that the pairwise comparison of manual with
the automated test, the test suggest there is a significant
statistical difference, and we rejected the null hypothesis,
accepting the alternative hypothesis H21 that manual test
and automated test sets are different regarding effectiveness.

7.3 Analysis of Cost
Finally, Table 7 presents the Wilcoxon test on number

of test cases generated manually or automatically for all 32
programs. In this case, observe that for M and E there is
significant statistical difference in the number of test cases
and we reject the null hypothesis H30, accepting H31. On
the other hand, comparing M and C, and M and R there is no
difference in the number of test sets of manual and automated
test sets, and, therefore, we accept the null hypothesis H30.

7.4 Complementary Aspect of Test Sets
Based on the analysis above and in the grayscale patterns

of individual test sets, we observed that it may have a com-
plementary aspect complementary aspect between these test
sets. In this sense, we decided to explore an incremental
combination of test sets to check how much we could im-
prove the adequacy and effectiveness. Observe that not all
the test sets combinations were explored because we intend
to investigate this in a further study.

For instance, considering the union of M and E, the co-
verage obtained is presented in column M ∪ E in Table 4.

27

Table 3: Static information of the Java programs
ID Program #Cls #Met NCSS CCM CCA M E C R Limit R #Req #Mut
1 Max 1 1 8 3 3.0 3 6 3 6 5.3 4 14
2 MaxMin1 1 1 13 4 4.0 5 6 3 6 5.0 8 21
3 MaxMin2 1 1 14 4 4.0 5 5 4 5 4.2 8 21
4 MaxMin3 1 1 32 9 9.0 5 10 5 10 8.0 16 61
5 Sort1 1 1 11 4 4.0 3 4 4 4 3.5 10 21
6 FibRec 1 1 8 2 2.0 3 4 2 4 4.0 6 12
7 FibIte 1 1 8 2 2.0 3 4 2 4 4.0 6 12
8 MaxMinRec 1 1 26 5 5.0 7 3 4 7 6.7 13 41
9 Mergesort 1 2 22 6 4.0 6 1 2 6 4.0 16 56
10 MultMatrixCost 1 1 18 6 6.0 5 4 6 6 4.7 14 75
11 ListArray 1 4 20 3 1.8 14 7 7 14 6.4 12 29
12 ListAutoRef 2 4 23 2 1.3 7 3 6 7 3.3 12 21
13 StackArray 1 5 20 3 1.8 17 10 8 17 8.1 12 27
14 StackAutoRef 2 5 27 3 1.4 10 5 7 10 4.8 17 27
15 QueueArray 1 5 24 3 2.0 14 7 9 14 6.8 19 40
16 QueueAutoRef 2 5 32 3 1.6 10 5 8 10 4.8 23 32
17 Sort2 2 7 74 6 3.4 15 7 26 26 19.5 49 141
18 HeapSort 1 9 59 5 2.7 21 6 25 25 14.2 40 116
19 PartialSorting 1 10 62 5 2.5 25 14 26 26 15.6 42 120
20 BinarySearch 1 4 32 8 3.5 10 8 10 10 5.1 21 55
21 BinaryTree 2 11 85 7 3.0 14 10 5 14 6.7 48 145
22 Hashing1 2 10 61 5 2.1 11 7 13 13 6.1 35 88
23 Hashing2 2 12 88 7 3.2 11 10 26 26 11.9 51 162
24 GraphMatAdj 1 9 60 5 2.9 19 1 22 22 13.1 42 134
25 GraphListAdj1 3 16 66 4 1.6 18 5 22 22 12.7 34 95
26 GraphListAdj2 2 14 88 6 2.2 19 4 23 23 11.9 51 113
27 DepthFirstSearch 3 16 65 4 1.6 1 2 22 22 14.7 33 94
28 BreadthFirstSearch 3 16 65 4 1.6 5 3 22 22 14.7 33 94
29 Graph 3 16 65 4 1.6 4 3 22 22 14.7 33 94
30 PrimAlg 1 5 40 7 2.6 1 2 20 20 19.0 31 71
31 ExactMatch 1 4 55 8 6.3 16 4 53 53 53.0 40 205
32 AproximateMatch 1 1 24 7 7.0 8 5 14 14 14.0 19 88
Avg 1.5 6.2 40.5 4.8 3.1 9.8 5.5 13.5 15.3 10.3 24.9 72.7
SD 0.7 5.3 25.7 1.9 1.8 6.4 3.0 11.3 10.3 9.2 15.0 50.6

Table 4: Statement Coverage and Mutation Score per Test Set
ID Statement Coverage per Test Set Mutation Score per Test Set

M E C R M∪E M∪E∪C M∪E∪C∪R M E C R M∪E M∪E∪C M∪E∪C∪R
1 75.0 100.0 50.0 93.3 100.0 100.0 100.0 85.7 71.4 28.57 38.6 92.9 92.9 92.9
2 87.5 100.0 87.5 94.2 100.0 100.0 100.0 81.0 66.7 52.38 25.7 85.7 85.7 85.7
3 87.5 100.0 87.5 91.7 100.0 100.0 100.0 81.0 28.6 52.38 24.9 85.7 85.7 85.7
4 93.8 100.0 75.0 84.8 100.0 100.0 100.0 72.1 26.2 13.11 11.2 75.4 77.0 77.0
5 90.0 100.0 50.0 60.7 100.0 100.0 100.0 81.0 81.0 42.86 17.6 81.0 90.5 90.5
6 83.3 100.0 83.3 98.9 100.0 100.0 100.0 100.0 100.0 83.33 95.8 100.0 100.0 100.0
7 83.3 100.0 83.3 98.9 100.0 100.0 100.0 100.0 75.0 83.33 95.8 100.0 100.0 100.0
8 92.3 100.0 23.1 88.5 100.0 100.0 100.0 80.5 19.5 7.32 18.2 80.5 80.5 80.5
9 93.8 93.8 12.5 66.9 93.8 93.8 100.0 91.1 21.4 5.36 17.9 91.1 91.1 91.1
10 92.9 92.9 92.9 90.5 100.0 100.0 100.0 38.7 30.7 48.00 27.8 50.7 52.0 52.0
11 100.0 100.0 75.0 71.7 100.0 100.0 100.0 65.5 69.0 24.14 36.1 72.4 72.4 72.4
12 100.0 100.0 91.7 95.0 100.0 100.0 100.0 71.4 66.7 52.38 58.3 71.4 71.4 71.4
13 100.0 100.0 100.0 81.7 100.0 100.0 100.0 74.1 74.1 44.44 61.1 77.8 77.8 77.8
14 100.0 100.0 94.1 88.4 100.0 100.0 100.0 66.7 77.8 62.96 63.0 81.5 81.5 92.6
15 78.9 100.0 73.7 68.4 100.0 100.0 100.0 57.5 85.0 22.50 39.6 85.0 85.0 90.0
16 100.0 100.0 78.3 89.0 100.0 100.0 100.0 68.8 65.6 34.38 64.0 68.8 68.8 78.1
17 97.9 70.8 64.6 64.0 97.9 97.9 100.0 85.8 35.5 32.62 21.0 87.9 91.5 91.5
18 97.5 80.0 85.0 56.9 97.5 100.0 100.0 76.7 39.7 43.97 19.9 77.6 79.3 81.9
19 28.6 97.6 28.6 57.4 97.6 97.6 97.6 29.2 45.8 6.67 22.4 61.7 64.2 70.8
20 100.0 100.0 71.4 52.5 100.0 100.0 100.0 69.1 67.3 23.64 15.0 80.0 83.6 83.6
21 81.3 58.3 37.5 46.5 81.3 81.3 81.3 55.9 21.4 8.97 14.3 56.6 56.6 57.2
22 100.0 100.0 77.1 85.0 100.0 100.0 100.0 59.1 58.0 28.41 45.7 64.8 64.8 63.6
23 80.8 94.2 82.7 92.4 98.1 98.1 98.1 47.5 51.2 30.86 47.5 67.9 69.8 67.3
24 100.0 0.0 83.3 83.6 100.0 100.0 100.0 73.1 0.0 52.24 52.9 73.1 73.1 73.9
25 97.1 64.7 82.4 79.5 100.0 100.0 100.0 68.4 37.9 45.26 43.5 70.5 70.5 73.7
26 96.1 78.4 68.6 60.5 98.0 100.0 100.0 73.5 30.1 35.40 30.9 75.2 81.4 81.4
27 60.6 30.3 81.8 74.3 69.7 87.9 100.0 30.9 10.6 30.85 33.4 37.2 40.4 60.6
28 39.4 18.2 81.8 74.3 39.4 81.8 93.9 13.8 11.7 30.85 33.4 14.9 34.0 54.3
29 84.8 18.2 81.8 74.3 84.8 100.0 100.0 38.3 10.6 30.85 33.4 39.4 41.5 61.7
30 93.8 43.8 50.0 28.1 96.9 100.0 100.0 38.0 5.6 5.63 1.4 38.0 38.0 38.0
31 97.5 72.5 100.0 96.1 100.0 100.0 100.0 40.0 21.0 51.22 41.5 42.9 57.1 62.0
32 94.7 100.0 100.0 92.3 100.0 100.0 100.0 29.5 31.8 37.50 33.0 35.2 38.6 40.9

Avg 87.8 81.7 73.0 77.5 95.5 98.1 99.1 63.9 44.9 36.0 37.0 69.5 71.8 75.0
SD 16.9 29.1 22.6 17.3 12.2 5.0 3.5 22.0 27.2 20.0 22.1 20.6 18.6 16.0

28

Table 5: Adequacy: statement coverage
Test Set Pair p-value corrected p-value
M-E 0.190849600 0.190849600
M-C 0.001129814 0.003389442
M-R 0.026056520 0.052113040

Table 6: Effectiveness: mutation score
Test Set Pair p-value corrected p-value
M-E 0.0005405501 0.0005405501
M-C 9.040424e-06 2.712127e-05
M-R 9.049378e-06 2.712127e-05

Table 7: Cost: number of test cases
Test Set Pair p-value corrected p-value
M-E 0.0002642351 0.0007927053
M-C 0.1756018000 0.3512037000
M-R 0.5370036000 0.5370036000

We can see that 11 out of 32 programs have coverages be-
low 100%, and the average coverage reached is 95.5%. We
highlight these programs to easy the evaluation of their cove-
rage evolution. By combining an additional test set, column
M ∪ E ∪ C, 7 out of 32 programs have coverage below 100%
and the average coverage increase to 98.1%. Finally, by in-
cluding one random test set to this combined test set, we
obtained the results presented in column M ∪E ∪C ∪R with
only 4 out of 32 programs with coverage below 100% and
the average coverage achieved is around 99%.

Regarding effectiveness, Table 4 presents the mutation
score obtained by each test set individually and combined.
In case of mutation score the values were not as higher as
the coverage but, again M got better results on average with
a mutation score of 63.9%, followed by E with a mutation
score of 44.9%, followed by R with 37%, and C with 36%.
The difference in the average mutation score is more signifi-
cant than the difference in coverage, although the standard
deviation for all test set is around 20%. One possible cause
of this difference is that, in the case of mutation score, to
distinguish the behavior of the original program and their
mutants, PIT uses the assertions present on each test case.
These scores are very low considering that usually it is easy
to kill 80% of the mutants [6, 16].

When we write manual test cases, the tester has the kno-
wledge about the program and their methods. He/She knows
how to verify whether the correct result is computed and
can write sophisticated assertion statements, making use of
“getting” methods to evaluate the proper behavior of a void

method, for instance.
On the other hand, automated test generator, in general,

omit assert statement when generating test cases for void
methods. Moreover, PIT measures the coverage and creates
mutants from bytecode. In the case of CodePro, which
generates test data from source code, when a class does not
explicitly declare the default constructor, no test case is
created to test it, but PIT works at the bytecode level. It
will find the default construction in the bytecode, and will
generate test requirements and mutants for it.

8. CONCLUSION
In this paper, we presented an evaluation of the comple-

mentary aspects of manual versus automated generated test
sets over 32 data structure programs. We used three different

automatic test data generators. In general, concerning the
number of generated test cases, there are some differences
due to the optimization strategy adopted by each generator.
In the case of Randoop, we limited the number of generated
test cases because, in 60 seconds, for the smallest program
we used, it produces more than 30 thousand test cases.

Regarding adequacy, although on average, the manual test
sets obtained better coverage, when analyzing the programs
individually, EvoSuite test sets got 100% of coverage in
17 out of 32 programs, followed by manual testing. The
statistical analysis suggested that there is no difference on
adequacy between Manual, EvoSuite and Randoop test sets.
Concerning effectiveness, the manual test sets obtained better
mutation score in almost all programs. Only in 9 programs,
the manual test set obtained scores below automated test
sets, reaching a mutation score of 63.9% on average. The
second best test set concerning effectiveness is EvoSuite test
sets with a mutation score of 44.9% on average.

In summary, for this study, we observed that in relation to
effectiveness, manual test sets is better on detecting faults
modeled by PIT mutation operators. Effectiveness is the only
hypothesis that statistical analysis was for the manual test
with no exception. When looking for adequacy on statement
coverage criterion, automated test sets generated by EvoSuite
and Randoop obtained results as good as manual test set.
The cost of manual and automated test sets is also closely
related. Only for EvoSuite there was a statistical difference in
the number of test sets when compared to manual test, with
EvoSuite generating fewer test cases than human, keeping
the same adequacy.

Finally, the statistical difference among the test sets re-
garding the effectiveness and data analysis suggested a com-
plementary aspect between the manual and automatically
generated test sets. An initial investigation by combining
manual and automated test sets increased statement cove-
rage from 87.8% on average, when using only manual test
set, to 99.1%, when using the combined test set.

Effectiveness was also improved. We increased the mu-
tation score from 63.9, only using manual test set, to 75%,
when combining all test sets. Here, although there is more
space for improvements, the complementary aspect of manual
and automated generated test sets was also evident.

As future work, we intend to extend the experimentation
to large programs, to investigate quality aspects about each
automatic test generators and the reasons they failed on
generating test cases for some programs/methods. Different
combinations of manual and automated test sets must be
investigated. We intend to establish an incremental testing
strategy by combining manual and automatic test data ge-
nerators aiming to reduce the number of faults previous
to the software release. The idea is to keep a high state-
ment/decision coverage concentrating manual test on critical
parts of the application, complementing the coverage of other
areas with automated generated test cases.

It is also important to implement minimization strategies
for reducing the overlapping between manual and automated
generated test data, contributing to speed up regression
testing. As an alternative to avoid overlapping between
manual and automated test cases, we intend to develop a
selective instrumentation tool. This tool would receive as
input the manual generated test sets, detect the uncovered
statements after manual test set execution, and produce
another version of the program, instrumenting only those

29

not yet covered source code lines. When using the automatic
test generators, we are interested in test cases which traverse
uncovered parts of the source code to improve our test set.

9. ACKNOWLEDGMENTS
The authors would like to thank the Brazilian funding

agencies FAPESP (Process No 2014/15514-2), CAPES, and
CNPq for their support for this research.

10. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is

mutation an appropriate tool for testing experiments?
In XXVII International Conference on Software
Engineering – ICSE’05, pages 402–411, New York, NY,
USA, 2005. ACM Press.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Transactions
on Software Engineering, 32(8):608–624, Aug. 2006.

[3] Apache Software Foundation. Apache Maven project.
Página Web, June 2016. Dispońıvel em:
https://maven.apache.org/. Acesso em: 04/07/2016.

[4] V. R. Basili, G. Caldiera, and H. D. Rombach.
Encyclopedia of Software Engineering, volume 2,
chapter Goal Question Metric Paradigm, pages
528–532. John Wiley & Sons, Inc., 1994.

[5] B. Boehm and V. R. Basili. Software defect reduction
top 10 list. Computer, 34(1):135–137, 2001.

[6] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward. Theoretical and empirical studies on using
program mutation to test the functional correctness of
programs. In 7th ACM Symposium on Principles of
Programming Languages, pages 220–233, New York,
NY, Jan. 1980.

[7] H. Coles. Pitest: real world mutation testing. Página
Web, Jan. 2015. Dispońıvel em: http://pitest.org/.
Acesso em: 04/07/2016.

[8] S. R. S. de Souza, M. P. Prado, E. F. Barbosa, and
J. C. Maldonado. An experimental study to evaluate
the impact of the programming paradigm in the testing
activity. CLEI Electronic Journal, 15(1):1–13, Apr.
2012. Paper 3.

[9] Eclipse Foundation. Eclipse ide. Página Web, June
2015. Dispońıvel em: https://eclipse.org/mars/. Acesso
em: 04/07/2016.

[10] G. Fraser and A. Arcuri. Sound empirical evidence in
software testing. In Proceedings of the 34th
International Conference on Software Engineering,
ICSE’12, pages 178–188, Piscataway, NJ, USA, 2012.
IEEE Press.

[11] G. Fraser and A. Arcuri. Evosuite at the sbst 2016 tool
competition. In Proceedings of the 9th International
Workshop on Search-Based Software Testing, pages
33–36, New York, NY, USA, 2016. ACM.

[12] Google. Codepro analytix evaluation guide. WEB Page,
2010. Available at: https://google-web-toolkit.
googlecode.com/files/CodePro-EvalGuide.pdf.
Accessed on: 04/07/2016.

[13] J. S. Kracht, J. Z. Petrovic, and K. R. Walcott-Justice.
Empirically evaluating the quality of automatically
generated and manually written test suites. In 2014
14th International Conference on Quality Software,
pages 256–265, Oct. 2014.

[14] A. Leitner, I. Ciupa, B. Meyer, and M. Howard.
Reconciling manual and automated testing: The
autotest experience. In System Sciences, 2007. HICSS
2007. 40th Annual Hawaii International Conference on,
pages 261a–261a, Jan. 2007.

[15] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an
automated class mutation system: Research articles.
STVR – Software Testing, Verification and Reliability,
15(2):97–133, 2005.

[16] J. C. Maldonado, E. F. Barbosa, A. M. R. Vincenzi,
and M. E. Delamaro. Evaluation N-selective mutation
for C programs: Unit and integration testing. In
Mutation 2000 Symposium, pages 22–33, San Jose, CA,
Oct. 2000. Kluwer Academic Publishers.

[17] C. Pacheco and M. D. Ernst. Randoop:
Feedback-directed random testing for java. In
Companion to the 22Nd ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications
Companion, OOPSLA ’07, pages 815–816, New York,
NY, USA, 2007. ACM.

[18] M. Roper. Software Testing. McGrall Hill, 1994.

[19] A. J. Simons. JWalk: A tool for lazy, systematic testing
of java classes by design introspection and user
interaction. Automated Software Engg., 14(4):369–418,
Dec. 2007.

[20] N. Smeets and A. J. H. Simons. Automated unit
testing with Randoop, JWalk and MuJava versus
manual JUnit testing. Research reports, Department of
Computer Science, University of Sheffield/University of
Antwerp, Sheffield, Antwerp, 2011.

[21] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
software engineering. Springer Heidelberg, New York,
NY, USA, 2012.

[22] N. Ziviani. Project of Algorithms with Java and C++
Implementations. Cengage Learning, 2011. (in
Portuguese).

30

