
Responsiveness Analysis Tool for Android Application

Thanaporn Ongkosit
Keio University

Yokohama, Japan
koy@doi.ics.keio.ac.jp

Shingo Takada
Keio University

Yokohama, Japan
michigan@ics.keio.ac.jp

ABSTRACT
Responsiveness is an important type of quality factor in An-
droid application because it directly affects user experience.
When the user interface thread performs lengthy operations,
the user may feel that the application has become sluggish
or frozen. This may lead to a negative user experience, poor
review, and loss in market success. This paper proposes a
static responsiveness analysis tool for Android applications
to find potentially poor responsiveness defects which are
difficult to detect by conventional testing methods as they
are sensitive to the user environment. This tool finds re-
sponsiveness defects by discovering operations invoked in
the user interface thread that may block the execution of
other operations. We collect these operations according to
Android developer guideline and previous related work. The
proposed tool successfully found 45 potential responsiveness
defects in seven open source Android applications.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Performance Analysis

Keywords
Android App, Static Analysis, Responsiveness

1. INTRODUCTION
The popularity of smartphones has continued to increase

rapidly especially for Android which is now the leading plat-
form in the smartphone market [4]. The number of users
using smartphones in their daily lives has risen dramatically
every year. Mobile applications can be seen in almost ev-
ery industry such as education, banking, news and gaming.
As with any applications, a successful mobile application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DeMobile’14 , November 17, 2014, Hong Kong, China
Copyright 2014 ACM /14/11 ...$15.00.

requires effort to improve and assure software quality before
release. Otherwise, the user may choose to discontinue its
use.

One report [5] showed that the top reasons that cause users
to uninstall an application, submit low rating and/or give
negative review on an app market include freezes and slow
response, both of which are related to responsiveness. Thus,
developers need to be careful not to include defects in the
code that will cause responsiveness issues. Although there
are many testing techniques and performance tools [8][9][10],
very few focus on responsiveness [11].

Poor responsiveness is an important defect that affects the
user’s perception. Google guideline states that “100 to 200ms
is the threshold beyond which users will perceive slowness
in an application” [1][6]. An application that frequently
responds slowly is one of the top reasons for negative user
experience [5].

There are many possible causes for unresponsiveness, such
as deadlock, infinite loop and incorrect termination condition,
all of which are concerned with the correctness of the program.
Another possible cause is operations that need to execute for
a long time. This paper focuses only on the last cause, i.e.,
poor responsiveness caused by lengthy operations.

Testing responsiveness defects is very challenging. First,
responsiveness of an application may differ depending on the
environment. The same application may perform differently
in a 3G network and a stable wireless network. As a result,
it is difficult to both expose and reproduce responsiveness
failures. Second, there is no tool to help developers uncover
responsiveness issue automatically. These reasons motivate
our work.

We propose a responsiveness analysis tool for Android
applications to help developers identify potential causes of
unresponsive problem focusing on long running operations.
Our tool also generates a report regarding the identified
problem. The main contributions of this work are as follows:

1. We define a list of potentially long running operations
based on four categories of API calls, specifically net-
work operations, database operations, I/O operations
and bitmap processing operations.

2. We present a technique to perform static analysis for
Android applications to uncover responsiveness defects
based on our defined potentially long running opera-
tions.

3. We implement a responsiveness static analysis tool,
and perform an experiment on open source Android

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

DeMobile’14, November 17, 2014, Hong Kong, China
ACM 978-1-4503-3225-5/14/11
http://dx.doi.org/10.1145/2661694.2661695

1

applications. We found several responsiveness defects
in each application.

The rest of this paper first discusses the responsiveness
issue in Android. Section 3 describes our proposed responsive-
ness analysis tool. Section 4 shows the results of a preliminary
evaluation. Section 5 makes concluding remarks.

2. RESPONSIVENESS ISSUE IN ANDROID
Poor responsiveness is a critical type of defect that should

be taken into account to assure software quality. It is easy
for an application to still be sluggish or freeze even if it has
already passed extensive performance tests. A key point
is that an Android application can run entirely on a single
thread called “UI thread” which handles all user input events.
When an operation is being executed on the UI thread,
no other user input events will be processed. Thus, the
probability becomes higher for an application run entirely
on the UI thread to block the system from processing any
other user input events because that application has some
long running operation, such as network access, running on
the UI thread.

In Android, the worst case scenario is the appearance of
the “Application Not Responding”(ANR) dialog. This dialog
is displayed when the application has stopped responding
to user input for 5 seconds [1][6]. This error dialog directly
affects the user experience in an undesirable way. Even if
the ANR dialog does not appear, the user may still decide
to uninstall an application if its operation frequently takes
longer than 200 ms.

Thus, methods that run on the UI thread should perform
as little work as possible. Long running operations should
be spawned to other threads, so that the UI thread is free
to process other incoming user inputs. If we can check for
operations on the UI thread that may have long execution
time, we can mitigate the responsiveness issue.

3. RESPONSIVENESS ANALYSIS TOOL
We propose a responsiveness analysis tool to statically

analyse potentially poor responsiveness issues and gener-
ate reports regarding the identified issues. The overview
of our architecture is shown in Figure 1. The Call graph
generator first takes Android source code and generates
context sensitive call graphs. The Poor Responsiveness
Analysis component traverses the generated call graph, and
discovers potential responsiveness defects using a list of po-
tentially blocking API’s as a guide. Finally, the found
defects are output in the form of a report where the potential
responsiveness defects may be ranked.

3.1 Potentially blocking operations
The starting point of our work is to define operations that

may take too long to process, resulting in the application
blocking other incoming user inputs from being processed.
According to Android developer guidelines and previous work
[2][11], there are four categories of API that are common
causes of poor responsiveness: network access, storage access,
on-device database access, and bitmap processing. How-
ever, they provided only categories of operation and some
examples of library packages. We used these examples as
a guideline to find potentially blocking APIs by studying
related library packages and how each API in the package
works. Thus, based on these four categories, we made a list

Figure 1: Overview of Architecture

of potentially blocking API’s which we consider as the basic
unit of operation that we would like to detect. Table 1 shows
12 out of 50 of the operations for each of the four categories.

3.2 Call Graph Generator
A call graph is a basic representation of programs. It is a

directed graph that represents calling relationship between
program’s procedures. Each node represents a procedure
while each edge represents calling relationship. For example,
edge(f, g) indicates that procedure f calls procedure g. The
precision of a call graph can vary depending on the type of
call graph [7]. The most precise call graph is context-sensitive
call graph which means that for each procedure, the graph
contains a separate node for each call to the procedure. The
least precise call graph is context-insensitive call graph which
means that there is only one node for each procedure. Our
work takes the context-sensitive approach.

We use Modisco [3], which is an Eclipse plugin, to first
generate the Java model of an application. We then extract
information of interest from the model such as variable dec-
laration and method invocation as well as the entry point
of the call graph to construct context-sensitive call graphs.
The entry point is especially important because Android
is event-driven, and instead of a single “main” method, an
Android application may contain a large number of callback
methods. As a result, there are multiple entry points to the
call graph.

We can categorize callback methods into two types:

1. Callback methods which are triggered automatically
when the application is in some certain state with-
out user interaction. These include callback meth-
ods for each application component such as Activ-
ity.onCreate(). There are many other callback methods
in the Android Framework. For example, the database
onCreate() is called automatically by the framework,
if the database is accessed but not yet created. The
camera onPictureTaken() callback is called when image
data is available after a picture is taken.

2. Callback methods triggered by user input events. We
refer to these as event callbacks. Examples are methods
triggered by Touch events (e.g. onClick, onLongClick,
onTouch) and Keyboard events (e.g. onKeyUp).

Figure 2 shows an example of a generated call graph.

2

Table 1: Example of Potentially Blocking Operations
API Call

Category Method Description

Network

java.net.URL.openConnection() Returns a new connection to the resource
org.apache.http.client.HttpClient.execute (HttpUriRe-
quest request)

Executes a request using the default context and
returns the response to the request

java.net.URLConnection.connect() Opens a connection to the resource
java.net.Socket.connect(SocketAddress address) Connects this socket to the given remote host ad-

dress and port
java.net.URLConnection.getInputStream() Returns an InputStream for reading data from the

resource

Storage
java.io.OutputStream.write (byte[] byteArray) Writes the byte array buffer to this stream
java.io.InputStream.read(byte[] buffer) Reads a single byte from this stream and returns

it as an integer
java.io.BufferedInputStream.read (byte[] buffer, int byte-
Offset, int byteCount)

Reads up to specified location from this stream
and stores them in the byte array buffer

Database
android.database.sqlite.SQLiteDatabase.execSQL(String
query)

Execute a single SQL statement

android.database.sqlite.SQLiteDatabase.query (String ta-
ble,...)

Query the given table and returns a Cursor over
the result set

Bitmap
android.graphics.BitmapFactory.decodeFileDescriptor
(FileDescriptor fd)

Decode a bitmap from the file descriptor.

android.graphics.BitmapFactory.decodeStream (Input-
Stream is)

Decode an input stream into a bitmap

Figure 2: Generated Call Graph

3.3 Poor Responsiveness Analysis
In our work, an application is responsive if all methods

that run on the UI thread are not blocking operations. If a
blocking operation is running on the UI thread, then that
application may be unresponsive. As a result, the main goal
of our analysis is to uncover potentially blocking operations
running on the UI thread to help developers locate potential
causes of poor responsiveness.

The analysis first traverses the context-sensitive call graph,
and searches for problematic nodes, i.e., nodes that contain
blocking operations, by using a list of defined potentially
blocking operations. Whenever the tool finds a problematic
node, it will keep three pieces of information which are the
problematic node, the method that contains the detected
node and type of operation, i.e. database access, network
access, storage access or bitmap processing.

Figure 3 shows a call graph of operations that are executed
on the UI thread. The analysis found that several nodes

Figure 3: Poor Responsiveness Analysis

(nodes 3, 4 and 6) contain blocking operations. Nodes 3 and
4 are network access operations, whereas node 6 writes data
to the server.

The tool focuses on the variable the operation uses to
distinguish the type of operation. For example, in Figure 3,
although out.write() is storage API, out is an outputStream
from server. As a result, this operation should be considered
as network access type. These information will be used later
when generating the report.

3.4 Report Generator
The Report Generator’s main function is to generate the

report of the detected issues which provides rank, number of
invocations, detected node, parent node and filename. Report
Generator also ranks the issues (if there are more than one
issue). The rank is based on the number of invocations to
the detected node. The Report generator uses information
kept in the analysis phase to generate a report as follows:

1. If there is only one defect, it generates a report that
shows the defect and the file that contains the defect.

3

Table 2: Experiment Result
App Size API category

Application Activity Class Database Bitmap Network Storage
AnkiDroid 19 298 16 2 - -
Wallabag 4 10 6 - - -
AnyMemo 29 290 - 1 - -
VLC 7 139 5 4 - 5
APV 4 28 2 - - 1
ACV 12 167 1 - - -

FBReader 35 825 - 2 - -

Figure 4: Report Generation

2. If there are more than one defect, the Report generator
will count the number of invocations to the API. For
example (Figure 4), there are two invocations from
node B to node E whereas one invocation from node G
to node H. The higher number of invocations has the
higher rank.

3. If there is more than one defect with the same number
of invocations, the node with ’network access’ type is
ranked higher.

If the application has a blocking operation that is in an
external library, the report will show the node in the appli-
cation code that leads to the defect, because the developer
can only handle the application’s code. So, in Figure 4, the
tool will report node D as problematic because it calls the
operation that leads to the actual problematic node.

4. EVALUATION
We performed a preliminary evaluation of the proposed

responsiveness analysis tool on seven open-source Android
applications. The experiment result is shown in Table 2. The
table shows the list of applications, and each application’s
number of activities and number of classes. The last four
columns show the number of potentially blocking operations
in the UI thread detected by the proposed tool classified by
categories.

The result shows that each application contains poten-
tial responsiveness issues, with the database category API’s
having the most. One interesting point is that there were
no network-related responsiveness defects. This may indi-
cate that most developers already realize that the network
operation can directly lead to undesirable user experience.

5. CONCLUSION
Responsiveness is a crucial issue because it can directly

affect the user experience and application success. We pro-

posed a responsiveness analysis tool for Android applications
to help developers discover potential responsiveness issues in
the source code. A preliminary experiment shows that our
tool can effectively uncover potential responsiveness defects.

For future work, the precision of call graph can be improved
by defining more entry points. The precision of analysis can
be improved with information from profiling. The tool can
provide deeper analysis especially for database operation e.g.
SQL queries.

6. REFERENCES
[1] Keeping your app responsive.

http://developer.android.com/training/articles/perf-
anr.html,(accessed:27-June-2014).

[2] Loading bitmaps efficiently
http://developer.android.com/training/displaying-
bitmaps/process-bitmap.html,
(accessed:27-June-2014).

[3] Modisco. http://www.eclipse.org/gmt/modisco/,
(accessed:27-June-2014).

[4] Smartphone platform market share.
http://www.comscore.com/insights/press-
releases/2014/3/comscore-reports-january-2014-us-
smartphone-subscriber-market-share,
(accessed:27-June-2014).

[5] Survey: Exploring the reasons users complain about
apps. http://www.fiercedeveloper.com/story/survey-
exploring-reasons-users-complain-about-apps/2012-11-
09,(accessed:27-June-2014).

[6] B. Fitzpatrick. Writing zippy android apps. Google I/O
Developers Conference 2010.

[7] D. Grove and C. Chambers. A framework for call graph
construction algorithms. TOPLAS 2001, 23:685–746,
November 2001.

[8] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang.
Characterizing and detecting resource leaks in android
applications. In ASE 2013, pages 389 – 398, November
2013.

[9] A. Kansal and F. Zhao. Fine-grained energy profiling
for power-aware application design. In Newsletter ACM
SIGMETRICS Performance Evaluation Review, pages
26–31, September 2008.

[10] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Proling resource usage for mobile apps:
a crosslayer approach. In MobiSys 2011, pages 321–334,
2011.

[11] S. Yang, D. Yan, and A. Rountev. Testing for
responsiveness in android applications. In MOBS 2013,
pages 1 – 6, May 2013.

4

