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ABSTRACT
Applications running on mobile devices are heavily context-
aware and adaptive, leading to new analysis and testing chal-
lenges as streams of context values drive these applications
to undesired configurations that are not easily exposed by
existing validation techniques. We address this challenge
by employing a finite-state model of adaptive behavior to
enable the detection of faults caused by (1) erroneous adap-
tation logic, and (2) asynchronous updating of context infor-
mation, which leads to inconsistencies between the external
physical context and its internal representation within an
application. We identify a number of adaptation fault pat-
terns, each describing a class of faulty behaviors that we
detect automatically by analyzing the system’s adaptation
model. We illustrate our approach on a simple but realis-
tic application in which a cellphone’s configuration profile is
changed automatically based on the user’s location, speed
and surrounding environment.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous—rule-
based programming ; D.2.4 [Software/Program Verifica-
tion]: Model checking,Validation; D.2.5 [Testing and De-
bugging]: Diagnostics; F.1.1 [Models of Computation]:
Automata—finite-state models; I.5.1 [Models]: Structural—
fault patterns

General Terms
Algorithms, Design, Verification

Keywords
Adaptation, context-awareness, fault detection, hazards, mo-
bile computing, model-based analysis, ubiquitous computing
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The growing popularity of handheld devices such as cell-
phones, PDAs and portable consoles, and the increasing
availability of infrastructures that support mobility such as
GPS satellites, WiFi networks and Bluetooth services, to-
gether create a market for new kinds of applications that
constantly monitor and react to their environment. Key
characteristics of these emerging Context-Aware Adaptive
Applications (CAAAs) are that they are heavily context-
aware and continually adaptive to changes in context.

The development and execution of CAAAs typically is
supported by a context-awareness middleware, which em-
ploys two key components: (1) an event-driven context man-
ager to collect and maintain context information that can
be queried by a CAAA, and (2) an adaptation manager that
maintains, evaluates and applies a set of rules defining adap-
tive actions to take on behalf of the CAAA as context val-
ues provided by the context manager change [5, 8, 9, 10, 20,
22]. Adaptation rules thus define a significant portion of the
CAAA’s behavior.

When an incorrect rule is triggered, or the correct one is
not, a CAAA fails to adapt properly or behaves improperly.
Discovering such adaptation faults in CAAAs is challenging
because of two confounding factors: (1) the space of rules
becomes complex to analyze in the presence of shared con-
text variables, concurrent triggering of rules, and priority
ordering of rules; and (2) the context variables are refreshed
asynchronously at different rates by the middleware, causing
artificial inconsistencies between the external physical con-
text and its internal representation within the application.

Our work aims to detect faults in CAAAs by defining a
formal, finite-state model of adaptation rules and then an-
alyzing the model for adaptation faults. The states of the
model represent equivalence classes of stable configurations
of context values, while the transitions represent the satis-
faction of rule predicates. Satisfaction of a predicate thus
triggers an adaptive change from one state to another and
may also involve the execution of associated actions. This
model represents the execution of a CAAA by explicitly con-
necting context updates with adaptations and helps to iso-
late adaptation faults caused by erroneous rule predicates
and asynchronous context updates. To automate the detec-
tion of inconsistences, we identified a number of adaptation
fault patterns representing commonly occurring classes of
adaptation faults, and we automatically analyze the model
for their existence.
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The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work on fault detection in CAAAs.
Section 3 describes PhoneAdapter, a representative CAAA
that we have built and tested as a motivating application for
our work. Section 4 describes the finite-state model we use
to represent the adaptive behavior of CAAAs. Section 5 de-
scribes the adaptation fault patterns, which we organize into
two classes, behavioral faults and context hazards, and it de-
scribes the algorithms we employ to detect them. Section 6
describes results from the application of our algorithms to
the PhoneAdapter application. Finally, Section 7 concludes
the paper with a summary of our contributions and a dis-
cussion of our plans for future work.

2. RELATED WORK
Among validation techniques for context-aware mobile ap-

plications, Roman et al. define Mobile UNITY, an extension
of the UNITY notation and proof logic to the verification of
mobile systems [21]. Given mobile applications specified in
Mobile UNITY and associated specified properties, Mobile
UNITY is able to verify the application against the specified
properties. This work mainly focuses on verifying the mobil-
ity aspects of the application, whereas our approach is con-
cerned with discovering faults in an application’s context-
awareness and adaptation behavior.

Xu and Cheung propose inconsistency detection in context-
aware applications whereby patterns identify conflicts among
context inputs at run-time before they are fed to an applica-
tion [29, 30]. The patterns are defined by engineers based on
their understanding of relevant mathematical and physical
laws. This work focuses mainly on verifying the correct-
ness of the context inputs themselves. In contrast, we as-
sume context inputs to be consistent and then evaluate them
within the predicates of adaptation rules to check whether
there are faults in the formulation or triggering of rules. We
also consider intrinsic relationships among context variables,
in particular the delays resulting from asynchronous update
of context variables having different refresh rates, and we
identify the adaptation faults that may arise as a result.

Several researchers from the testing community have be-
gun to target the validation of CAAAs [17, 25, 27]. Although
we share their goal of detecting faults in CAAAs, our ap-
proach is fundamentally different, employing static analysis
of adaptation models, while theirs are centered primarily on
test selection and runtime analysis.

Efforts for testing rule-based systems (the main adapta-
tion mechanism used by CAAAs) have focused on the de-
velopment of coverage criteria for exercising single rules or
rule chains [2, 11]. In contrast, we statically analyze a set
of rules to identify variables that may trigger multiple rules
concurrently or multiple commutations of variables within
the same rule, leading to adaptation failures.

When designing sequential digital circuits in which mul-
tiple signals are input to a network of logic gates, engineers
must avoid hazards and races, which may produce incor-
rect outputs. Unger [26] and Hauck [12] summarize timing
problems in sequential circuits and describe techniques for
predicting and correcting them. Our work is based in part
on the insight that processing of context inputs induces sim-
ilar kinds of hazards and races in CAAAs, and we provide an
appropriate formulation of such faults using our adaptation
models. In particular, in our work we detect faults in which
the choice of adaptation rules to trigger and the order in

which to trigger them depends on how long a context input
value holds.

Timing problems in real-time systems have been analyzed
by using methods based on specialized finite-state models.
Alur and Dill propose a timed automata model that incor-
porates time constraints for specifying real-time systems [1].
Timed automata have been utilized as well by several test
case generation techniques, which exploit timing constraints
specified between actions or events [7, 15, 16, 18]. In a sim-
ilar way, we apply constrains not only to time, but to all
kinds of context inputs utilized by the adaptation rules.

The work by Nilsson and Offut [19] uses patterns of po-
tential faults to detect missed scheduling of sporadic and
periodic time-critical tasks. Our approach employs a similar
idea, in which the different refresh rates of asynchronously
updated context variables may trigger incorrect decisions in
an application’s adaptation behavior. We analyze the im-
pact of asynchronous updates on the evaluation and trig-
gering of adaptation rules, allowing us to determine where
faults can occur.

Finite-state models have been used extensively to repre-
sent and verify properties of systems. Some work similar to
our own has been done in the context of requirements engi-
neering. Heitmeyer et al. use finite-state models to discover
inconsistencies in SCR specifications [14], and Heimdahl and
Leveson use finite-state models to discover inconsistencies in
RSML specifications [13]. While the classes of inconsisten-
cies that they detect are characteristic of requirements spec-
ifications, the fault patterns that we detect are characteris-
tic of CAAAs. Thus, although there are some similarities
between our fault patterns and their classes of inconsisten-
cies, certain classes appear to arise only in CAAAs, notably
instability faults (described below in Section 5.1.3) and con-
text hazards (described below in Section 5.2). Finally, we
also note that model checkers use finite-state representa-
tions extensively to model concurrent systems and verify
their temporal properties [6], and static checkers for meta-
programming languages use such models to detect potential
vulnerabilities in generated code [28]. Similarly, our analysis
operates on a finite-state model, but we have extended it to
incorporate context information and have tailored the anal-
ysis to focus on properties that are of particular relevance
to CAAAs.

3. AN EXAMPLE CAAA
In this section we present PhoneAdapter, an application

that suffers from the kinds of faults peculiar to CAAAs that
our approach is able to detect.

The application uses contextual information to adapt a
phone’s configuration profile. Phone profiles are settings
that determine a phone’s behavior, such as display inten-
sity, ring tone volume, vibration, and Bluetooth discovery.
Instead of users selecting a profile manually, the application
is driven by a set of adaptation rules, each of which specifies
a predicate whose satisfaction automatically triggers the ac-
tivation of an associated profile. The selected profile prevails
until a more suitable one is chosen through the triggering of
other rules. The rule predicates are expressed over context
readings from Bluetooth and GPS sensors on the phone plus
the phone’s internal clock.

PhoneAdapter ’s adaptation rules define nine profiles:

1. General : the initial profile, which defines a user-speci-
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fied default configuration, and which is applied by de-
fault when the phone’s sensors are unable to detect
any activity related to one of the remaining profiles;

2. Home: increases the ring tone volume and removes
vibration when the user is at home;

3. Office: mutes the ring tone and activates vibration
when the user is in his office;

4. Meeting : mutes the ring tone and disables vibration
when the user is in a meeting;

5. Outdoor : increases the backlight intensity and speaker
volume when the user is outdoors;

6. Jogging : increases the backlight intensity and speaker
volume and also activates vibration when the user is
jogging;

7. Driving : connects to the car’s handsfree communica-
tion system when the user is driving;

8. DrivingFast : diverts calls when the user is driving fast;
9. Sync: periodically synchronizes personal information

on the phone with the user’s home or office PC when
the phone is not in use and the PC is discovered via
Bluetooth.

Some profiles are more important than others for safety
or social reasons, so it is possible to sort the rules with a
weak priority order that determines their evaluation order.
In this scenario, high priority is given to rules related to
DrivingFast and Driving, medium priority to rules related
to Meeting, Home, Outdoor, Jogging, and Office, and low
priority to rules related to Sync (since synchronization can
be performed after other activities have been accounted for).

Over several executions, we observed a number of non-
obvious problems with PhoneAdapter. For instance, the
profile Sync is never applied when the phone is adapted to
Home or Office. Also, the rules that trigger adaptation to
Home and Office can be satisfied simultaneously—which is
possible if the user’s office PC is discovered in the home lo-
cation, or vice versa—causing nondeterministic adaptation
to one of the two profiles.

But there are even more subtle problems. While the phone
is in the process of adapting according to one rule, if some
other rules are satisfied, the phone can pass through a se-
quence of different profiles within the same context. This
chain of adaptation causes multiple problems. In particular,
the user can be annoyed by the multiple adaptations, and
through the sequence of adaptations the desired profile can
become unreachable. For instance, when the user has left
his office or house and has entered his car, the phone is sup-
posed to adapt to Driving. However, if the Bluetooth sensor
does not detect the handsfree system fast enough, the phone
can adapt to General, and then to Outdoor. Then when the
user starts driving, the speed increases and the phone adapts
from Outdoor to Jogging. From Jogging the phone cannot
adapt to Driving even when the handsfree system finally is
detected, because the application cannot adapt from Jogging
to Driving directly according to the rules.

It can also happen that, through a chain of adaptations,
the predicates of contradictory rules are satisfied and keep
activating each other. For instance, from Meeting, when
the meeting is over, the application adapts to Office, in
which another rule restores Meeting, leading to a loop, be-
cause there exist particular inputs that can satisfy the neces-
sary predicates simultaneously. For instance, the predicate
time > meeting start is always true after the meeting.

The timing of context updates can affect the triggering

of rules in other ways. Since context updates occur asyn-
chronously, the internal view of the context can become in-
consistent temporarily, which causes the evaluation of rules
to produce incorrect results or to trigger in a manner that
violates their priorities. For instance, if a meeting is sched-
uled but the user is going from the office to his car, the
higher refresh rate of time relative to Bluetooth can force
an adaptation to Meeting instead of Driving.

Existing analysis techniques do not differentiate predi-
cates based on asynchronous input signals such as GPS and
Bluetooth. Such predicates could cause abnormal adapta-
tion when updated asynchronously. Also, the space of rules
becomes complex and non-trivial to analyze in the presence
of shared context variables, of rules that can be concurrently
triggered, and of rules with priorities. We therefore need sys-
tematic ways of discovering adaptation faults like the kinds
described above. Our approach aims to help software en-
gineers (especially rule designers) analyze rules and detect
faults in them automatically.

4. MODELING A CAAA
In order to detect adaptation faults in CAAAs, we need

a suitable abstract model of their adaptive behavior. Fortu-
nately, the style of rule specification used in typical context-
awareness middleware [3, 5, 8, 9, 10, 20] and the style we
have been using in our own work lends itself naturally to the
derivation of a finite-state model that is suitable for fault
detection, such as the ones used to detect faults in SCR
specifications [14]. This section presents formal definitions
of our adaptation rules and the finite-state model we derive
from them, while Section 5 describes the algorithms we use
to analyze the model for faults.

The adaptation rules for a CAAA form a set R ⊆ S ×
P × S × A × N. S is a set of states characterizing the
possible states of the CAAA (such as the phone profiles in
PhoneAdapter). A is a set of actions that can be invoked
upon entry to a state in S (such as “turn off ringtones”, or
“enable Bluetooth”). N is the set of natural numbers, which
represent the priorities of rules. And P is the space of logi-
cal predicates definable over a set C of propositional context
variables using conjunction, disjunction and negation.

A propositional context variable is the abstract represen-
tation of some corresponding relational expression over the
set Csensed of sensed context variables that are used by the
CAAA and updated by the underlying middleware upon the
occurrence of changes in context. The set C thus represents
the set of semantically different relational expressions over
sensed context variables that are used to define the rule pred-
icates. As described later in this section and in Section 5,
the propositional context variables are a cornerstone of our
fault-detection algorithms.

Let R = (S, P, S′, A,N) be a rule inR, with S and S′ ∈ S,
P ∈ P, A ∈ A and N ∈ N. We use the notation P (S)
to indicate the logical result of evaluating predicate P in
state S, and we say that R becomes active upon entry to
S. The semantics of R is that whenever S is the current
state and P (S) becomes true, then the CAAA transitions
or adapts to the new state S′ and invokes A upon entry
to S′. In this case P is said to have been satisfied, R is
said to be triggered, and S′ becomes the new current state.
Suppose there exists another rule R2 = (S, P2, S

′
2, A2, N2)

such that at some point both P (S) and P2(S) are satisfied
simultaneously. If N < N2, then R is triggered instead of
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R2. If N > N2, then R2 is triggered instead of R. If N = N2,
then the choice of which rule to trigger, R or R2, is made
nondeterministically. Thus, the smaller the priority value of
a rule, the higher its priority.

In general, every transition to some state S and every
change to a sensed context variable within a state S re-
quires re-evaluation of the predicates of the active rules of
S. Note that the occurrence of a context change may change
the value of a propositional context variable without trigger-
ing the satisfaction of a rule predicate and a corresponding
transition to a new state. Therefore, a state may expe-
rience many possible assignments of values to the proposi-
tional context variables, and many different changes to those
assignments may occur within the same state.

We define an Adaptation Finite-State Machine, or A-FSM
for short, as the finite-state machineM = (S, δ, Sinitial,Sfinal)
derived from a set of rules R, where Sinitial ∈ S is the initial
state of the CAAA and Sfinal ⊆ S its final states (which are
the states that have no active rules defined for them). The
transition relation δ ⊆ S ×R× S is defined as follows:

δ = { (S,R, S′) | ∃R = (S, P, S′, A,N) ∈ R}

Table 1 presents the set of adaptation rules we defined for
PhoneAdapter. For convenience, the table depicts names we
use later in the text to refer to specific rules, and it depicts
rule predicates both in their simplified form expressed over
propositional context variables, and in their fully expanded
form expressed over sensed context variables. In some cases
a rule name is used in place of a full predicate, meaning
that the full predicate is the same as that of the named
rule.1 Also, the table does not show the actions of rules,
since they play no role in fault detection.

As shown in the table, PhoneAdapter adapts between
nine different states according to 19 different rules expressed
over three different sensed context variables, namely BT
(Bluetooth), GPS and Time, which are monitored via 12
propositional context variables representing the 12 differ-
ent relational expressions in which the sensed context vari-
ables are used. For example, one such relational expression
is GPS.location()=home, which tests whether the location
sensed by the phone’s GPS sensor corresponds to the user’s
home location (stored in variable home). This relational ex-
pression is represented throughout the rules by the propo-
sitional context variable Bgps. Figure 1 depicts the A-FSM
we derive from the adaptation rules of PhoneAdapter, with
state General being its initial state.

In order to simplify the detection of faults in an A-FSM
M , we construct a derivative representation called a state
matrix that is associated with each state S in M . Con-
ceptually, the state matrix of S enumerates bit strings and
associated sets of rules. A bit string specifies a set of truth
assignments to the set C of propositional context variables
that can cause the predicates of the associated rules to be-
come satisfied and the target states of those rules to be en-
tered. Bit strings that do not satisfy the predicates of any
active rules are not included in the state matrix of S. In im-
plementing the analysis of M , we can use various projections

1Note that according to our definitions of R and M , the
row named ActivateDriving in Table 1 actually represents
four different rules, each being active in a different state;
however, because the predicates and priorities of those rules
are identical, we represent them in the table with a single
rule name for simplicity.

Figure 1: A-FSM of PhoneAdapter.

of the state matrices to dramatically reduce the number of
variable assignments analyzed and consequently the analy-
sis time. Listing 1 depicts example entries from two state
matrices for PhoneAdapter, the one for state General and
the one for state Outdoor.

Listing 1: Example State Matrix Entries

s t a t e General :
(110000000000 , [ ActivateHome ] )
(110001000000 , [ ActivateHome , Act ivateDr iv ing ] )

s t a t e Outdoor :
(100100000000 , [ Act ivateJogg ing ] )
(100101000000 , [ Act ivateJogging , Act ivateDr iv ing ] )

Each line in the state matrix for state S depicts a bit
string of variable assignments (with 1 indicating true and
0 indicating false) along with the names of the active rules
of S whose predicates become satisfied upon the variables
obtaining those assignments. For the bit strings depicted
here and elsewhere in the paper, the bit values are listed for
the following order of propositional context variables: Agps,
Bgps, Cgps, Dgps, Egps, Abt, Bbt, Cbt, Dbt, Ebt, At, Bt. Note
that while the order of variables does not matter, the same
order must be used for all state matrices.

In summary, given a set of adaptation rules R used to
define the context-aware adaptive behavior of a CAAA, we
derive an associated A-FSM M , each of whose states has
an associated state matrix. The next section describes al-
gorithms that use R, M and the state matrices to identify
adaptation faults in the CAAA.

5. DETECTING FAULTS IN A CAAA
In order to detect adaptation faults in a CAAA, we ana-

lyze its rules and derived A-FSM for two families of faults,
(1) behavioral faults, which are faults in the logic of and re-
lationships between rule predicates, and (2) context hazards,
which are faults that arise due to the asynchronous nature
of context updates and the varying refresh rates at which
they occur. In this section we describe these two families of
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Table 1: Adaptation Rules of PhoneAdapter
Rule Name Current States New State Full Predicate Simple Predicate Priority

ActivateOutdoor General Outdoor GPS.isValid() and !GPS.location()=home
and !GPS.location()=office

Agps and !Bgps and
!Cgps

5

DeactivateOutdoor Outdoor General !ActivateOutdoor !(Agps and !Bgps

and !Cgps)
5

ActivateJogging Outdoor Jogging GPS.isValid() and GPS.speed()>5 Agps and Dgps 5
DeactivateJogging Jogging Outdoor !ActivateJogging !(Agps and Dgps) 5
ActivateDriving General,

Home, Office,
Outdoor

Driving BT=car handsfree Abt 1

DeactivateDriving Driving General !ActivateDriving !Abt 1
ActivateDrivingFast Driving DrivingFast GPS.isValid() and GPS.speed()>70 Agps and Egps 0
DeactivateDrivingFast DrivingFast Driving !ActivateDrivingFast !(Agps and Egps) 0
ActivateHome General Home BT=home pc or (GPS.isValid() and

GPS.location()=home)
Bbt or (Agps and
Bgps)

5

DeactivateHome Home General !ActivateHome !(Bbt or (Agps and
Bgps))

5

ActivateOffice General Office BT=office pc or BT=office pc * or
(GPS.isValid() and GPS.location()=office)

Cbt or Dbt or (Agps

and Cgps)
5

DeactivateOffice Office General !ActivateOffice !(Cbt or Dbt or (Agps

and Cgps))
5

ActivateMeeting Office Meeting Time>=meeting start and BT.count()>=3 At and Ebt 4
DeactivateMeeting Meeting Office Time>=meeting end Bt 4
ActivateSync General Sync BT=home pc or BT=office pc Bbt or Cbt 9
DeactivateSync Sync General !ActivateSync !(Bbt or Cbt) 9

faults in detail and describe algorithms for their detection.
Then in Section 6 we describe the results we obtained from
applying the algorithms to PhoneAdapter.

5.1 Behavioral Fault Detection
The detection of behavioral faults is driven by the re-

quirement that the rules and its A-FSM satisfy the following
properties:

• Determinism: For each state in the A-FSM and each
possible assignment of values to propositional context
variables in that state, there is at most one rule that
can be triggered.

• State Liveness: For each state in the A-FSM, if the
state contains any active rules (and thus is not a fi-
nal state), then at least one of the active rules has a
satisfiable predicate.

• Rule Liveness: For each state in the A-FSM and each
of its active rules, there is at least one assignment of
values to propositional context variables that satisfies
the predicate of the rule.

• Stability: The state of an A-FSM is not dependent
on the length of time a propositional context variable
holds its value.

• Reachability: For every state, it is possible to reach
the state from the initial state via some sequence of
adaptations.

Each of these properties gives rise to one or more fault pat-
terns characterizing the situations in which the associated
property is violated. We discuss these properties in de-
tail below and present algorithms for their detection, and
then in Section 6 we present examples of their occurrence in
PhoneAdapter. Due to space constraints, and because vio-
lations of the Reachability property seem relatively rare, we
discuss that property no further in this section.

Algorithm 1 NondeterministicActivationDetection

Input : M : an A-FSM.
Output : faultsVector : vector of detected faults.

1: for each state S in M do
2: stateMatrix [] = mergeBitStrings(S.getStateMatrix())
3: for each bitString ∈ stateMatrix [] do
4: rules[] = S.getSatisfiedRules(bitString)
5: R[] = getHighestPriorityRule(rules[])
6: if size(R[]) > 1 then
7: faultsVector.add({S, R[], bitString})
8: end if
9: end for

10: end for
11: return faultsVector

5.1.1 Determinism Property
If the rules of a CAAA violate the Determinism property,

we say that the rules contain a Nondeterministic Activation
fault, a pattern of faults characterized by the presence of
multiple active rules in the same state with the same priority
whose predicates can be satisfied by the same set of context
updates, generating nondeterministic adaptations.

To detect such faults, we define an algorithm that ex-
plores each state matrix in the A-FSM and identifies the
existence of bit strings for which the predicates of multiple
rules are satisfiable, taking into account also the priorities
of the rules. Algorithm 1 detects this pattern of faults. For
each state, if there are predicates of multiple highest-priority
rules that can be satisfied in that state on the same bit
string, then the adaptation is nondeterministic. In Line 2
of the algorithm, getStateMatrix(S) returns the state ma-
trix for state S, which contains a list of (bit string, satisfied
rules) pairs for S. Because the algorithm considers each
state independently of the others, the analysis can be per-
formed on merged bit strings, further reducing the analysis
time, and so the function mergeBitStrings on Line 2 per-
forms this merging. In particular, whenever a state matrix
contains a pair of bit strings for the same set of rules differ-
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ing only in their value for one propositional context variable,
it means that the predicates of those rules do not depend on
the value of that variable. Therefore, the two bit strings are
merged, and the value of the affected variable is replaced
by ∗ to indicate “don’t-care”; this merging is applied re-
peatedly until no more merging is possible. In Line 4, get-
SatisfiedRules(S,bitString) returns the satisfied rules for the
current bit string. In Line 5, the algorithm returns the sub-
set of the satisfied rules having the highest priority. Finally,
in Lines 6–8, if there is more than one such highest-priority
rule, then the affected rules and state are reported along
with the current bit string, which can be used to diagnose
and eliminate the discovered fault.

For each reported pair of bit string and affected state, its
Nondeterministic Activation fault can be eliminated in three
ways: (1) by reformulating the predicates of the affected
rules in such a way that at most one is satisfied by the bit
string; (2) by splitting the affected state into multiple states,
with the affected rules associated with different states; and
(3) by assigning different priorities to the affected rules.

The remaining algorithms in this section and in Section 5.2
assume that the set of rules is deterministic; therefore, Non-
deterministic Activation faults must be eliminated before
applying the remaining algorithms.

5.1.2 Liveness Properties
Once the Nondeterministic Activation faults are elimi-

nated from the rules, algorithms can be applied to check
that the Liveness properties are satisfied. If the rules of a
CAAA violate the Rule Liveness property, then we say that
the rules contain a Dead Predicate fault, a pattern of faults
characterized by the presence of an unsatisfiable predicate
in the set of active rules of some state. Furthermore, if the
rules violate the State Liveness property, then all the active
rules of the state have Dead Predicate faults, and we say
that the rules contain a Dead State fault, a pattern of faults
characterized by the presence of a deadlocked state. Note
that final states have no active rules and thus cannot suffer
from Dead State faults.

In terms of state matrices, a Dead Predicate fault is indi-
cated by the absence of bit strings that cause the predicate
of some active rule for the state to be satisfied. Algorithm 2
checks, for each state, whether the predicates for all rules
are satisfiable for at least one bit string. The algorithm it-
erates over all states and, for each state, executes two loops,
the first one identifying the live rules, and the second one
reporting any remaining dead rules. Like Algorithm 1, this
algorithm considers each state independently of the others,
and so Line 2 uses the merged bit strings from the state ma-
trix. Line 4 marks all active rules for the current state as
being “dead” initially. Lines 9–11 mark the highest-priority
rule for each bit string as being “not dead”; there should
be only one such rule since, as mentioned in Section 5.1.1,
the algorithm assumes that any Nondeterministic Activation
faults have been eliminated. Finally, Lines 14–16 report any
rules that remain dead after searching through the state ma-
trix.

5.1.3 Stability Property
A sequential digital circuit is said to be in a metastable

state when the circuit remains in the state for an indefinite
period of time during a series of changes in the input [26].
Similarly, a CAAA suffers from metastability problems when

Algorithm 2 DeadPredicateDetection

Input : M : an instance of A-FSM.
Output : faultsVector : vector of detected faults.

1: for each state S in M do
2: stateMatrix [] = mergeBitStrings(S.getStateMatrix())
3: rules[] = S.getRules()
4: markRules(rules[], “dead”)
5: for each bitString ∈ stateMatrix do
6: if isAllMarkedNotDead(rules[]) then
7: break
8: end if
9: rules[] = S.getSatisfiedRules(bitString)

10: R = getHighestPriorityRule(rules[])
11: markRules(R, “not dead”)
12: end for
13: for each R ∈ rules[] do
14: if isDead(R) then
15: faultsVector.add({S, R, “dead”})
16: end if
17: end for
18: end for
19: return faultsVector

a set of context updates can produce a sequence of adapta-
tions such that the choice of which state ends the sequence
depends on the duration with which some updated context
variable holds its value. In this case the rules of the CAAA
violate the Stability property. More specifically, we say that
the rules of a CAAA contain an Adaptation Race fault when
the rules allow an indefinite number of adaptations to occur
while some propositional context variable holds its value. If
the adaptations form a cycle with an indefinite number of
iterations, then we say that the rules contain an an Adapta-
tion Cycle fault.

In general, these patterns of behavior may not always be
considered faulty and instead may produce multiple adap-
tations that merely annoy the user. Nevertheless, races can
be dangerous because, if the affected variable holds its value
long enough, then the CAAA will adapt to the last state
of the race, but otherwise the choice of last state will be
random.

In terms of A-FSMs and state matrices, if an A-FSM is
deterministic, it is possible to search for Adaptation Cycles
and Adaptation Races by looking for paths of transitions
among multiple states whose active rules contain predicates
that are satisfiable on the same bit string. Thus, in order
to detect these faults, it is necessary to consider all proposi-
tional context variables, not just the subset relevant to the
active rules of a specific state.

Algorithm 3 checks, for each state S, whether a particu-
lar bit string in the state matrix of S can trigger a path of
at least two transitions out of the state. Line 3 selects the
next bit string to be searched. In Lines 4–5, the variable
rvector is set up to store the affected rules of any detected
Adaptation Race or Adaptation Cycle, while svector is set
up to store the affected states. In Line 6, the variable isCy-
cle is used to differentiate between Adaptation Races and
Adaptation Cycles, and it also is used to force the algo-
rithm to terminate. Lines 7–9 find the destination state for
the highest-priority rule of the current bit string and store it
in variable destState. Lines 11–16 set isCycle true because,
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Algorithm 3 RaceCycleDetection

Input : M : an instance of A-FSM.
Output : faultsVector : vector of detected faults.

1: for each state S in M do
2: stateMatrix [] = mergeBitStrings(S.getStateMatrix())
3: for each bitString ∈ stateMatrix do
4: rvector = {} // explored rules
5: svector = {} // reached states
6: isCycle = false
7: rules[] = S.getSatisfiedRules(bitString)
8: R = getHighestPriorityRule(rules[])
9: destState = R.getDestState()

10: while destState != null || !destState ∈ svector do
11: if destState ∈ svector then
12: isCycle = true
13: rvector.add(R)
14: svector.add(destState)
15: break
16: end if
17: rvector.add(R)
18: svector.add(destState)
19: rules[] = destState.getSatisfiedRules(bitString)
20: R = getHighestPriorityRule(rules[])
21: destState = R.getDestState()
22: end while
23: if size(svector)>2 then
24: if isCycle then
25: faultsVector.add({S, rvector, “cycle”, bit-

String})
26: else
27: faultsVector.add({S, rvector, “race”, bit-

String})
28: end if
29: end if
30: end for
31: end for
32: return faultsVector

after at least one iteration of the innermost enclosing loop,
at least one repeated state has been detected at that point.
Lines 19–20 look for highest-priority rules whose source state
is destState and whose predicate is satisfied on the same bit
string under consideration, thus indicating the presence of
an Adaptation Cycle or Adaptation Race. If a sequence of
two or more states is detected after searching the bit strings
for all active rules of the current state, then Lines 23–29 re-
port the rules that form Adaptation Races and Adaptation
Cycles along with the bit strings that cause them.

5.2 Context Hazard Detection
Even if a set of rules for a CAAA satisfies the desired be-

havioral properties described in Section 5.1, they still may
suffer from faults related to the asynchronous way in which
context variables are updated. We can treat the effects of
delays in asynchronous updates to context variables as haz-
ards, similar to those found in sequential digital circuits.
Thus, hazards in a CAAA arise not as a result of the logic
of the rules, but as a result of the way physical changes to
context propagate to the evaluation of rule predicates.

In previous work we described how the layered architec-
ture of CAAAs gives rise to four different views of the con-
text, two of which are important for detection of context

Figure 2: A Static 0-Hazard in an AND-Gate.

hazards—the physical context and the sensed context [24].
The physical context is the context as it exists physically in
the environment of a CAAA. The sensed context is the dis-
cretization of continuous physical context values that results
when a context-awareness middleware periodically reads the
values from sensors and stores them in the set Csensed of
sensed context variables described in Section 4. For instance,
in a physical context in which a user is driving a car with
his phone actively paired to a Bluetooth handsfree system,
the pairing would be represented by a periodically sensed
context value such as “BT 00:01:A6:23:FD paired”.

Whenever multiple changes occur to the physical context
of the CAAA, the internal representation of the sensed con-
text will be inconsistent with the physical context, or stale,
until all the relevant sensed context variables variables have
been refreshed. Evaluating rule predicates on a stale sensed
context exposes the system to hazards, namely to incorrect
or unexpected adaptations. Such faults exist due to three re-
lated reasons: (1) the predicates of rules are re-evaluated ev-
ery time a sensed context variable is updated; (2) the sensed
context variables are updated asynchronously according to
different refresh rates; and (3) synchronizing the updates
of the sensed context variables is difficult (because typi-
cally they are updated by different sensor-specific run-time
libraries) and undesirable (because of the resulting degrada-
tion in performance).

For a given predicate, the occurrence of a hazard depends
on the commutation order of the predicate’s constituent
propositional context variables. We illustrate this in Fig-
ure 2 with the simple case of an AND-gate that takes two
inputs, B1 and B2, which are initially 0 and 1, respectively,
thus producing an output of 0. Suppose the inputs undergo
a 2-commutation to the values 1 and 0, respectively, pro-
ducing an output of 0 again. If B2 commutes first, then the
output of the gate does not change. However, if B1 com-
mutes first, then the output transiently has the value 1 until
B2 commutes, thereby exposing the hazard.

5.2.1 Hold, Activation, and Priority Inversion
Hazards

In the adaptation rules of a CAAA, we can identify three
different patterns of faults:

• A Hold Hazard occurs when the rules adapt to a new
state in a situation when the current state should pre-
vail instead. This is similar to the static 0-hazard de-
picted in Figure 2. From the user’s point of view this
fault produces an unwanted adaptation.

• An Activation Hazard occurs when the rules adapt to a
new state before all relevant variables have commuted
during a commutation of multiple variables, and the
new state is different from what is expected.

• A Priority Inversion Hazard is similar to an Activation
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Hazard and occurs when the rule that triggers has a
lower priority than the one that should have triggered.
Activation Hazards and Priority Inversion Hazards are
similar to a dynamic hazard in sequential digital cir-
cuits [26], where a different output is produced before
the evaluation is completed. From the user perspec-
tive the system performs an incorrect adaptation and
incorrect actions.

Static hazards in sequential digital circuits are eliminated
by introducing delays (such as a double negation) into a spe-
cific signal path [26]. A solution for the adaptation rules of
CAAAs could be to introduce delays in the invocation of
the actions of every triggered rule in order to make sure the
destination state of the triggered rule holds. Unfortunately,
this would apply a fixed delay even to safe commutations
that do not create problems. Therefore, we instead focus
on identifying which commutations of propositional context
variables may lead to a hazard and then compute the small-
est delay that will avoid it.

Algorithm 4 HazardDetection

Input : M : an instance of A-FSM.
Output : faultsVector : vector of detected faults.

1: for each state S in M do
2: stableAssignments = complementBitStrings(S.get-

StateMatrix())
3: for each bitString in stableAssignments do
4: for i = 2 to S.numVar() do
5: indexList = permutation(S.getVars(), i)
6: for each sequence in indexList do
7: rvector = {} // selected rule in each step
8: u = bitString
9: hazard = null

10: for j = 0 to i - 1 do
11: u.flipBitAtIndex(sequence[j])
12: rules[] = S.getSatisfiedRules(u)
13: R = getHighestPriorityRule(rules[])
14: if isEmpty(rules[]) && (j != i - 1) then
15: break // reached stable assignment
16: else if (R != null) &&

!(rvector.contains(R)) then
17: if R.isHigherPriorityRule(rvector) then
18: hazard = “Priority Inversion”
19: end if
20: rvector.add(R)
21: else if (j == i - 1) then
22: if isEmpty(rules[]) then
23: hazard = “Hold” // may override
24: else if !R ∈ rvector.prefix(R) && hazard

!= “Priority Inversion” then
25: hazard = “Activation”
26: end if
27: end if
28: end for
29: faultsVector.add({hazard, S, bitString, se-

quence, rvector})
30: end for
31: end for
32: end for
33: end for
34: return faultsVector

For a given state, we define a stable assignment as an
assignment of values to the propositional context variables
that satisfies none of the predicates of the active rules of
the state. Correspondingly, an unstable assignment is an
assignment that satisfies some predicate. We define a criti-
cal path as any sequence of commutations that starts with a
stable assignment and has one or more intervening unstable
assignments. If a critical path ends in a stable assignment
for the given state, then we have a Hold Hazard. If the crit-
ical path ends in an unstable assignment, then we need to
check for a Priority Inversion Hazard. Otherwise we have
an Activation Hazard. We only consider critical paths in
which each variable commutes at most once, since a criti-
cal path with multiple commutations of the same variable
can be subdivided into multiple critical paths with single
commutations. In addition, we assume that multiple propo-
sitional context variables associated with the same under-
lying sensed concrete variable are updated simultaneously
whenever the sensed concrete variable is updated. We can
relax this assumption by accounting for any implementation
delays in the updating of the propositional context variables.

Algorithm 4 is applied in each state S and searches for haz-
ards beginning from stable assignments, which Line 2 iden-
tifies as the set of all bit strings satisfying no predicates of
active rules of S. Lines 4–31 explore all commutations from
length two to the number of propositional context variables,
with the loop variable i indicating the current length to con-
sider. Line 5 generates the set of permutations of length i of
indexes into the current bit string, indicating the different
variables and their orderings to consider for commutations.
For each permutation, Lines 6–30 sequentially commute the
variables according to the current permutation and look for
hazards under that setting. Line 15 discards a stable path
that has been processed already in a previous shorter path.
Lines 16–20 detect Priority Inversion Hazards when a rule
R is discovered with higher priority than rules found before.
Lines 21–27 detect Hold Hazards and Activation Hazards.
A Hold Hazard is present when there is an adaptation (in-
dicated by !isEmpty(rules[]) in Line 22) between stable as-
signments. Line 29 reports all detected critical paths and
their hazard category.

5.2.2 Fixing a Hazard
For a detected critical path, a simple solution to prevent

its associated hazard would be to introduce a delay until
all the variables of the critical path have been updated by
the underlying middleware. Underestimating this delay may
not eliminate the hazard, while overestimating it may make
the application inefficient. In any case, in the typical situa-
tion, different sensed concrete variables have different refresh
rates, and so additional commutations of a variable that al-
ready commuted may occur before any introduced delay has
elapsed.

To address this problem, for each unstable assignment
reachable from a given initial stable assignment in a given
state, we can calculate the minimum safe delay, defined as
the smallest interval of time starting from the time at which
the first variable of the assignment commuted, after which
the assignment is hazard-free. If during the unsafe period
another variable commutes, then a new minimum safe de-
lay must be recomputed for the resulting assignment. For
assignments not affected by hazards this delay is zero. For
other assignments, it is the maximum over all hazards from
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Algorithm 5 MinimumSafeDelays

Input : faultsVector : vector of detected faults.
Output : delaysVector : {state, bitString, subPath, delay}.
1: delaysVector = {}
2: for each fault in faultsVector do
3: path = fault.getCriticalPath()
4: for i = 0 to path.size() - 1 do
5: subPath[] = path.getSubPath(0, i)
6: delay = 0
7: for each Variable v in path do
8: ContextVariable cv = v.getContext()
9: if !(cv ∈ subPath.getContexts()) then

10: t = cv.getRefreshRate()
11: delay = max(delay, t)
12: end if
13: end for
14: if delay > delaysVector.get(subPath) then
15: delaysVector.add({fault.getState(),

fault.getBitString(), subPath, delay})
16: end if
17: end for
18: end for
19: return delaysVector

which the assignment must be protected. Algorithm 5 gen-
erates the minimum safe delays for a given set of hazards,
such as those reported by Algorithm 4. For each critical
path, Lines 3–5 select a subPath of the current length i.
Lines 7–13 extract the set of context variables corresponding
to context that may commute in path but that have not com-
muted in subPath. The slowest refresh rate of the remaining
context is stored in Lines 10–11. Since the same subPath
can be obtained from multiple paths, Lines 14–16 store only
the slowest. Engineers can use Algorithm 5’s output to force
waits that prevents hazards.

6. FINDING FAULTS IN PHONEADAPTER
This section describes our results from applying our fault

detection algorithms to PhoneAdapter, the CAAA described
in Section 3 and modeled in Section 4. PhoneAdapter is
implemented on top of ContextNotifier, a J2ME rule-based
adaptation framework and middleware for CAAAs [22], and
targeted to deploy on the Nokia N95 cellphone. We ran the
application and its adaptation rules within TestingEmulator,
an emulator we have built for CAAAs [23]. The imple-
mented PhoneAdapter has nine states and 19 rules, and it
utilizes 12 propositional context variables. For this analy-
sis, we set refresh rates in the TestingEmulator of one mil-
lisecond for time, 10 seconds for GPS, and 60 seconds for
Bluetooth.

Table 2 summarizes the results. The first column shows
the nine states in the A-FSM. The second column shows the
number of propositional context variables used by the pred-
icates associated with each state. The remaining columns
present the results of applying the four fault detection algo-
rithms to PhoneAdapter.

6.1 Detecting Nondeterministic Adaptations
This pattern of faults appears when predicates of multiple

rules with the same priority and active within the same state
can be satisfied by the same assignments to the propositional

context variables.
The column “Nondet. Adaptation” in Table 2 shows the

number of assignments of propositional context variables an-
alyzed by Algorithm 1 and the number of assignments that
induce nondeterministic activations. For example, 7 propo-
sitional context variables are used in state General and all
128 (27) assignments are analyzed. The analysis for this
state discovered 37 different assignments to propositional
context variables for GPS and Bluetooth that simultane-
ously satisfy the predicates for rules ActivateOffice, Acti-
vateHome and ActivateOutdoor.

To eliminate these faults, we assigned distinct priorities
to the affected rules in line with the behavior desired for
PhoneAdapter.

6.2 Detecting Dead Predicates
This pattern of faults consists of predicates that cannot

be satisfied by any assignments for the propositional context
variables, or predicates that could be satisfied but are always
preempted by predicates of rules with higher priority.

The column “Dead Predicates” of Table 2 shows the num-
ber of assignments to propositional context variables ana-
lyzed by Algorithm 2 and the one fault it detected in rule
ActivateSync within state General. The number of assign-
ments analyzed is a subset of the number considered by the
previous algorithm since one assignment satisfying a predi-
cate is enough to show that that the predicate is not dead.
By examining the state matrix associated with this state, we
note that it is possible for predicates of rule ActivateSync to
be satisfied by certain assignments, but such assignments
also satisfy ActivateOffice and ActivateHome, which have
higher priority, and thus ActivateSync is always preempted
and never triggered.

6.3 Detecting Adaptation Races and Cycles
Faults associated with races and cycles result from assign-

ments that induce sequential or cyclic adaptations where the
last state of the sequence depends on how long an assign-
ment holds.

As shown in the column “Adaptation Races and Cycles”
of Table 2, Algorithm 3 analyzes a larger number of as-
signments than the previous algorithms because it explores
paths of transitions among multiple states. The algorithm
detected 535 races and 113 cycles. There are several different
races producing fluctuations in the states that merely may
disturb the user temporarily. For example, if a user starts
to drive and accelerates quickly, the application may or may
not reach DrivingFast (in which it will divert calls), depend-
ing on whether the high speed is maintained long enough to
enable the transition from General to Driving and then to
DrivingFast.

There are also races generating unwanted behaviors from
which the application cannot recover quickly. For instance,
while in Driving, if Bluetooth loses the connection with the
handsfree system, the phone will adapt through General to
Outdoor and then Jogging, from where it is impossible to re-
activate Driving even if the handsfree is re-detected, because
the adaptation rules are defined in such a way that the rule
that activates Driving never triggers while Jogging is active.
Finally, all the detected cycles are produced by rules Acti-
vateMeeting and DeactivateMeeting when the state is Office
and Time >= meeting end.
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Table 2: Faults Detected in PhoneAdapter

State Vars. Nondet. Adaptation Dead Predicates Adaptation Races and Cycles Context Hazards
Assignments Faults Assignments Faults Assignments Race Cycle Paths Hold Activ. Prior.

General 7 128 37 128 1 3968 45 13 14085 0 11 3182
Outdoor 5 32 3 17 0 3968 135 23 161 0 0 52
Jogging 2 4 0 1 0 3072 97 19 2 0 0 0
Driving 3 8 0 7 0 2560 36 13 16 2 2 4
DrivingFast 2 4 0 2 0 3072 58 19 2 0 0 0
Home 4 16 0 9 0 2816 76 19 104 8 0 13
Office 7 128 1 65 0 2848 29 1 82634 1828 368 2164
Meeting 1 2 0 2 0 2048 32 1 0 0 0 0
Sync 2 4 0 1 0 1024 27 5 2 2 0 0

6.4 Detecting Context Hazards
This class of faults corresponds to sequences of asynchronous

changes to propositional context variables that introduce un-
wanted adaptations or unexpected states.

Executing Algorithm 4 results in many critical paths, or
sequences of changes to propositional context variables lead-
ing to hazards. The column “Context Hazards” of Table 2
shows the number of paths considered and the 7636 paths
that induce the three patterns of context hazards. Most
of the hazards are associated with paths starting in Office
and General, and Priority Inversion Hazards are the most
common of the three.

One example of a Hold Hazard occurs within Home, when
GPS becomes disconnected and the home PC is not detected
quickly enough via Bluetooth. In this situation, the phone
will adapt from Home to General because there is no context
indicating that the user is at home.

We also detected several Activation Hazards. For exam-
ple, when GPS indicates that a user is at the office, when
Bluetooth shows that more than three people are nearby,
and when it is time for a meeting, then the rule Activate-
Meeting will be triggered and the phone will adapt to Meet-
ing. Then when GPS becomes disconnected and fewer than
three people are detected nearby, even though rule Deac-
tivateOffice defined for state Office is satisfied, the phone
will remain in state Meeting because that rule is not active
within Meeting.

Finally, we detected many Priority Inversion Hazards. For
example, when GPS senses a user’s speed of more than 5
miles per hour before the car’s handsfree device is detected,
the phone will adapt to Jogging instead of Driving, even
through the priority of rule ActivateDriving is higher than
the priority of rule ActivateJogging. This problem can be
avoided by forcing a wait for Bluetooth to detect the car’s
handsfree system, which will enable the phone to adapt to
Driving.

6.5 Determining Minimum Safe Delays
Once we identified the paths that may induce context haz-

ards, we calculated the minimum safe delay for each path
in order to achieve hazard-free adaptation of the system
with minimum delays. The application of Algorithm 5 to
PhoneAdapter reports a minimum delay for detected haz-
ards that is, on average, 75% shorter than the delay pro-
duced by simply waiting for a commutation of all context
variables to occur.

7. CONCLUSION AND FUTURE WORK
In this paper we have described three contributions to the

validation of modern software applications. First, we have

defined a formal model of a key complex behavioral char-
acteristic, namely adaptation, of an increasingly large and
important class of computing applications, namely CAAAs.
Second, we have identified a large set of patterns of fre-
quently occurring adaptation faults that are not easily de-
tected by existing validation techniques. Third, we have
defined algorithms for automatically detecting occurrences
of the fault patterns, enabling software engineers to increase
the quality and robustness of their applications. We illus-
trated these contributions on a small but realistic CAAA
called PhoneAdapter, which exhibits many of the fault pat-
terns we have identified and whose faults are automatically
detected by our algorithms.

In future work we plan to apply constraint propagation
over variables that are affected by physical laws (e.g., time
always increasing, battery level usually decreasing) in order
to reduce the number of possible paths to explore in an A-
FSM, which is crucial for faults affecting multiple states. To
improve the efficiency of the rules’ state space exploration we
also plan to use a symbolic representation of the state space
(such as binary decision diagrams [4]) and to explore the
possibility of encoding our fault patterns as properties that
could be checked by model checkers. We also will extend
our approach to accommodate end users’ needs by introduc-
ing interactive “wizards” for improving adaptation rules and
eliminating their faults. Finally, given how error-prone the
use of rule-based adaptation can be for CAAAs, it will be
worthwhile to investigate alternative approaches to support
adaptation.
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