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ABSTRACT 
As a software engineering discipline, refactoring offers the 
opportunity for reversal of software ‘decay’ and 
preservation of a level of software quality. In a recent 
paper by Zeiss et al. [23], a set of fifteen refactorings were 
found applicable to Testing and Test Control Notation 
(TTCN-3) test behaviour and a set of thirteen refactorings 
to improving the overall structure of a TTCN-3 test suite. 
All twenty-eight refactorings were taken from the set of 
seventy-two described in the seminal text by Fowler [10]. 
An important issue with any refactoring is the testing effort 
required during implementation of its mechanics. In this 
paper, we explore the trade-offs between, and the 
contrasting characteristics of, the two TTCN-3 sets of 
refactorings from a refactoring mechanics perspective. 
Firstly, we use a meta-analysis of the same twenty-eight 
refactorings based on a dependency matrix developed 
through scrutiny of the mechanics of all seventy-two 
refactorings in [10] and then an analysis of the refactoring 
chains emerging from each of the same twenty-eight 
refactorings. Results suggest that there are compelling 
reasons for avoiding test suite structure refactorings when 
the dependencies and chains of the test suite refactorings 
are considered. Refactoring test behaviour potentially 
offers a far simpler, less demanding set of tasks required of 
the developer both from a re-testing and dependency 
viewpoint.   
 
Keywords: Refactoring, Test Suite, Test Behaviour, 
TTCN-3. 
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1. INTRODUCTION 
As a software engineering discipline, refactoring [10] has 
grown in prominence over recent years [3, 7, 9, 10, 11, 12, 
17, 19]. Refactoring is defined as a change made to 
software in order to improve its structure without 
necessarily changing the semantics of the program. In 
theory, the subsequent improvement in code 
comprehensibility makes the software easier to maintain 
and refactoring can provide both short-term and long-term 
benefits. In fact, Fowler [10] suggests that the process of 
refactoring is the reversal of evolutionary decay, the 
preservation of sound software structure and hence, any 
refactoring effort is thus worthwhile. In the same text by 
Fowler, the mechanics of seventy-two refactorings are 
described on a step-by-step basis, with a requirement on the 
part of the developer to test at each logical point in those 
mechanics. A significant amount of research has been 
carried out into the practicalities of refactoring both 
proprietary and Open-Source Software (OSS) software and 
testing of OO software [1, 4, 8, 15, 16, 20].  Very little 
research, however has addressed the same issues with 
respect to refactoring test suites themselves and the 
subsequent testing requirements that ensures the test suite 
has been refactored correctly. (It is often the case that a test 
suite is larger than the code it is testing.) In this paper, we 
examine two sets of refactorings. The first is set of fifteen 
test behaviour refactorings and the second a set of thirteen 
test suite structure refactorings adapted to Testing and Test 
Control Notation (TTCN-3) constructs [22]. TTCN-3 is an 
industry standard notation for controlling the testing 
process. Many of its constructs explicitly allude to, or can 
be adapted to, the features of a typical OO language.     
 
We use a meta-analysis of the twenty-eight refactorings 
based on a dependency matrix developed through scrutiny 
of the mechanics of all seventy-two refactorings. The 
dependency matrix shows, for each of the twenty-eight 
refactorings, the number of other, dependent refactorings. 
We then analyse the chains generated by each of the 
twenty-eight refactorings due to their inherent 
dependencies. Results indicate that there are good reasons 
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for a developer to avoid test suite refactorings in favour of 
refactoring test behaviour; the latter offers a relatively 
simple set of requirements both from a re-testing and 
dependency viewpoint. From a wider perspective, 
refactoring has a direct bearing on potential software 
quality through improved comprehensibility, subsequent 
maintainability and the influence this may have on fault 
incidence. The paper is structured as follows: in the 
following section, we describe the motivation for the 
research and related work. In Section 3, we describe the set 
of twenty-eight TTCN-3-based refactorings and an analysis 
of each of those twenty-eight refactorings with respect to 
the refactorings they each use (Section 4). In Section 5, we 
extend the analysis to take account of chains (i.e., 
sequences) of refactorings generated by each of the same 
set of refactorings. We discuss some of the issues arising 
from our research in Section 6, before concluding in 
Section 7.  
 
2. MOTIVATION/RELATED WORK 
The research described in this paper is motivated by three 
factors. First, the size of test suites is becoming 
increasingly difficult to manage and control. Refactoring 
techniques offer opportunities and potential for reducing 
complexity in those test suites. Second, while the TTCN-3 
language is a recognised standard for testing systems [22], 
the potential for applying what are, effectively, Java-based 
refactorings to test suites has not been the source of much 
investigation. Third, while it is entirely feasible to propose 
refactorings for both test behaviour and test suite structure, 
the two sets are likely to have their own distinct and 
interesting properties; a developer considering a refactoring 
or set of refactorings should thus be aware of those 
properties, since they may influence the decision on which 
refactorings to apply.           
 
The work in this paper builds on other previous research by 
the authors where we investigated the link between 
refactoring and testing. In [5], we adapted the testing 
taxonomy proposed by Van Deursen & Moonen (VD&M) 
based on the post-refactoring repeatability of tests [8].  The 
VD&M taxonomy proposed five categories of refactoring. 
In our assessment of the taxonomy, we urged the need for 
the inter-relatedness of refactorings to be considered when 
making refactoring decisions and we based that inter-
relatedness on a refactoring dependency graph developed 
as part of the research. Given our taxonomy extension, we 
then assessed the potential for eliminating code smells [10] 
where minimum disruption to testing effort was the goal. 
Herein, we specifically explore the nature of the twenty-
eight test-based refactorings proposed by Zeiss et al., [23] 
in greater detail.  

 
In terms of other related work, recent work by Advani et 
al., [1] describes the results of an empirical study of the 
key trends across multiple versions of the same Java OSS. 
A ‘peak’ and ‘trough’ effect in the pattern of refactorings 
was observed across all but one of the systems studied, 
suggesting that refactoring is done in effort ‘bursts’.  
Results showed the most common refactorings of the 
fifteen coined a ‘Gang of Six’, to be generally those with a 
high in-degree and low out-degree (arcs entering and 
emerging, respectively) when mapped on a dependency 
graph; the same refactorings also featured strongly in the 
remedying of bad code smells. Surprisingly, inheritance 
and encapsulation-based refactorings were found to have 
been applied relatively infrequently - we offered 
explanations for why this may be the case. The paper thus 
identified ‘core’ refactorings central to many of the 
changes made by developers on open-source systems.  A 
study of the trends in changes, categorised according to 
refactorings was also undertaken in [6] and an investigation 
of change metrics as a basis of refactorings in [7]. A full 
survey of recent refactoring work can be found in [14]. 
Finally, we note that research in which the twenty-eight 
refactorings were proposed [23] represents just one of a 
number of research works by the same authors, primarily 
looking into tool-based support for refactoring test suites 
and metrics for analyzing TTCN-3 specifications [2]  
 
 
3. THE TTCN-3 REFACTORINGS 
3.1 Test Behaviour 
In Zeiss et al., [23] a set of fifteen refactorings applicable 
for refactoring TTCN-3 test behaviour were described. The 
set of fifteen refactorings were all taken from Fowler’s text 
[10] and adapted by Zeiss et al., to their TTCN-3 
equivalents with re-interpretation where necessary; 
henceforward, we will refer to these refactorings as Test 
Behaviour (TB) refactorings. The fifteen refactorings are 
shown in Table 1, together with a description of the 
purpose of each. One key difference between TTCN-3 
notation and object-oriented code is the absence in the 
former of any notion of a method (in TTCN-3 it becomes a 
function). For that reason, two of the fifteen refactorings in 
Table 1 enclosed in square brackets (i.e., 4. Extract Method 
and 7. Inline Method) have been modified to become 
‘Extract Function’ and ‘Inline Function’, respectively. The 
predicate on which our research rests is that Java-based 
refactorings drawn from Fowler have a strong 
correspondence with the TTCN-3 notation and thus require 
only minor adaptation. The refactorings in Table 1 
demonstrate that only minor changes are necessary to make 
that transition in these cases.   

 
Table 1. The Test Behaviour (TB) refactorings of Zeiss et al., [23].  

 
Refactoring  Description 

1. Consolidate Conditional 
Expression 

A sequence of conditional tests with the same result is combined 
into a single conditional expression.  
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2. Consolidate Duplicate 
Conditional Fragments 

A fragment of code appearing in all branches of a conditional are 
extracted to a single place. 

3. Decompose Conditional  Each part of a complicated conditional is split into extracted 
methods.  

4. Extract Function [Extract 
Method]  

A code fragment can grouped together; turn that fragment into a 
function [method] whose name explains its purpose.  

5. Introduce Assertion A section of code assumes something about the state of the 
program; the assumption is made explicit with an assertion.   

6. Introduce Explaining 
Variable 

A complicated expression is decomposed by using temporary 
variables for parts of the expression. 

7. Inline Function [Inline 
Method] 

The body of a function [method], whose name and purpose is 
obvious is moved into the body of its caller.  

8. Inline Temp  A temporary variable is replaced with a corresponding 
expression.  

9. Remove Assignment to 
Parameters 

A temporary variable is used to replace an assignment to a 
parameter.  

10. Remove Control Flag  A variable acting as a control flag is replaced with a ‘break’ or 
‘return’.  

11. Replace Nested 
Conditional with Guard 
Clauses 

An unclear nested ‘if’ statement is replaced with a set of guard 
clauses for the special cases.  

12. Replace Temp with Query  A temporary variable holds the result of an expression; the 
expression is extracted into a method.  

13. Separate Query from 
Modifier 

A method that a) returns a value and b) changes the state of an 
object is replaced by separate methods for a) and b)   

14. Split Temporary Variable A temporary variable is assigned to more than once (and is not a 
loop variable); a separate variable is used for each assignment 

15. Substitute Algorithm  An algorithm is replaced by one which is simpler.  

 
Noticeable from Table 1 is the strong influence of simple 
variable, expression and condition manipulation, as we 
would expect for test behaviour refactorings; it is this 
simplicity that explains why only two of the fifteen 
refactorings need to be re-interpreted for TTCN-3.  
 
3.2 Test Suite Structure 
In the same paper by Zeiss et al., [23] a set of thirteen 
refactorings applicable to test suite structures was 
described. Again, the set of thirteen refactorings was taken 
from Fowler’s text [10] and adapted by Zeiss et al., to 
TTCN-3 where necessary by re-interpreting the meaning of 
the refactoring; henceforward, we refer to these 

refactorings as Test Suite Structure (TSS) refactorings.  In 
TTCN-3, there is no concept of a class – the term 
component was used by Zeiss et al., in its place. Equally, 
the notion of extracting a subclass or superclass does not 
make sense in TTCN-3 even though inheritance is a feature 
of TTCN-3. The terms Extended Component and Parent 
Component, respectively are used instead.  Finally, a field 
in the Java-based refactorings of Fowler [10] has no 
meaning in TTCN-3 and is thus replaced by one of: Port, 
Variable, Constant or Timer all four of which are 
potentially usable in TTCN-3.  The minor changes required 
to the refactorings in Table 2 illustrate the applicability of 
Java-based refactorings to a TTCN-3 context.   

 
Table 2. The Test Suite Structure (TSS) refactorings of Zeiss et al., [23].  

 
Refactoring  Description 
1. Add Parameter A function [method] needs more information from its 

caller. A parameter is used to pass that information.  
2. Extract Extended Component 
[Extract Subclass] 

A component [class] has features that are only used in 
some instances. A component [subclass] is created for 
that subset of features.  

3. Extract Parent Component 
[Extract Superclass]  

Two components [classes] have similar features. A 
parent component [superclass] is created and the 
common features are moved to that parent component 
[superclass].  

4. Introduce Local  
Port/Variable/Constant/Timer 

A server component [class] needs additional functions 
[methods], but can’t be modified. A new component 
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[Introduce Local Extension] [class] is created and becomes an extended component 
[subclass] of the original class.  

5. Introduce Record Type 
Parameter [Introduce Parameter 
Object] 

A group of parameters that naturally go together are 
replaced with a record type [object]. 

6. Parameterise Test 
Case/Function/Alt Step 
[Parameterise Method] 

Several functions [methods] do the same thing with 
different values; a single function [method] is created 
to handle both values. 

7. Pull Up 
Port/Variable/Constant/Timer  [Pull 
Up Field]  

Two extended components [subclasses] have the same 
field. The Port/Variable/Constant/Timer [field] in 
question is moved to the parent component 
[superclass].  

8. Push Down 
Port/Variable/Constant/Timer  
[Push Down Field] 

A  Port/Variable/Constant/Timer [field] is used only 
by some components [subclasses]. The field is moved 
to those components [subclasses]. 

9. Replace Magic Number with 
Symbolic Constant 

A constant replaces a literal value.  

10. Remove Parameter A parameter is no longer used by a function [method] 
body and is removed. 

11. Rename [Rename Method]  A function [method] is renamed to reflect its purpose 
in a clearer way.   

12. Replace Parameter with 
Explicit Functions [Replace 
Parameter with Explicit Methods] 

A function [method] runs different code depending on 
the values of an enumerated parameter; a separate 
function [method] is created for each value of the 
parameter.  

13. Replace Parameter with 
Function  

A component [object] invokes a function [method] and 
passes the results as a parameter to a receiving 
component [object]; the receiver should invoke the 
function [method].  

 
In contrast to the two out of fifteen TB refactorings that 
need to re-interpreted to TTCN-3 semantics, ten of the 
thirteen TSS refactorings require TTCN-3 re-interpretation. 
This suggests that, on the face of it, while adaptation is not 
necessarily a problem, the TSS refactorings are less easily 
adapted to TTCN-3 than the TB refactorings. Many of the 
TSS refactorings are structural in nature; for example, 
refactorings 2, 3, 7 and 8 from Table 2 all require 
modification and appreciation of the structure of the 
inheritance hierarchy in both the Java and TTCN-3 sense; 
it is largely differences in the semantics of these building 
blocks of Java and TTCN-3 that accounts for the extra 
adaptation effort.   
 
4. DEPENDENCY ANALYSIS  
As part of our refactoring analysis and to inform our 
understanding of the twenty-eight refactorings, we 
developed a dependency matrix showing all seventy-two of 
Fowler’s refactorings and how they were inter-related. For 
each refactoring let’s say, X, the out-degree taken from the 
graph (i.e., the number of directed arcs emerging from that 
node) illustrated the refactorings that were used by X.  The 
matrix was developed through close examination and 
scrutiny of the seventy-two refactorings in Fowler’s text. 
We would want a refactoring to have a zero out-degree 
(i.e., because that would indicate that the refactoring does 
not require the use of any other refactorings as part of its 
mechanics). In fact, the lower the out-degree, the lower the 

dependency of that refactoring on other refactorings and, in 
theory, the easier the refactoring is to complete.   
 
4.1 In-degree and out-degree analysis  
Figure 1 shows the out-degree values for the fifteen TB 
refactorings. The maximum value among the fifteen 
refactorings is for refactoring 4, ‘Extract Function’.  This 
refactoring uses ‘Remove Assignments to Parameters’, 
‘Replace Method with Method Object’, ‘Replace Temp 
with Query’ and ‘Split Temporary Variable’ refactorings. 
Interestingly, three of these refactorings appear in the same 
set of TB refactorings. The refactoring that uses three other 
refactorings is ‘Replace Temp with Query’, which uses 
‘Inline Temp’, ‘Split Query from Modifier’ and ‘Split 
Temporary Variable’, all three of which are in the same set 
of TB refactorings. Seven of the fifteen refactorings use 
zero other refactorings as part of their stated mechanics 
(i.e., 2, 6, 7, 8, 9, 14 and 15) and five of the fifteen 
refactorings use only one other refactoring as part of their 
mechanics (i.e., 1, 3, 5, 10 and 13). We assume that each of 
these associated refactorings can be easily adapted to the 
TTCN-3 notation. For example, of the four refactorings 
used by ‘Extract Function’, only ‘Replace Method with 
Method Object’ needs modification to become ‘Replace 
Function with Record Type’.  
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Figure 1. Out-degree for the fifteen TB refactorings. 

 
To complete the picture, Table 3 shows the refactorings 
that each of the fifteen TB refactorings use as part of those 
mechanics.  (This information was extracted directly from 
the dependency matrix.) Interestingly, and a result we did 
not anticipate is the high number of inter-relationships (i.e., 
overlap) between the TB refactorings. Table 3 shows (in 
bold font), the refactorings used by TB refactorings that are 
actually TB refactorings themselves. Only two of the 14 
refactorings are drawn from outside the TB set, namely 
‘Replace Method with Method Object’ and ‘Replace Magic 
Number with Symbolic Constant’.   

 
Table 3. The refactorings that the fifteen TB refactorings use  

 
Refactoring  X Refactorings that X uses  
1. Consolidate Conditional Expression Extract Method 
3. Decompose Conditional  Replace Nested Conditional with 

Guard Clauses 
4. Extract Function [Extract Method]  Remove Assignments to Parameters, 

Replace Method with Method Object,  
Replace Temp with Query, Split 
Temporary Variable. 

5. Introduce Assertion Extract Method. 
10. Remove Control Flag  Separate Query From Modifier 
11. Replace Nested Conditional with Guard Clauses Consolidate Conditional Expression, 

Replace Magic Number with Symbolic 
Constant 

12. Replace Temp with Query  Inline Temp, Separate Query  
from Modifier, Split Temporary  
Variable. 

13. Separate Query from Modifier Substitute Algorithm 
 
Figure 2 shows the out-degree values for the thirteen TSS 
refactorings.  
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Figure 2. Out-degree for the thirteen TSS Refactorings. 
 
The refactoring with the highest out-degree is for 
refactoring 2, ‘Extract Extended Component’ with an out-
degree of 7; the refactoring with an out degree of 6 is 
‘Extract Parent Component’. Five of the thirteen 
refactorings use no other refactorings as part of their 

mechanics (i.e., 6, 8, 10, 11 and 12). To complete the 
picture, Table 4 shows the refactorings that each of the 
thirteen TSS refactorings use as part of their mechanics.  
 
Table 4 also shows (in bold font), the other required TSS 
refactorings that belong in the set of TSS refactorings. 
Seventeen of the twenty-one refactorings are drawn from 
outside the TSS set; the trend in Table 4 is thus in complete 
contrast to the TB refactorings where a strong inter-
dependence was noted. This result suggests that if a 
developer wants to apply one of the TSS refactorings, they 
would, generally speaking, first need to understand the 
mechanics of refactorings outside the core set of applicable 
TSS refactorings. On the other hand, the TB refactorings 
tend to use refactorings taken from the same set. The latter 
feature has a major advantage: if developers are continually 
applying refactorings from the same set of refactorings (in 
this case the TB set), they are likely to become more adept 
at using those refactorings and, consequently, will become 
trivial to apply.       
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Table 4.  The refactorings that the thirteen TSS refactorings use  

 
Refactoring  X Refactorings that X uses 
1. Add Parameter Introduce Parameter Object. 
2. Extract Extended Component 
[Extract Subclass] 

Move Method, Push Down 
Method, Push Down Field, 
Rename Method, Replace 
Conditional with Polymorphism, 
Replace Constructor with Factory 
Method, Self Encapsulate Field. 

3. Extract Parent Component 
[Extract Superclass]  

Form Template Method, Pull Up 
Constructor Body, Pull Up Field, 
Pull Up Method, Rename Method, 
Substitute Algorithm. 

4. Introduce Local  
Port/Variable/Constant/Timer/ 
[Introduce Local Extension] 

Move Method 

5. Introduce Record Type 
Parameter [Introduce Parameter 
Object] 

Add Parameter, Extract Method, 
Move Method. 

7. Pull Up 
Port/Variable/Constant/Timer  
[Pull Up Field]  

Self Encapsulate Field. 
 

9. Replace Magic Number with 
Symbolic Constant 

Replace Type Code with Class. 

13. Replace Parameter with 
Function [Method]  

Hide Method, Remove Control 
Flag 

 
 
5. REFACTORING CHAINS 
There is far more serious implication for the TB and, 
particularly the TSS refactorings, relating to the possibility 
that a chain of required refactorings (i.e. a sequence of 
refactorings) is induced by each refactoring. Chain 
information can be extracted from our dependency matrix 
by following for, let’s say, refactoring X, the links of every 
refactoring that X uses. The basis on which chains rest is 
that each of the refactorings on the right hand side column 
of Tables 3 and 4 may, in turn, require the use of many 
other refactorings.  More formally, we say that a 
refactoring X has a chain of length n if, for that refactoring, 
there are n-1 subsequently refactorings that need to be 
undertaken. A chain terminates when no more refactorings 
in that sequence can be found (i.e., a terminal refactoring, 
requiring the use of zero other refactorings, is reached for 
every refactoring in the chain). A refactoring X can thus 
have many chains of varying lengths, reflecting the 
different combinations of refactorings it uses.  A 
refactoring with relatively large number of chains will have 
significant implications for the testing effort during 
refactoring. We note en passant that the notion of a 
refactoring inducing many other refactorings is not a new 
one; it is seen as one of the current challenges facing the 
refactoring community [13, 18].  
 
Figure 3 shows the number of chains for the two sets of 
refactorings (the TB refactorings are denoted by the left-

most, lighter bars). For example, refactoring 1 in the TB set 
of refactorings is ‘Consolidate Conditional Expression’ and 
gives rise to seven chains through analysis of the 
dependency matrix; refactoring 1 in the TS refactorings is 
‘Add Parameter’ and gives rise to eight chains. Of 
particular note in Figure 3 is the relatively high number of 
chains given by TSS refactorings 2 and 3. These two 
refactorings are ‘Extract Subclass’ (cf. Extract Extended 
Component) and ‘Extract Superclass’ (cf. Extract Parent 
Component) giving rise to 18 chains apiece. A developer 
would want to avoid these latter two refactorings and this 
stance is shared with the empirical profile of a previous 
study [1], where these two refactorings were shown to be 
undertaken very sparingly.  In other words, refactorings 
with a strong structural basis (e.g., inheritance related 
refactorings) need to be treated with care.   
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Figure  3. Numbers of refactoring chains induced by TB 

and TSS refactorings.  
 
The message for any developer is clear: if you intend 
refactoring the structure of a test suite, then the likelihood 
is that you will have to employ a wider variety of 
refactorings than those directly applicable to test suites. 
The degree of re-interpretation necessary for TTCN-3 is 
significantly less for test behaviour refactorings.  In 
addition, there are certain refactorings in the set of TSS 
refactorings that should be treated with extreme caution 
because of the potentially long refactoring chains they 
induce.      
 
6. DISCUSSION 
There are many issues that arise as a result of the analysis 
described. Firstly, for many of the seventy-two refactorings 
described in [10] the refactoring mechanics prescribe that a 
particular refactoring must use refactoring X in order to 
complete a refactoring.  For example, the dependency 
matrix shows that the ‘Introduce Parameter Object’ 
requires the use of the ‘Add Parameter’ refactoring in a 
‘must use’ relationship. Just as ‘must use’ relationships 
specify refactorings that must be undertaken to facilitate 
another refactoring, some refactorings ‘may’ require the 
use of other refactorings if the conditions hold during 
refactoring. For example, the Encapsulate Field refactoring 
‘may’ use Move Method after it has been completed 
depending on whether the developer decides it is 
worthwhile and applicable (again, this information was 
obtained from the dependency matrix). We could thus 
refine our analysis by modifying the dependency matrix to 
include an indication of whether refactorings were used in 
‘must’ or ‘may’ relationship with other refactorings.  A 
refactoring with chains incorporating only ‘may use’ 
relationships would be far more preferable to a refactoring 
with only ‘must use’ relationships in its chains. This 
remains a topic of future research.  
 
Secondly, we have analyzed the mechanics of twenty-eight 
refactorings adapted to TTCN-3 on the basis that there is a 
mapping between the Java mechanics and those of TTCN-
3. The study could be criticized because the mechanics of 
the Java refactorings would not apply in a TTCN-3 context. 
However, on the basis that we are able to find analogies for  

OO: inheritance, methods and fields in TTCN-3 (along the 
lines that  Zeiss et al. [23] describe) the mechanics of each 
of the twenty-eight refactorings (including refactorings that 
those twenty-eight refactorings use) can also be modeled in 
a TTCN-3 sense.  Equally, for the remaining refactorings 
specified by Fowler [10] and used in Tables 3 and 4, we 
were able to find analogies in the TTCN-3 sense. Finally, 
we have assumed that the developer has a choice as to 
which refactorngs they may want to undertake and is able 
to opt for test behavior refactorings as opposed to test suite 
structure refactorings.  Ultimately, the extent of code smell 
[10] may be the deciding factor.  We do accept that other 
factors may influence the decision as to which refactorings 
are undertaken. We have also made no assumption about 
the software tool support available and the speed it offers 
for assisting the developer; this could be a confounding 
factor for our analysis. However, considering carefully the 
prior analysis, even with the use of a tool, the time to 
undertake a TSS refactoring is still likely to be 
correspondingly greater than for a TB refactoring.  
 
The quality of software has always been dependent on the 
quality of the testing; nowadays, industry is facing an 
uphill task to cope with the size of test suites and their 
associated behaviour. The key research issue that this paper 
raises is the mapping from Fowler’s refactorings to those of 
TTCN-3. The fact that Zeiss et al., [23] adopted twenty-
eight of those refactorings suggests a strong bond. A wide 
range of research problems thus become apparent. For 
example, what quantifiable benefits and trade-offs are there 
to refactoring test suites (against test behaviour). Equally, 
some chains may be less harmful in terms of their required 
effort than other identically sized chains. These are just two 
challenges that emerge from the analysis herein.          
 
7. CONCLUSIONS 
In this paper, we have compared two sets of refactorngs; 
the first, a set of fifteen test behaviour (TB) refactorings 
and the second, a set of thirteen test suite structure (TSS) 
refactorings proposed by Zeiss [23]. Where necessary these 
twenty-eight refactorings were adapted to the semantics of 
TTCN-3 [22]. We demonstrated three compelling reasons 
why a developer would want to be careful about choosing 
test suite refactorings in favour of test behaviour 
refactorings, related to the out-degree of TSS refactorings 
when mapped on a dependency matrix and the refactoring 
chains induced by TSS refactorings.  Test suite refactorings 
should be given very careful consideration before being 
undertaken. Refactoring test behaviour on the other hand 
require a simpler, less demanding set of tasks required of 
the developer from both a re-testing and dependency 
viewpoint. The research described herein represents the 
start of an analysis into the potential for refactoring test 
suites. Notwithstanding the analysis in this paper, there are 
still many issues and challenges remaining in this growing 
and important area.    
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