
Refactoring test suites versus test behaviour - a
TTCN-3 perspective

Steve Counsell and Rob M. Hierons

Department of Information Systems and Computing
Brunel University

Uxbridge
+44 (0)1895 266740

{Steve.Counsell, Rob.Hierons}@brunel.ac.uk

ABSTRACT
As a software engineering discipline, refactoring offers the
opportunity for reversal of software ‘decay’ and
preservation of a level of software quality. In a recent
paper by Zeiss et al. [23], a set of fifteen refactorings were
found applicable to Testing and Test Control Notation
(TTCN-3) test behaviour and a set of thirteen refactorings
to improving the overall structure of a TTCN-3 test suite.
All twenty-eight refactorings were taken from the set of
seventy-two described in the seminal text by Fowler [10].
An important issue with any refactoring is the testing effort
required during implementation of its mechanics. In this
paper, we explore the trade-offs between, and the
contrasting characteristics of, the two TTCN-3 sets of
refactorings from a refactoring mechanics perspective.
Firstly, we use a meta-analysis of the same twenty-eight
refactorings based on a dependency matrix developed
through scrutiny of the mechanics of all seventy-two
refactorings in [10] and then an analysis of the refactoring
chains emerging from each of the same twenty-eight
refactorings. Results suggest that there are compelling
reasons for avoiding test suite structure refactorings when
the dependencies and chains of the test suite refactorings
are considered. Refactoring test behaviour potentially
offers a far simpler, less demanding set of tasks required of
the developer both from a re-testing and dependency
viewpoint.

Keywords: Refactoring, Test Suite, Test Behaviour,
TTCN-3.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SOQUA'07, September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-724-
7/07/09...$5.00

1. INTRODUCTION
As a software engineering discipline, refactoring [10] has
grown in prominence over recent years [3, 7, 9, 10, 11, 12,
17, 19]. Refactoring is defined as a change made to
software in order to improve its structure without
necessarily changing the semantics of the program. In
theory, the subsequent improvement in code
comprehensibility makes the software easier to maintain
and refactoring can provide both short-term and long-term
benefits. In fact, Fowler [10] suggests that the process of
refactoring is the reversal of evolutionary decay, the
preservation of sound software structure and hence, any
refactoring effort is thus worthwhile. In the same text by
Fowler, the mechanics of seventy-two refactorings are
described on a step-by-step basis, with a requirement on the
part of the developer to test at each logical point in those
mechanics. A significant amount of research has been
carried out into the practicalities of refactoring both
proprietary and Open-Source Software (OSS) software and
testing of OO software [1, 4, 8, 15, 16, 20]. Very little
research, however has addressed the same issues with
respect to refactoring test suites themselves and the
subsequent testing requirements that ensures the test suite
has been refactored correctly. (It is often the case that a test
suite is larger than the code it is testing.) In this paper, we
examine two sets of refactorings. The first is set of fifteen
test behaviour refactorings and the second a set of thirteen
test suite structure refactorings adapted to Testing and Test
Control Notation (TTCN-3) constructs [22]. TTCN-3 is an
industry standard notation for controlling the testing
process. Many of its constructs explicitly allude to, or can
be adapted to, the features of a typical OO language.

We use a meta-analysis of the twenty-eight refactorings
based on a dependency matrix developed through scrutiny
of the mechanics of all seventy-two refactorings. The
dependency matrix shows, for each of the twenty-eight
refactorings, the number of other, dependent refactorings.
We then analyse the chains generated by each of the
twenty-eight refactorings due to their inherent
dependencies. Results indicate that there are good reasons

31

for a developer to avoid test suite refactorings in favour of
refactoring test behaviour; the latter offers a relatively
simple set of requirements both from a re-testing and
dependency viewpoint. From a wider perspective,
refactoring has a direct bearing on potential software
quality through improved comprehensibility, subsequent
maintainability and the influence this may have on fault
incidence. The paper is structured as follows: in the
following section, we describe the motivation for the
research and related work. In Section 3, we describe the set
of twenty-eight TTCN-3-based refactorings and an analysis
of each of those twenty-eight refactorings with respect to
the refactorings they each use (Section 4). In Section 5, we
extend the analysis to take account of chains (i.e.,
sequences) of refactorings generated by each of the same
set of refactorings. We discuss some of the issues arising
from our research in Section 6, before concluding in
Section 7.

2. MOTIVATION/RELATED WORK
The research described in this paper is motivated by three
factors. First, the size of test suites is becoming
increasingly difficult to manage and control. Refactoring
techniques offer opportunities and potential for reducing
complexity in those test suites. Second, while the TTCN-3
language is a recognised standard for testing systems [22],
the potential for applying what are, effectively, Java-based
refactorings to test suites has not been the source of much
investigation. Third, while it is entirely feasible to propose
refactorings for both test behaviour and test suite structure,
the two sets are likely to have their own distinct and
interesting properties; a developer considering a refactoring
or set of refactorings should thus be aware of those
properties, since they may influence the decision on which
refactorings to apply.

The work in this paper builds on other previous research by
the authors where we investigated the link between
refactoring and testing. In [5], we adapted the testing
taxonomy proposed by Van Deursen & Moonen (VD&M)
based on the post-refactoring repeatability of tests [8]. The
VD&M taxonomy proposed five categories of refactoring.
In our assessment of the taxonomy, we urged the need for
the inter-relatedness of refactorings to be considered when
making refactoring decisions and we based that inter-
relatedness on a refactoring dependency graph developed
as part of the research. Given our taxonomy extension, we
then assessed the potential for eliminating code smells [10]
where minimum disruption to testing effort was the goal.
Herein, we specifically explore the nature of the twenty-
eight test-based refactorings proposed by Zeiss et al., [23]
in greater detail.

In terms of other related work, recent work by Advani et
al., [1] describes the results of an empirical study of the
key trends across multiple versions of the same Java OSS.
A ‘peak’ and ‘trough’ effect in the pattern of refactorings
was observed across all but one of the systems studied,
suggesting that refactoring is done in effort ‘bursts’.
Results showed the most common refactorings of the
fifteen coined a ‘Gang of Six’, to be generally those with a
high in-degree and low out-degree (arcs entering and
emerging, respectively) when mapped on a dependency
graph; the same refactorings also featured strongly in the
remedying of bad code smells. Surprisingly, inheritance
and encapsulation-based refactorings were found to have
been applied relatively infrequently - we offered
explanations for why this may be the case. The paper thus
identified ‘core’ refactorings central to many of the
changes made by developers on open-source systems. A
study of the trends in changes, categorised according to
refactorings was also undertaken in [6] and an investigation
of change metrics as a basis of refactorings in [7]. A full
survey of recent refactoring work can be found in [14].
Finally, we note that research in which the twenty-eight
refactorings were proposed [23] represents just one of a
number of research works by the same authors, primarily
looking into tool-based support for refactoring test suites
and metrics for analyzing TTCN-3 specifications [2]

3. THE TTCN-3 REFACTORINGS
3.1 Test Behaviour
In Zeiss et al., [23] a set of fifteen refactorings applicable
for refactoring TTCN-3 test behaviour were described. The
set of fifteen refactorings were all taken from Fowler’s text
[10] and adapted by Zeiss et al., to their TTCN-3
equivalents with re-interpretation where necessary;
henceforward, we will refer to these refactorings as Test
Behaviour (TB) refactorings. The fifteen refactorings are
shown in Table 1, together with a description of the
purpose of each. One key difference between TTCN-3
notation and object-oriented code is the absence in the
former of any notion of a method (in TTCN-3 it becomes a
function). For that reason, two of the fifteen refactorings in
Table 1 enclosed in square brackets (i.e., 4. Extract Method
and 7. Inline Method) have been modified to become
‘Extract Function’ and ‘Inline Function’, respectively. The
predicate on which our research rests is that Java-based
refactorings drawn from Fowler have a strong
correspondence with the TTCN-3 notation and thus require
only minor adaptation. The refactorings in Table 1
demonstrate that only minor changes are necessary to make
that transition in these cases.

Table 1. The Test Behaviour (TB) refactorings of Zeiss et al., [23].

Refactoring Description

1. Consolidate Conditional
Expression

A sequence of conditional tests with the same result is combined
into a single conditional expression.

32

2. Consolidate Duplicate
Conditional Fragments

A fragment of code appearing in all branches of a conditional are
extracted to a single place.

3. Decompose Conditional Each part of a complicated conditional is split into extracted
methods.

4. Extract Function [Extract
Method]

A code fragment can grouped together; turn that fragment into a
function [method] whose name explains its purpose.

5. Introduce Assertion A section of code assumes something about the state of the
program; the assumption is made explicit with an assertion.

6. Introduce Explaining
Variable

A complicated expression is decomposed by using temporary
variables for parts of the expression.

7. Inline Function [Inline
Method]

The body of a function [method], whose name and purpose is
obvious is moved into the body of its caller.

8. Inline Temp A temporary variable is replaced with a corresponding
expression.

9. Remove Assignment to
Parameters

A temporary variable is used to replace an assignment to a
parameter.

10. Remove Control Flag A variable acting as a control flag is replaced with a ‘break’ or
‘return’.

11. Replace Nested
Conditional with Guard
Clauses

An unclear nested ‘if’ statement is replaced with a set of guard
clauses for the special cases.

12. Replace Temp with Query A temporary variable holds the result of an expression; the
expression is extracted into a method.

13. Separate Query from
Modifier

A method that a) returns a value and b) changes the state of an
object is replaced by separate methods for a) and b)

14. Split Temporary Variable A temporary variable is assigned to more than once (and is not a
loop variable); a separate variable is used for each assignment

15. Substitute Algorithm An algorithm is replaced by one which is simpler.

Noticeable from Table 1 is the strong influence of simple
variable, expression and condition manipulation, as we
would expect for test behaviour refactorings; it is this
simplicity that explains why only two of the fifteen
refactorings need to be re-interpreted for TTCN-3.

3.2 Test Suite Structure
In the same paper by Zeiss et al., [23] a set of thirteen
refactorings applicable to test suite structures was
described. Again, the set of thirteen refactorings was taken
from Fowler’s text [10] and adapted by Zeiss et al., to
TTCN-3 where necessary by re-interpreting the meaning of
the refactoring; henceforward, we refer to these

refactorings as Test Suite Structure (TSS) refactorings. In
TTCN-3, there is no concept of a class – the term
component was used by Zeiss et al., in its place. Equally,
the notion of extracting a subclass or superclass does not
make sense in TTCN-3 even though inheritance is a feature
of TTCN-3. The terms Extended Component and Parent
Component, respectively are used instead. Finally, a field
in the Java-based refactorings of Fowler [10] has no
meaning in TTCN-3 and is thus replaced by one of: Port,
Variable, Constant or Timer all four of which are
potentially usable in TTCN-3. The minor changes required
to the refactorings in Table 2 illustrate the applicability of
Java-based refactorings to a TTCN-3 context.

Table 2. The Test Suite Structure (TSS) refactorings of Zeiss et al., [23].

Refactoring Description
1. Add Parameter A function [method] needs more information from its

caller. A parameter is used to pass that information.
2. Extract Extended Component
[Extract Subclass]

A component [class] has features that are only used in
some instances. A component [subclass] is created for
that subset of features.

3. Extract Parent Component
[Extract Superclass]

Two components [classes] have similar features. A
parent component [superclass] is created and the
common features are moved to that parent component
[superclass].

4. Introduce Local
Port/Variable/Constant/Timer

A server component [class] needs additional functions
[methods], but can’t be modified. A new component

33

[Introduce Local Extension] [class] is created and becomes an extended component
[subclass] of the original class.

5. Introduce Record Type
Parameter [Introduce Parameter
Object]

A group of parameters that naturally go together are
replaced with a record type [object].

6. Parameterise Test
Case/Function/Alt Step
[Parameterise Method]

Several functions [methods] do the same thing with
different values; a single function [method] is created
to handle both values.

7. Pull Up
Port/Variable/Constant/Timer [Pull
Up Field]

Two extended components [subclasses] have the same
field. The Port/Variable/Constant/Timer [field] in
question is moved to the parent component
[superclass].

8. Push Down
Port/Variable/Constant/Timer
[Push Down Field]

A Port/Variable/Constant/Timer [field] is used only
by some components [subclasses]. The field is moved
to those components [subclasses].

9. Replace Magic Number with
Symbolic Constant

A constant replaces a literal value.

10. Remove Parameter A parameter is no longer used by a function [method]
body and is removed.

11. Rename [Rename Method] A function [method] is renamed to reflect its purpose
in a clearer way.

12. Replace Parameter with
Explicit Functions [Replace
Parameter with Explicit Methods]

A function [method] runs different code depending on
the values of an enumerated parameter; a separate
function [method] is created for each value of the
parameter.

13. Replace Parameter with
Function

A component [object] invokes a function [method] and
passes the results as a parameter to a receiving
component [object]; the receiver should invoke the
function [method].

In contrast to the two out of fifteen TB refactorings that
need to re-interpreted to TTCN-3 semantics, ten of the
thirteen TSS refactorings require TTCN-3 re-interpretation.
This suggests that, on the face of it, while adaptation is not
necessarily a problem, the TSS refactorings are less easily
adapted to TTCN-3 than the TB refactorings. Many of the
TSS refactorings are structural in nature; for example,
refactorings 2, 3, 7 and 8 from Table 2 all require
modification and appreciation of the structure of the
inheritance hierarchy in both the Java and TTCN-3 sense;
it is largely differences in the semantics of these building
blocks of Java and TTCN-3 that accounts for the extra
adaptation effort.

4. DEPENDENCY ANALYSIS
As part of our refactoring analysis and to inform our
understanding of the twenty-eight refactorings, we
developed a dependency matrix showing all seventy-two of
Fowler’s refactorings and how they were inter-related. For
each refactoring let’s say, X, the out-degree taken from the
graph (i.e., the number of directed arcs emerging from that
node) illustrated the refactorings that were used by X. The
matrix was developed through close examination and
scrutiny of the seventy-two refactorings in Fowler’s text.
We would want a refactoring to have a zero out-degree
(i.e., because that would indicate that the refactoring does
not require the use of any other refactorings as part of its
mechanics). In fact, the lower the out-degree, the lower the

dependency of that refactoring on other refactorings and, in
theory, the easier the refactoring is to complete.

4.1 In-degree and out-degree analysis
Figure 1 shows the out-degree values for the fifteen TB
refactorings. The maximum value among the fifteen
refactorings is for refactoring 4, ‘Extract Function’. This
refactoring uses ‘Remove Assignments to Parameters’,
‘Replace Method with Method Object’, ‘Replace Temp
with Query’ and ‘Split Temporary Variable’ refactorings.
Interestingly, three of these refactorings appear in the same
set of TB refactorings. The refactoring that uses three other
refactorings is ‘Replace Temp with Query’, which uses
‘Inline Temp’, ‘Split Query from Modifier’ and ‘Split
Temporary Variable’, all three of which are in the same set
of TB refactorings. Seven of the fifteen refactorings use
zero other refactorings as part of their stated mechanics
(i.e., 2, 6, 7, 8, 9, 14 and 15) and five of the fifteen
refactorings use only one other refactoring as part of their
mechanics (i.e., 1, 3, 5, 10 and 13). We assume that each of
these associated refactorings can be easily adapted to the
TTCN-3 notation. For example, of the four refactorings
used by ‘Extract Function’, only ‘Replace Method with
Method Object’ needs modification to become ‘Replace
Function with Record Type’.

34

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Refactoring

O
ut

-d
eg

re
e

Figure 1. Out-degree for the fifteen TB refactorings.

To complete the picture, Table 3 shows the refactorings
that each of the fifteen TB refactorings use as part of those
mechanics. (This information was extracted directly from
the dependency matrix.) Interestingly, and a result we did
not anticipate is the high number of inter-relationships (i.e.,
overlap) between the TB refactorings. Table 3 shows (in
bold font), the refactorings used by TB refactorings that are
actually TB refactorings themselves. Only two of the 14
refactorings are drawn from outside the TB set, namely
‘Replace Method with Method Object’ and ‘Replace Magic
Number with Symbolic Constant’.

Table 3. The refactorings that the fifteen TB refactorings use

Refactoring X Refactorings that X uses
1. Consolidate Conditional Expression Extract Method
3. Decompose Conditional Replace Nested Conditional with

Guard Clauses
4. Extract Function [Extract Method] Remove Assignments to Parameters,

Replace Method with Method Object,
Replace Temp with Query, Split
Temporary Variable.

5. Introduce Assertion Extract Method.
10. Remove Control Flag Separate Query From Modifier
11. Replace Nested Conditional with Guard Clauses Consolidate Conditional Expression,

Replace Magic Number with Symbolic
Constant

12. Replace Temp with Query Inline Temp, Separate Query
from Modifier, Split Temporary
Variable.

13. Separate Query from Modifier Substitute Algorithm

Figure 2 shows the out-degree values for the thirteen TSS
refactorings.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13

Refactoring

O
ut

-d
eg

re
e

Figure 2. Out-degree for the thirteen TSS Refactorings.

The refactoring with the highest out-degree is for
refactoring 2, ‘Extract Extended Component’ with an out-
degree of 7; the refactoring with an out degree of 6 is
‘Extract Parent Component’. Five of the thirteen
refactorings use no other refactorings as part of their

mechanics (i.e., 6, 8, 10, 11 and 12). To complete the
picture, Table 4 shows the refactorings that each of the
thirteen TSS refactorings use as part of their mechanics.

Table 4 also shows (in bold font), the other required TSS
refactorings that belong in the set of TSS refactorings.
Seventeen of the twenty-one refactorings are drawn from
outside the TSS set; the trend in Table 4 is thus in complete
contrast to the TB refactorings where a strong inter-
dependence was noted. This result suggests that if a
developer wants to apply one of the TSS refactorings, they
would, generally speaking, first need to understand the
mechanics of refactorings outside the core set of applicable
TSS refactorings. On the other hand, the TB refactorings
tend to use refactorings taken from the same set. The latter
feature has a major advantage: if developers are continually
applying refactorings from the same set of refactorings (in
this case the TB set), they are likely to become more adept
at using those refactorings and, consequently, will become
trivial to apply.

35

Table 4. The refactorings that the thirteen TSS refactorings use

Refactoring X Refactorings that X uses
1. Add Parameter Introduce Parameter Object.
2. Extract Extended Component
[Extract Subclass]

Move Method, Push Down
Method, Push Down Field,
Rename Method, Replace
Conditional with Polymorphism,
Replace Constructor with Factory
Method, Self Encapsulate Field.

3. Extract Parent Component
[Extract Superclass]

Form Template Method, Pull Up
Constructor Body, Pull Up Field,
Pull Up Method, Rename Method,
Substitute Algorithm.

4. Introduce Local
Port/Variable/Constant/Timer/
[Introduce Local Extension]

Move Method

5. Introduce Record Type
Parameter [Introduce Parameter
Object]

Add Parameter, Extract Method,
Move Method.

7. Pull Up
Port/Variable/Constant/Timer
[Pull Up Field]

Self Encapsulate Field.

9. Replace Magic Number with
Symbolic Constant

Replace Type Code with Class.

13. Replace Parameter with
Function [Method]

Hide Method, Remove Control
Flag

5. REFACTORING CHAINS
There is far more serious implication for the TB and,
particularly the TSS refactorings, relating to the possibility
that a chain of required refactorings (i.e. a sequence of
refactorings) is induced by each refactoring. Chain
information can be extracted from our dependency matrix
by following for, let’s say, refactoring X, the links of every
refactoring that X uses. The basis on which chains rest is
that each of the refactorings on the right hand side column
of Tables 3 and 4 may, in turn, require the use of many
other refactorings. More formally, we say that a
refactoring X has a chain of length n if, for that refactoring,
there are n-1 subsequently refactorings that need to be
undertaken. A chain terminates when no more refactorings
in that sequence can be found (i.e., a terminal refactoring,
requiring the use of zero other refactorings, is reached for
every refactoring in the chain). A refactoring X can thus
have many chains of varying lengths, reflecting the
different combinations of refactorings it uses. A
refactoring with relatively large number of chains will have
significant implications for the testing effort during
refactoring. We note en passant that the notion of a
refactoring inducing many other refactorings is not a new
one; it is seen as one of the current challenges facing the
refactoring community [13, 18].

Figure 3 shows the number of chains for the two sets of
refactorings (the TB refactorings are denoted by the left-

most, lighter bars). For example, refactoring 1 in the TB set
of refactorings is ‘Consolidate Conditional Expression’ and
gives rise to seven chains through analysis of the
dependency matrix; refactoring 1 in the TS refactorings is
‘Add Parameter’ and gives rise to eight chains. Of
particular note in Figure 3 is the relatively high number of
chains given by TSS refactorings 2 and 3. These two
refactorings are ‘Extract Subclass’ (cf. Extract Extended
Component) and ‘Extract Superclass’ (cf. Extract Parent
Component) giving rise to 18 chains apiece. A developer
would want to avoid these latter two refactorings and this
stance is shared with the empirical profile of a previous
study [1], where these two refactorings were shown to be
undertaken very sparingly. In other words, refactorings
with a strong structural basis (e.g., inheritance related
refactorings) need to be treated with care.

36

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Refactoring

N
um

be
r o

f C
ha

in
s

Figure 3. Numbers of refactoring chains induced by TB

and TSS refactorings.

The message for any developer is clear: if you intend
refactoring the structure of a test suite, then the likelihood
is that you will have to employ a wider variety of
refactorings than those directly applicable to test suites.
The degree of re-interpretation necessary for TTCN-3 is
significantly less for test behaviour refactorings. In
addition, there are certain refactorings in the set of TSS
refactorings that should be treated with extreme caution
because of the potentially long refactoring chains they
induce.

6. DISCUSSION
There are many issues that arise as a result of the analysis
described. Firstly, for many of the seventy-two refactorings
described in [10] the refactoring mechanics prescribe that a
particular refactoring must use refactoring X in order to
complete a refactoring. For example, the dependency
matrix shows that the ‘Introduce Parameter Object’
requires the use of the ‘Add Parameter’ refactoring in a
‘must use’ relationship. Just as ‘must use’ relationships
specify refactorings that must be undertaken to facilitate
another refactoring, some refactorings ‘may’ require the
use of other refactorings if the conditions hold during
refactoring. For example, the Encapsulate Field refactoring
‘may’ use Move Method after it has been completed
depending on whether the developer decides it is
worthwhile and applicable (again, this information was
obtained from the dependency matrix). We could thus
refine our analysis by modifying the dependency matrix to
include an indication of whether refactorings were used in
‘must’ or ‘may’ relationship with other refactorings. A
refactoring with chains incorporating only ‘may use’
relationships would be far more preferable to a refactoring
with only ‘must use’ relationships in its chains. This
remains a topic of future research.

Secondly, we have analyzed the mechanics of twenty-eight
refactorings adapted to TTCN-3 on the basis that there is a
mapping between the Java mechanics and those of TTCN-
3. The study could be criticized because the mechanics of
the Java refactorings would not apply in a TTCN-3 context.
However, on the basis that we are able to find analogies for

OO: inheritance, methods and fields in TTCN-3 (along the
lines that Zeiss et al. [23] describe) the mechanics of each
of the twenty-eight refactorings (including refactorings that
those twenty-eight refactorings use) can also be modeled in
a TTCN-3 sense. Equally, for the remaining refactorings
specified by Fowler [10] and used in Tables 3 and 4, we
were able to find analogies in the TTCN-3 sense. Finally,
we have assumed that the developer has a choice as to
which refactorngs they may want to undertake and is able
to opt for test behavior refactorings as opposed to test suite
structure refactorings. Ultimately, the extent of code smell
[10] may be the deciding factor. We do accept that other
factors may influence the decision as to which refactorings
are undertaken. We have also made no assumption about
the software tool support available and the speed it offers
for assisting the developer; this could be a confounding
factor for our analysis. However, considering carefully the
prior analysis, even with the use of a tool, the time to
undertake a TSS refactoring is still likely to be
correspondingly greater than for a TB refactoring.

The quality of software has always been dependent on the
quality of the testing; nowadays, industry is facing an
uphill task to cope with the size of test suites and their
associated behaviour. The key research issue that this paper
raises is the mapping from Fowler’s refactorings to those of
TTCN-3. The fact that Zeiss et al., [23] adopted twenty-
eight of those refactorings suggests a strong bond. A wide
range of research problems thus become apparent. For
example, what quantifiable benefits and trade-offs are there
to refactoring test suites (against test behaviour). Equally,
some chains may be less harmful in terms of their required
effort than other identically sized chains. These are just two
challenges that emerge from the analysis herein.

7. CONCLUSIONS
In this paper, we have compared two sets of refactorngs;
the first, a set of fifteen test behaviour (TB) refactorings
and the second, a set of thirteen test suite structure (TSS)
refactorings proposed by Zeiss [23]. Where necessary these
twenty-eight refactorings were adapted to the semantics of
TTCN-3 [22]. We demonstrated three compelling reasons
why a developer would want to be careful about choosing
test suite refactorings in favour of test behaviour
refactorings, related to the out-degree of TSS refactorings
when mapped on a dependency matrix and the refactoring
chains induced by TSS refactorings. Test suite refactorings
should be given very careful consideration before being
undertaken. Refactoring test behaviour on the other hand
require a simpler, less demanding set of tasks required of
the developer from both a re-testing and dependency
viewpoint. The research described herein represents the
start of an analysis into the potential for refactoring test
suites. Notwithstanding the analysis in this paper, there are
still many issues and challenges remaining in this growing
and important area.

8. REFERENCES

37

[1] D. Advani, Y. Hassoun and S. Counsell. Extracting
Refactoring Trends from Open-source Software and a
Possible Solution to the ‘Related Refactoring’ Conundrum.
Proc of ACM Symposium on Applied Computing, Dijon,
France, April 2006.
[2] P. Baker, D. Evans, J. Grabowski, H. Neukirchen and
B. Zeiss. TRex - The Refactoring and Metrics Tool for
TTCN-3 Test Specifications. Proceedings of the Testing:
Academic and Industrial Conference on Practice (TAIC
PART), Windsor, UK, August 2006, pages 90-94, IEEE
Computer Society Press.
[3] K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley, 1999.
[4] M. Bruntink and A. van Deursen. An empirical study
into class testability. Journal of Systems and Software,
2006.
[5] S. Counsell, R. M. Hierons, R. Najjar, G. Loizou and Y.
Hassoun. The Effectiveness of Refactoring Based on a
Compatibility Testing Taxonomy and a Dependency
Graph. Proceedings of Testing: Academic and Industrial
Conference (TAIC PART), Windsor, UK, August 2006,
pages 181-190. IEEE Computer Society Press.
[6] S. Counsell, Y. Hassoun, R. Johnson, K. Mannock and
E. Mendes. Trends in Java code changes: the key
identification of refactorings, ACM 2nd Intl. Conference
on the Principles and Practice of Programming in Java,
Kilkenny, Ireland, June 2003.
[7] S. Demeyer, S. Ducasse and O. Nierstrasz, Finding
refactorings via change metrics, ACM Conference on
Object Oriented Programming Systems Languages and
Applications (OOPSLA), Minneapolis, USA. pages 166-
177, 2000.
[8] A. Van Deursen and L. Moonen. The Video Store
Revisited - Thoughts on Refactoring and Testing.
Proceedings of the third International Conference on
eXtreme Programming and Flexible Processes in Software
Engineering XP 2002, Sardinia, Italy.
[9] B. Foote and W. Opdyke, Life Cycle and Refactoring
Patterns that Support Evolution and Reuse. Pattern
Languages of Programs (James O. Coplien and Douglas C.
Schmidt, editors), Addison Wesley, May, 1995.
[10] M. Fowler. Refactoring (Improving the Design of
Existing Code). Addison Wesley, 1999.
[11] R. Johnson and B. Foote. Designing Reusable Classes,
Journal of Object-Oriented Programming 1(2), pages 22-
35. June/July 1988.
[12] J. Kerievsky, Refactoring to Patterns, Addison
Wesley, 2004.
[13] T. Mens and A. van Deursen. Refactoring: Emerging
Trends and Open Problems. Proceedings First International
Workshop on REFactoring: Achievements, Challenges,
Effects (REFACE). University of Waterloo, 2003.
[14] T. Mens and T. Tourwe, A Survey of Software
Refactoring, IEEE Transactions
on Software Engineering 30(2): 126--139 (2004).
[15] S. Mouchawrab, L. C. Briand and Y. Labiche, A
Measurement Framework for Object-Oriented Software
Testability, Journal of Information and Software
Technology, vol. 47, no. 15, pages 979-997, 2005.

[16] R. Najjar, S. Counsell, G. Loizou and K. Mannock.
The role of constructors in the context of refactoring
object-oriented software. Seventh European Conference on
Software Maintenance and Reengineering (CSMR '03).
Benevento, Italy, March 26-28, 2003. pages 111 – 120.
[17] R. Najjar, S. Counsell and G. Loizou. Encapsulation
and the vagaries of a simple refactoring: an empirical
study. Proceedings Int. Conference on Software Systems
Engineering and its Applications, Paris, France, Dec. 2005.
[18] M. O’Cinneide and P. Nixon. Composite Refactorings
for Java Programs. Proceedings of the Workshop on
Formal Techniques for Java Programs. ECOOP Workshops
1998.
[19] W. Opdyke. Refactoring object-oriented frameworks,
Ph.D. Thesis, University of Illinois. 1992.
[20] D. Saff, S. Artzi, J. Perkins and D. Ernst. Automatic
test factoring for Java. Proceedings 21st Annual Int.
Conference on Automated Software Engineering, Long
Beach, USA, Nov. 9-11, 2005, pp. 114-123.
[21] T. Tourwe and T. Mens. Identifying Refactoring
Opportunities Using Logic Meta Programming, Proc. 7th
European Conference on Software Maintenance and Re-
Engineering, Benevento, Italy, 2003, pages 91-100.
[22] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler and
S. Schulz. An Introduction to TTCN-3, Wiley, 2005.
[23] B. Zeiss, H. Neukirchen, J. Grabowski, D. Evans and
P. Baker: Refactoring and Metrics for TTCN-3 Test Suites.
5th Workshop on System Analysis and Modelling (SAM),
Kaiserslautern, Germany, May 2006, pages 148-165.

38

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Evans:Dominic.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Grabowski:Jens.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Neukirchen:Helmut.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zeiss:Benjamin.html
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Colin+Willcock
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Thomas+Dei%26%23223%3B
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Stephan+Tobies
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Stefan+Keil
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Federico+Engler
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Stephan+Schulz
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zeiss:Benjamin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Neukirchen:Helmut.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Grabowski:Jens.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Evans:Dominic.html

	[8] A. Van Deursen and L. Moonen. The Video Store Revisited

