

A Fault-Tolerant Software Architecture for COTS-Based
Software Systems

Paulo Asterio de C. Guerra
Cecília Mary F. Rubira

Instituto de Computação
Universidade Estadual de Campinas

C.P. 6156 Campinas, SP - 13083-970
Brazil

+55 (19) 3788-5839

{asterio,cmrubira}ic.unicamp.br

Alexander Romanovsky

School of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne, NE1 7RU, UK
+44 (191) 222-8135

alexander.romanovsky
@ncl.ac.uk

Rogério de Lemos

Computing Laboratory
University of Kent at Canterbury
 Canterbury, Kent, CT2 7NF, UK

+44 (1227) 823628

r.delemos@kent.ac.uk

ABSTRACT
This paper considers the problem of integrating Commercial off-
the-shelf (COTS) components into systems with high dependabil-
ity requirements. Such components are built to be reused as black
boxes that cannot be modified. The system architect has to rely on
techniques that are external to the component for resolving mis-
matches between the services required and provided that might
arise in the interaction of the component and its environment. The
paper puts forward an approach that employs the layer-based C2
architectural style for structuring error detection and recovery
mechanisms to be added to the component during system integra-
tion.
Categories and Subject Descriptors

D.2.11 [SOFTWARE ENGINEERING]: Software Architec-
tures – domain-specific architectures, patterns.

General Terms
Design, Reliability, Security.

Keywords
Software architecture, COTS-based, Fault-tolerance.

1. INTRODUCTION
A commercial off-the-shelf (COTS) component is usually pro-
vided as a black box to be reused "as it is". These components
usually do not have complete rigorously written specification,
there is no guarantee that the description the integrators have in
their disposal is correct (very often it is ambiguous). These
components can have bugs, moreover, the specific context in
which they are used is not known at their development time.
Furthermore, it may be imperative to replace a COTS component
already integrated in a stable system by a new version released

without the control of the system integrator and that may contain
new bugs. When integrating such a component into a system with
high dependability requirements we should employ solutions at
the architectural level to ensure that these requirements are met,
irrespective of faults in the COTS component itself or in the way it
interacts with the other system components.

Research into describing software architectures with respect to
their dependability properties has recently gained considerable
attention [10, 11]. In [4] the idealised fault-tolerant component
concept [1] is applied in the architectural description of fault-
tolerant component-based systems. [9] puts forward a general
approach to developing protective wrappers to be used for build-
ing dependable software systems based on COTS components. In
this paper we combine the concepts of an idealised architectural
component and protective wrappers to develop an architectural
solution that provides an effective and systematic way for building
dependable software systems from COTS software components.

The rest of the paper is organised as follows. In the next section,
we briefly discuss background work on the idealised fault-tolerant
component, architectural mismatches and the C2 architectural
style. Section 3 describes the architectural representation of
idealised fault-tolerant COTS. Finally, section 4 presents some
concluding remarks and discusses our future work.

2. BACKGROUND
2.1. The Idealised Fault-Tolerant Component
The idealised fault-tolerant component is a structuring concept for
the coherent provision of fault tolerance in a system. Through this
concept, we can allocate fault-tolerance responsibilities to the
various parts of a system in an orderly fashion, and model the
system recursively, such that each: component can itself be
considered as a system on its own, which has an internal design
containing further sub-components [1]. The communication
between idealized fault-tolerant components is only through
request/response messages. Upon receiving a request for a service,
an idealised component will react with a normal response if the
request is successfully processed or an external exception,
otherwise. This external exception may be due to an invalid
service request, in which case it is called an interface exception, or
due to a failure in processing a valid request, in which case it is
called a failure exception. Internal exceptions are associated with
errors detected within a component that may be corrected,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

375

allowing the operation to be completed successfully; otherwise,
they are propagated as external exceptions. An idealized compo-
nent must provide appropriate handlers for all exceptions it may
be exposed to. Thus, the internal structure of an idealized com-
ponent has two distinct parts: one that implements its normal
behaviour, when no exceptions occur, and another that imple-
ments its abnormal behaviour, which deals with the exceptional
conditions.

2.2. Architectural Mismatches and COTS
Component Integration
Architectural mismatch [3] is one of the most difficult problems
faced by system integrators when building systems from COTS
components. An architectural mismatch occurs when the as-
sumptions that a component makes about another component do
not match. That is, the assumptions associated with the service
provided by the component are different from the assumptions
associated with the services required by the component for behav-
ing as specified [8]. When building systems from existing compo-
nents, it is inevitable that incompatibilities between the service
delivered by the component and the service that the rest of the
system expects from that component, give rise to such mis-
matches. These mismatches are not exclusive to the functional
attributes of the component; mismatches may also include quality
attributes, such as dependability, which can be related to the
component failure mode assumptions or its safety integrity levels.

We view all incompatibilities between components of a system as
architectural mismatches. This, for example, includes internal
faults of a COTS component that affect others system components
or its environment, in which case the failure assumptions of the
component were wrong.

2.3. The C2 Architectural Style
The C2 architectural style is a component-based style that sup-
ports large grain reuse and flexible system composition, emphasiz-
ing weak bindings between components [12]. Both components
and connectors in C2 have a top interface and a bottom interface.
Systems are composed in a layered style, where the top (bottom)
interface of a component may be connected to the bottom (top)
interface of a connector. Each side of a connector may be con-
nected to any number of components or connectors. Components
communicate only through asynchronous requests and notifica-
tions messages that are filtered and broadcasted by the connectors.
By convention, requests flow up through the system layers and
notifications flow down. In response to a request, a component
may emit a notification back to the components below. Upon
receiving a notification, a component may react with the implicit
invocation of one of its operations.

3. Idealised Fault-Tolerant COTS Component
Current large-scale systems usually integrate COTS components
that may act as service providers and/or service users. Since, there
is no control, or even full knowledge, over the design, im-
plementation and evolution of COTS components, the evolution-
ary process of a COTS component should be considered as part of
a complex environment, physical and logical, that might directly
affect the system components. In order to build a dependable
software system from untrustworthy COTS components, the
system should treat these components as a potential source of
faults. The overall software system should be able to support

COTS components while preventing the propagation of errors. In
other words, the system should be able to tolerate faults that may
reside or occur inside the COTS components, while not being able
to directly inspect or modify its internal state or behaviour.

In this paper, we present the concept of an idealised fault-tolerant
COTS component, which is an architectural solution that encapsu-
lates a COTS component adding fault tolerance capabilities to
allow it to be integrated in a larger system. These fault tolerant
capabilities are related to the activities associated with error
processing, that is, error detection and error recovery. The ideal-
ised fault-tolerant COTS component is a specialization of the
idealised C2 Component (iC2C) [4], which is briefly described in
the following section.

3.1. The Idealised C2 Component (iC2C)
In terms of behaviour and structure the idealised C2 component
(iC2C) is equivalent to the idealised fault-tolerant component [1]
and is designed to allow software architectures to be structured to
be compliant with the C2 architectural style [12]. Service requests
and normal responses of an idealised fault-tolerant component are
represented as requests and notifications in the C2 architectural
style. Interface and failure exceptions of an idealised fault-tolerant
component are mapped into subtypes of notifications. In order to
minimize the impact of fault tolerance provision on the overall
system complexity, we decouple the normal activity and abnormal
activity parts of the idealised component. These decisions lead us
to an overall structure for the iC2C that has two distinct compo-
nents and three connectors, as shown in Figure 1.

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

iC2C_top connector

NormalActivity

iC2C_internal connector

InternalExceptions

Return to
Normal

AbnormalActivity

iC2C_bottom connector

Service
Requests

Normal
Responses

Interface
Exceptions

Failure
Exceptions

Component

Component

Figure 1. Idealised C2 Component (iC2C)

The iC2C NormalActivity component implements the normal
behaviour and is responsible for error detection during normal
operation and for signalling interface and internal exceptions. The
iC2C AbnormalActivity component is responsible for error recov-
ery as well as for signalling failure exceptions.

The iC2C connectors are specialized reusable C2 connectors with
the following roles: (i) The iC2C_bottom connector connects the
iC2C with the lower components of a C2 configuration, and se-
rializes the requests received; (ii) The iC2C_internal connector
controls message flow inside the iC2C, selecting the destination of
each message received based on its originator, the message type
and the operational state of the iC2C; and (iii) The iC2C_top

376

connector connects the iC2C with the upper components of a C2
configuration.

3.2. COTS Component Protectors
Component wrapping is a well-known structuring technique that
has been used in several areas. In this paper we use term
“wrapper” in a very broad sense, incorporating the concepts of
wrappers, mediators, and bridges (as referred in [2]). A wrapper is
a specialised component inserted between a component and its
environment to control the flows of control and data going to
and/or from the wrapped component. The need for wrapping arises
when (i) it is impossible or expensive to change the components
when reusing them as parts of a new system, or (ii) if it is easier to
add new features by incorporating them into wrappers (which is
typically the case for the COTS items). Wrapping is a structured
and a cost-effective solution to many problems in component-
based software development. Wrappers can be employed for
improving quality properties of the components such as adding
caching and buffering, dealing with mismatches or simplifying the
component interface. With respect to dependability, wrappers are
usually used for ensuring security, transparent component
replication, etc.

Paper [9] puts forward a systematic approach to using protective
wrappers, called protectors, which can improve the overall system
dependability. This is achieved by protecting both the system
against erroneous behaviour of a COTS component, and the
COTS component against erroneous requests from the rest of the
system. The wrappers are viewed as redundant software that
detects errors or suspicious activity and executes appropriate
recovery when possible.

The development of protectors is considered to be a part of system
integration activities [9]. The approach consists of rigorous speci-
fication of the wrapper functionality in forms of acceptable
behaviour constraints (ABCs) that are verified at run time to
detect errors and enable a forward error recovery strategy based on
exception handling. The general sources of information to be used
in developing both ABCs and possible actions to be undertaken in
response to their violations are the following:

(i) The behaviour specification of COTS components as speci-
fied by the COTS’s developers.

(ii) The behaviour specification of a COTS component as speci-
fied by the system designers. This description and the previ-
ous one must satisfy certain mutual constraints for the system
design to be correct, but they will not be identical. E.g., the
system designer's description requires the COTS component
to be able to react to a set of stimuli that is a subset of the set
specified by the COTS’s developers.

(iii) The behaviour that the system designer expects from a COTS
component (not necessarily approving it), based on previous
experiences with it, i.e., he/she may know that it often fails in
response to certain legal stimuli.

(iv) COTS or system behaviour that designers consider especially
unacceptable, without knowing whether it is likely or not.

(v) The behaviour specifications of the rest of the system.

The sources of information above allow the developer to formulate
a number of statements describing the correct behaviour of the
COTS component and which it expects from the rest of the sys-

tem. The statements are expressed as a set of executable assertions
on the states of input and output parameters. In addition to that
they can include assertions on the histories (sequences of calls)
that the protector has to collect and assertions on the states of the
system components that are to be retrieved by the protector by
calling side-effect-free functions returning the states of these
components. While [9] deals with the design of COTS protectors
and its development process, in this paper we are mainly
concerned with architectural issues related to their integration in a
fault-tolerant component-based system.

3.3. Idealised C2 COTS (iCOTS)
A protective wrapper for a COTS software component is a special-
ized software developing application-specific fault-tolerance. To
be effective, the design of fault-tolerance capabilities must be
concerned with architectural issues, such as process distribution
and communication mode, that impact the overall system de-
pendability. Although the C2 architectural style is specially suited
for integrating COTS components into a larger system, its rules on
topology and communication are not adequate for incorporating
fault tolerance mechanisms into C2 software architectures, es-
pecially the mechanisms used for error detection and fault con-
tainment [4]. The idealised C2 fault-tolerant component (iC2C)
architectural solution (section 3.1) overcomes these problems lev-
eraging the C2 architectural style to allow such COTS software
components to be integrated in dependable systems.

The idealised C2 COTS (iCOTS) is a specialization of the iC2C
aiming to add protective wrappers to a COTS component to be
integrated in a software system. In our approach, the COTS
component is encapsulated into the NormalActivity component of
an iC2C, wrapped by two specialized connectors acting as error
detectors (see Figure 2).

COTS

NormalActivity

AbnormalActivity

upper_detector

lower_detector

iC2C_top

iC2C_internal

iC2C_bottom

Figure 2. Idealised C2 COTS (iCOTS) Overall Structure

The main responsibility of these detectors is to verify that the
messages that flow to/from the wrapped COTS do not violate the
acceptable behaviour constraints specified for the system. The
lower_detector inspects both incoming requests and outgoing re-
sponses (C2 notifications) from/to the COTS clients, while the
upper_detector inspects outgoing requests and incoming re-
sponses to/from other surrounding components providing services
to the COTS component.

When a constraint violation is detected, the detector sends an ex-
ception notification that will be handled by the AbnormalActivity
component, following the rules defined for the iC2C. The
AbnormalActivity component may, for instance, decide to adjust
parameters of an invalid service request to allow its safe
completion by the COTS component.

377

4. Conclusions and Future Work
When building reliable systems from existing components, guar-
antees cannot be given on the system behaviour, if no guarantees
are provided on the behaviour of its individual components. Since
no such guarantees are provided for individual COTS compo-
nents, architectural means at the component level have to be
devised for the provision of the necessary guarantees at the system
level.. The paper proposes an architectural solution to turning
COTS components into idealised fault-tolerant COTS components
by adding protective wrappers to them. Generally speaking, there
are two ways of dealing with mismatches: mismatch removal and
mismatch tolerance [6]. Our architectural solution can be used to
employ both of these approaches. A small case study demonstrat-
ing the feasibility of the proposed approach can be found in [5].
We are now working on the implementation of a real-world appli-
cation employing the approach here proposed for interacting with
a COTS Geographic Information Systems. This work has the
support of a Java framework [7] that aids in the implementation of
the iC2C abstraction and its integration into C2 architectural
configurations.

Although we recognize that the proposed approach can result in
incorporating repetitive checks into the integrated system, this is
an unavoidable outcome considering the lack of guarantees pro-
vided by COTS components. For example, it might be the case
that a COTS component has internal assertions checking the
validity of an input parameter that is also checked by its protector,
or other protectors developed for other COTS components. How-
ever, there are situations in which the system integrator can take
care of this by coordinating development of fault tolerance means
associated with individual components - this is one of possible
directions of further development of our approach. Our future
work will be centred on the smooth integration of the protector
design into the development process. This includes architectural
level specification of abstract ABCs to be refined and/or extended
during the design and implementation phases, possibly allowing
automatic generation of the iCOTS from these specifications.
Another direction of our future work, to be done after the
proposed solution has been applied to a number of real-word
software systems, is to define a new architectural pattern based on
it.

The solution described in the paper is based on the C2 architec-
tural style, but it can be easily adapted to other more common
message-based styles, such as the broker style employed by
CORBA. Also, configurations using the C2 style can be integrated
into heterogeneous style architectures by means of simple adapt-
ers. This allows the idealised fault tolerant COTS (iCOTS) con-
cept to be applied as a general solution in developing dependable
systems from unreliable COTS components.

Acknowledgments
P. Guerra is supported by CAPES/Brazil. C. Rubira is supported
by CNPq/Brazil (grant 351592/97-0). A. Romanovsky is sup-
ported by IST DSoS and EPSRC/UK DOTS Projects.

References
[1] Anderson, T., Lee, P. A. Fault Tolerance: Principles and

Practice. Prentice-Hall, 1981.
[2] DeLine, R. A Catalog of Techniques for Resolving Packaging

Mismatch. In Proc. 5th Symposium on Software Reusability.
Los Angeles, CA. May 1999. pp. 44-53.

[3] Garlan, D., Allen, R., Ockerbloom, J. Architectural mismatch:
Why reuse is so hard. IEEE Software, 12(6):17-26, November
1995.

[4] Guerra, P. A. C., Rubira, C. M. F., de Lemos, R. A Fault-
Tolerant Architecture for Component-Based Software Sys-
tems. In R. de Lemos, C. Gacek, A. Romanovsky (Eds).
Architecting Dependable Systems. LNCS 2677. Springer Ver-
lag. pp. 175-194. 2003.

[5] Guerra, P. A. C., Rubira, C. M. F., Romanovsky, A. and de
Lemos, R. Integrating COTS Software Componentes into De-
pendable Software Architectures. In Proc. 6th IEEE
ISORC'2003, Hokkaido, Japan, 2003, pp. 139-142.

[6] Lemos, R., Gacek, C., Romanovsky, A. Tolerating Architec-
tural Mismatches. In R. de Lemos, C. Gacek, A. Romanovsky
(Eds). Architecting Dependable Systems. LNCS 2677.
Springer Verlag. pp. 175-194. 2003.

[7] Lima Filho, F.J.C., Guerra, P.A.C., Rubira, C.M.F. FaTC2: An
Object-Oriented Framework for Developing Fault-Tolerant
Component-Based Systems, In Proc. ICSE 2003 Workshop on
Architecting Dependable Systems, Portland, USA, 2002, pp.
13--18.

[8] Oberndorf, P., Wallnau, K., Zaremski, A. M. Product Lines:
Reusing Architectural Assets within an Organisation. Software
Architecture in Practice. Eds. L. Bass, P. Clements, R.
Kazman. Addison-Wesley. 1998. pp. 331-344.

[9] Popov, P., Riddle, S., Romanovsky, A., Strigini, L. On
Systematic Design of Protectors for Employing OTS Items. In
Proc. 27th Euromicro conference. Warsaw, Poland, 4-6
September, 2001. pp. 22-29.

[11] Saridakis,T. , Issarny, V. Developing Dependable Systems
using Software Architecture. In Proc. 1st Working IFIP Conf.
on Software Architecture, pp. 83-104, February 1999.

[10] Sotirovski, D. Towards Fault-Tolerant Software Architec-
tures. In Working IEEE/IFIP Conference on Software
Architecture. Eds. R. Kazman, P. Kruchten, C. Verhoef, H.
Van Vliet, pp. 7-13, Los Alamitos, CA, USA, 2001.

[12] Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead
Jr., E.J., Robbins, J.E., Nies, K.A., Oreizy, P. and Dubrow,
D.L. A Component- and Message-based Architectural Style
for GUI Software. IEEE Transactions on Software
Engineering, 22(6):390--406, June 1996.

378

