
The Architecture of Montana: An Open and Extensible
Programming Environment with an Incremental C++

Compiler
Michael Karasick

Programming Environments and Compilation
IBM T.J. Watson Research Center

PO 704, Yorktown Heights NY, 10598

msk@us.ibm.com

ABSTRACT

Montana is an open, extensible integrated programming
environment for C++ that supports incremental compilation
and linking, a persistent code cache called a CodeStore, and
a set of programming interfaces to the CodeStore for tool
writers. CodeStore serves as a central source of information
for compiling, browsing, and debugging. CodeStore contains
information about both the static and dynamic structure of
the compiled program. This information spans files, macros,
declarations, function bodies, templates and their
instantiations, program fragment dependencies, linker
relocation information, and debugging information.

Montana allows the compilation process to be extended and
modified [11]. Montana has been used as the basis of a
number of tools [1,7], and is also used as the infrastructure of
a production compiler, IBM's Visual Age C++ 4.0 [8].

Keywords

programming environments, compilation, frameworks,
extensible systems, incremental development environments,
incremental compilation, C++,

1. INTRODUCTION

In order to program with a computer language effectively, it
is often necessary to use extra-lingual tools that either extend
the build process (e.g., make, yacc, cpp) or extract static and
dynamic information from the program. Examples of those
that extend the build process are automated testing tools, stub
generators, metadata catalog processors, GUI builders, and
program transformers. These kinds of tools either transform
the source language (in our case, C++) or use scripting
languages specific to the individual tool. Tool invocation is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT '98 11/88 Florida, USA
© 1998 ACM 1-58113-108-9/98/0010...$5.00

typically incorporated into the build process with
coarse-grained facilities, like make. Montana is designed
and implemented to address the tool integration problem in
three ways:

Open: Tools often need to access information about the static
or dynamic structure of a compiled program. For example,
analysis tools might need control-flow information or
structural information about objects. Without this kind of
information, tool writers need to reimplement parts of the
compiler (a daunting prospect for C++), or modify the
compiler itself to obtain the needed information. Both are
difficult, and not possible in many cases. Both are also
maintenance nightmares. Montana provides a set of
programming interfaces that give access to the program at
different levels of abstraction, from source files and macros,
to abstract syntax trees for function bodies, to object-code
relocations.

Extensible: Even though a program representation might be
available, it is often necessary, or desirable to gather
information during the compilation process, or modify the
compilation process. It is unlikely that compiler writers can
predict the different kinds of information that a tool writer
might need. Furthermore, some tools, like style checkers and
stub generators and naturally invoked during the compilation
itself. Montana supplies a set of extension interfaces that
allow tool writers to get fragments of their tools inserted
directly into the compilation stream, without modification of
the compiler itself [11].

_Incremental: Montana updates its program representation in
response to source code changes. This update is incremental,
and so results in better performance for the compiler and
tools. For example, an automatic testing tool need only test
for function bodies that have changed since the last
compilation.

The way in which a system like Montana is architected
directly affects how well these three goals are achieved. One
example of this is the tradeoff between performance and
extensibility. Because Montana serves as an incremental
C++ compiler as well as a tool framework, it is important
that the "inner loop" run efficiently. This means that any
extension mechanism which affects this inner loop must be
carefully crafted. There is also a tradeoff between
performance and openness. Providing programming

131

interfaces that access different aspects of the compiled
program can cause performance problems, because these
interfaces might not be the most convenient or efficient for a
compiler. To ameliorate this Montana separates data from
function. There are no "privileged tools," including the
compiler. Tools use the programming interfaces to extract
data and construct appropriate data structures for a given
task. These data structures are either hidden or exposed by
the tool, as necessary.

The lack of a system like Montana means that tools must
either provide their own parser and semantic analyzers, or
must be inherently imprecise by approximating syntactic or
semantic information. There are several offerings currently
in the marketplace that attempt to provide parsing and
analysis tools. Sniff [12] uses approximate parsing and
serves as a reasonably powerful cross-referencer, but is not
precise enough for tools like style checkers, program
transformers, or code wizards. Edison Design Group [3] has
written an a C++ front end that is designed to be used as the
basis of tools. It is quite ambitious, with a plethora of
options that implement "bugs" in versions of different
vendor compilers. This front end suffers from the problem
that tools can only manipulate information that is obtained
from their abstract syntax trees. The ubiquitous GNU C++
compiler has been lovingly tailored by legions of graduate
students in order to extract information of interest.
Unfortunately, the language recognized by this compiler
bears only a passing resemblance to the C++ recognized by
most other C++ compilers. Consequently, the GNU compiler
servers more as a research vehicle than the basis of any
standardized tool suite. Ensemble [2] is a vendor-neutral
tool for analyzing C programs. It provides programming
representations for C program fragments, along with a
number of tools that use these representations. ASIS [13] is
a vendor-neutral program representation for Ada that allows
access to information about compiled Ada programs. The
Synthesizer Generator [10] provides ways to specify the
syntax and semantics of target languages and then "build" an
environment from that specification. Gandalf [5]
additionally allows these specifications to describe how
externally written programs (e.g., configuration management
systems) can be invoked as part of the compilation. All of the
systems described above are open, in that they allow access
to program information.

Montana is most similar to either EDG or ASIS, but is more
ambitious in several ways. ASIS and EDG provide
non-extensible programming interfaces to data structures like
Abstract Syntax Trees, so the available information is
limited. In contrast, Montana provides similar information,
but additionally provides ways in which tool writers can
augment the information stored away (data extension), can
add additional processing phases to the compilation process

(tool extension), and provide event handlers for distinguished
events during the compilation process (event extension).

Montana works by constructing and modifying a program
representation, called CodeStore, stored in a persistent or
transient cache. The programming interfaces to CodeStore
are open, and available to tool writers. In order to access the
program representation the tool writer writes a small C++
program fragment that constructs and then queries (or
modifies) the CodeStore. It is also possible to extend the
compilation process itself, by registering code fragments that
are triggered during the compilation. These fragments can
collect information, generate error messages, or modify the
CodeStore directly [11]. As an example of this, consider a
style checker might be as an extension to Montana: (1) the
error messages produced are integrated with those produced
by the compilation itself; (2) the style checker is run
automatically as part of the compilation process, so the
abstract syntax trees used by the compiler itself are available
for diagnosis; (3) because the compilation is incremental,
only program fragments that have changed are diagnosed,
making the style checker inexpensive to use; and (4) the style
checker written in this way can be extended and customized
to check for those idioms of interest. The Montana
architecture is flexible enough to allow any number of style
checkers, program analyzers, and transformers to be
registered as extensions.

Like any system that works with a persistent program
representation, Montana is necessarily incremental. The
compilation process (which we call incorporation), works by
taking changed source files, and "incorporating" changes into
the CodeStore. A side effect of this process is an
incrementally compiled and linked program, if desired.

The remainder of this paper describes the architecture of
Montana. Aspects of the architecture discussed are the
compilation model, and the design of the CodeStore and its
programming interfaces. (See [11] for more details of the
CodeStore extension mechanism.) This paper focuses on the
engineering tradeoffs inherent in an open, extensible system
like Montana.

2. THE COMPILATION MODEL

In order that the compiler be incremental, the compilation
model is quite different from that of traditional compilers.
Just like conventional compilers, program text is stored in
files, and the CodeStore is updated to reflect changes in the
source files. However, the grain of incrementality is much
smaller -- top-level declarations instead of files. This

132

provides for a much more efficient compilation, but has some
consequences.

The compilation model is not that different from that used
by program construction tools like Make [4]. In particular,
the only kind of dependency that makefiles capture is a
source/target dependency, e.g., reprocess a source file (.cpp)
if it, or header-files or libraries on which it depends change.
The simplest of these kinds of dependencies are often created
automatically. For example, Microsoft Visual C++
constructs stylized makefiles for predefmed kinds of
applications. These makefiles are then automatically
maintained by the Microsoft development environment.
These make files can be subsequently edited if the
conventions that the development environment requires are
maintained, otherwise the development environment will not
"understand" the semantics of the make file.

In Montana, source files listed in the configuration file
(including header files) are processed only once, regardless
of include directives. This makes incremental update of the
CodeStore very fast. In order to make this work, global
declarations declared in one file become automatically
visible in all of the other files. Include directives are ignored
for files named in the configuration file, and forward
declarations are unnecessary. Finally, declarations are not
assumed to be topologically ordered within a file. This
means that function bodies and global initializers cannot be
processed until all of the top-level type and function
signatures have been processed. These processing rules work
together to relieve the programmer of much of the drudgery
associated with the maintenance of complex systems of
header and source files. As an example of this, consider the
simple Montana configuration of Figure 1, which consists of
three files and a configuration file.

Contrast Figure 1 with the same program, as shown in Figure
2, written for a traditional compiler. Note that both classes
must be complete before either of the inline function bodies
can be compiled. Note that Montana will happily compile
the program of Figure 2 with the trivial configuration file

target "main.exe" { "main.C" }.

This is because by default Montana defines macros to be
local to the file in which they are defined. Because neither
"A.h" nor "B.h" are listed in the configuration file, the
#include directives are processed normally, and all of the
macros become local to the span off "main.C'. Macros that
must be global to the program can either be included in every
source file, or can be written in special source files that are
annotated as "macro" files in the configuration file. These
files are preprocessed in the order in which they are written
in the configuration file unless they appear in include
directives, in which case the order dictated by the include file
graph is used. An example of this is shown in Figure 3.

Because the vz macro is included in "formulas.h", PI is
guaranteed to be defined before macro area. This
discrimination between local and global macros is necessary
to obtain reasonable semantics for the compilation model.
because macro processing is inherently a file- and not
program-scoped operation.

2.1 Semantic Differences Between ANSI C++
and "Montana" C++

Because top level declarations are automatically exported to
all files in the C++ program in Montana, certain
order-specific intra-file idioms are explicitly disallowed in
order to obtain the same semantics as the inter-file
equivalents. This means that when files are considered in
isolation, the language that Montana recognizes differs from
ANSI C++ in certain specific ways. Consider the following
example:

const char* f (double)
{
return "double" ;
}

const char* g()
{
// in Montana this is f(int);
// in ANSI C++, f(double)
//
return f(5) ;
}

const char* f(int)
{
return "int";
}

Using a traditional compiler, the result of calling g0 is
"double", and in Montana, "int". As a second example,
consider the following code fragment, written at global
scope:

class C;

// In Montana the following is an error.
// The programmer must write "class C* x;"
//
C* x;

int C ;

In Montana, if these declarations are at global scope, then
this is a syntax error, because the "c" in "c* x" refers to the
non-type. In both of these examples, the Montana semantics
are roughly the following:

1. Treat the declarations as if each is written in a
separate file.

2. Compile all top-level signatures first, assuming that
each non-static declaration is automatically visible
to every other file in the program.

133

main.C:int A.h: struct A B.h: struct B: A
main() { {

{ B* b() A* a()
B thing; { {
thing.b(); return new B; return new A;
thing.a); } }
} }; };

maindcc: target "main.exe"
{
source "main.C"
source "A.h"
source "B.h"
}

Figure 1. Montana source files do not need header guards, not do they need explicit header files. If a file is
listed in the Montana configurationfile, then non-static declarations are automatically visible across the
D r o p r a m .

3. Compile all of the function bodies and variable
initializers.

(Most of) the designers of the system consider the behavior
of Montana for these kinds of examples as a feature, and not
a bug. By automatically making declarations visible across
the program without using header files, we obtain efficient
incremental recompilation, because there is no need to
recompile entire files if a file has changed. Only those
portions of the file that correspond to changed declarations
need to be recompiled. The compilation model is both clean
and simple, and name resolution is not affected by lexical
position within a file. In particular, Montana has strict
enforcement of the ANSI one-definition rule, which says that
class declarations are global across a program, not just a
translation unit. There is also an additional benefit to tool
writers because the lack of order dependencies inherently
simplifies the language compiled. Some complexities vanish,
e.g., in Montana the point of template instantiation is simply
a namespace, and not a lexical location in a translation unit.

2.2 Compiling Declaration Signatures and
Function Bodies

Montana provides several ways to extend the compilation
process [11]. For example, there are a number of
distinguished points at which tool writers can insert code. By
understanding the compilation model, tool writers can
effectively extend the compilation by adding code in just the
right places. The incremental compilation process, called
incorporation, is now briefly described.

Recall that top-level declarations are unordered, and so their
signatures must be completely processed before function
bodies and variable initializers. The unordered processing of
top-level declaration signatures is done by building a
dependency graph, containing entities like files, macros,
regions of source files corresponding to top-level
declarations, declarations, and function bodies. This
dependency graph is used to guarantee that changes to source
files cause correct changes to be made to the CodeStore.
Compilation works by adding work items to a priority queue,
and using the dependency graph to create work items to be
scheduled.

main.C: #include "B.h"
int
main ()

{
B thing ;
thing.b() ;
thing.a() ;
}

A.h:

A.inh

#ifndef A_h
#define A__h
struct B;
struct A

{
B* b();
};

#include "B.h"
#endif

inline B* A::b()
{
return new B;
}

B.h: #ifndef B_h
#define B_h
#include "A.h"
struct B: A

{
A* a()

{
return new A;
}

};
#include "A.inl"
#endif

Figure 2. The traditional compilation model (header files + declaration ordering) requires that programmers use
preprocessor directives to control the order in which declarations are processed by the compiler. For complex class
hierarchies it is also necessary to split inline function bodies into separate files.

134

fi.h: #define PI 3.14159

area.h: #include "pi.h"

#define area(r) (PI*r*r)

main.C:int main()
{
cerr << area(5) << endl;
}

Figure 3. Macros that are global to the entire program
file~ in the e.nfim|ration file.

main.icc: target "main.exe"
{
options macros(global)

{
source "iostream.h"
source "pi.h", "area.h"
}

source "main. C"
}

are listed in files that are listed in special "global macro"

Incorporation begins by processing source files whose time
stamps have changed, subdividing the token stream into
regions corresponding to top-level declarations. This
subdivision is done by looking for fiducial symbols like
braces, semicolons, and parentheses. For each of these
changed files, its token stream is compared against the one
obtained from the last incorporation, looking for source
region differences. Only those regions that have changed
must be processed. Processing of a source region is done by
parsing and then reconciling the parsed declaration.
Reconciling means finding the declaration, if any, from the
CodeStore that matches. A change-analysis is done, and
dependent declarations that need to be recompiled are
scheduled as work items on a priority queue. Processing for
function bodies and variables initializers is quite traditional.
They are parsed, semantically analyzed, and then code is
generated for them. In order to extend this, tool writers can
replace any of these phases or add new ones.

In order to allow for incremental recompilation, dependency
arcs are added to antecedent declarations, ones referenced
inside declaration signatures, function bodies or variable
initializers. Note that tool writers might have to add arcs as
well in order to guarantee correctness of their extensions.

Parsed function bodies are not kept in the CodeStore.
Instead, CodeStore provides facilities for function bodies to
be processed on the fly. For example, the CodeStore
method

b o o l
FunctionBody: :build

(
LexicalBlockS tatement* &,
Phase,
Storage, . . .
)

has several parameters, three of which are described here.
This method returns a boolean that denotes success -- the
resulting abstract syntax tree is returned as the first
parameter. The second parameter denotes the last
compilation phase (from parsing through code generation)
that is to be done. The third parameter is an object that
denotes where the storage for the compiled function body is
to be allocated. By convention, this storage is "owned" by

the caller of this method. In this way, a caching strategy is
the responsibility of the caller of the build method. For
example, non-local flow analysis that uses a subset of the
entire program call graph can be written, in which the writer
of the analysis has complete control over the lifetimes of the
abstract syntax trees used by the analysis. This behavior,
giving the tool writer control over the lifetime of the objects
created by the CodeStore, makes the system both more open
and more extensible.

2.3 E x t e n d i n g M o n t a n a

Extension writers use the CodeStore programming interfaces
to modify or extend the CodeStore contents and the
compilation process. Extensions are supplied in dynamically
loaded libraries, which are automatically loaded as part of the
configuration file processing. Extensions are defined in a
special " . i c e " file, which names each extension, names the
library that implements it, describes the options (if any) that
can be specified in a configuration file. Incorporation
extensions modify the function body and variable initializer
processing, by adding additional phases to the process. For
example, the incorporation extension mechanism is used to
add style checkers to the compilation process. Event-based
notification, or observer extensions are used to gather
information about the compilation process. For example, the
Montana user interface is notified whenever a declaration is
removed from the CodeStore. Dependency graph extensions
are parameterized by source files. Instances of dependency
graph extensions are created by the configuration file
processor when it encounters source files whose suffixes are
registered with the extension. Each such instance induces a
node in the CodeStore dependency graph corresponding to
the extension source file. In this way, when the time stamp
of the extension source file changes, extension-specific
processing is automatically triggered to run against the file.
As an example of this, it is easy to specify a yacc extension
that process " . ~ " files, and constructs a C++ source file that
is then compiled. Certain predefmed 'Tneta" extensions are
defined as part of the system. The filter extension runs an

135

external command, e.g., yacc, whenever the time stamp of
an input file changes.. These filters are easily daisy-chained
by listing the output of the filter as a source in the
configuration file. The different extension types are often
mixed together to extend the compilation process in
significant ways. A single "compound" extension may add
dependency nodes to the graph, modify the way functions
and variables are compiled, and gather information about
other parts of the incorporation process itself.

Of relevance to this paper are the design choices that led to
the kinds of extensions that the system provides. A much
more complete description of the Montana extension
mechanism is given in by Soroker et. al. [11], including
comparisons to other well-known extension techniques, like
meta-object protocols.

There is a tension in the design of the extension mechanisms
between providing convenient hooks for tool writers and not
compromising the compilation time. As an example of this,
it is useful to provide a hook so that a tool writer can obtain
control every time a token is scanned, but without slowing
down the compilation if the hook is not used. Different kinds
of extension require different kinds of hooks in the
incorporation process, and these hooks must be implemented
as efficiently as possible. Thus dependency graph extensions
are attached to the dependency graph with dependency arcs,
incorporation extensions are attached to lists of compilation
phases, and observer extensions are added to context-specific
lists.

The three extension mechanisms appear arbitrary, but were
chosen to provide for different styles of extensions.

• Incorporation extensions arise naturally from the need to
add new kinds of algorithms that operate on function
bodies and variable initializers. Most optimizers are
designed to modify abstract syntax trees produced by
either semantic analysis or by a previous optimization
phase.

• The observer extension arises from the need to gather
information during the compilation process, typically for
analysis. Aside from efficiency considerations
(observation is used extensively to implement the
preprocessor and so must be very efficient), observers
gather data at a number of different phases in the
incorporation process, and it is necessary to provide a
uniform interface for observation.

• Dependency graph extensions also fulfill a very-specific
need, to extend the compilation processing by adding
specific processing for new kinds of source files, and to
provide a way for extension-specific data to persist as
part of the dependency graph in the CodeStore.

Each extension mechanism is registered with the CodeStore
in a different, but appropriate way. Incorporation extensions
are added by registering a procedure to be called after a
given (named phase). Observer extensions are registered by
adding a procedure to a list associated with a particular
event. Dependency-graph extensions are registered by
creating dependency arcs that join them to other dependency
nodes in the CodeStore.

2.4 Trade-Offs

Because of the need to temper extensibility with efficiency,
there are some drawbacks to the extension mechanism. Each
of the three mechanisms has its problems. Dpendency-graph
extensions are the most powerful, but also the most difficult
to use. Tool writers must understand the dependency-graph
processing deeply in order to implement sophisticated
extensions. Additionally, these extensions are not easy to
debug, as they can cause the compiler to stop working.
Montana explicitly chooses to give the programmer power at
the expense of safety.

Incorporation extensions provide for a single tool writer to
extend the system by adding extra compilation phases, but
provide only limited ways to sequence the phases. In
particular, if several phases of the same type are added to the
compilation, e.g., several optimization phases, the only way
to sequence them is to manually add them one at a time. This
makes it difficult to use third-party incorporation extensions,
because the extensions themselves are not named. This can
be fixed by adding some complexity to the registration
mechanism, either by naming extensions or phases.

Finally, observer extensions are the most problematic. The
designers of Montana have to predetermine all of those
events for which a tool might want notification. A given
event might notify its observers from many different points in
the compilation, so that adding new types of observers
requires (some) knowledge of the compilation process. The
preprocessor, the only completely instrumented part of the
system, has about 50 different events. Depending on the
desired event granularity, there might be thousands of
different events of interest to tool writers if the system were
completely instrumented, which it currently is not.
Furthermore, each event requires some custom code because
different kinds of event notifications have different
parameters to them. The number of events has been reduced
by making them less specific. For example, observers are
notified when processing of a dependency node is completed.
The observer is responsible for checking if this dependency
node is of interest.

136

3. T H E C O D E S T O R E P R O G R A M M I N G

I N T E R F A C E

CodeStore is a C++ class library for describing the different
static and dynamic aspects of a C++ program. There are
class hierarchies for describing static aspects of the program
like tokens, source files, macros, source regions,
declarations, abstract syntax trees, expressions, types,
statements, compilation targets, linker relocations. Dynamic
aspects like machine registers, storage, call stacks, and
breakpoints are available as well. The programming
interface provides basic, but complete information. Rather
than attempt to provide complete representations for all
aspects of compilation, the idea is to provide a repository
whose contents can be used to construct other data structures,
e.g., control flow graphs or SSA. In order to provide for this
kind of extensibility, we have tried to minimize the number
of ways in which the different parts of the CodeStore
interact. The themes that underly the design, like CodeStore
size, consistency, simplicity, and openness are now
described.

The Montana system is also extensible, as we have described,
and one way that object-oriented systems are often extended
is using inheritance as an extension framework. Not
surprisingly, Montana is implemented in C++, and the
CodeStore is implemented using classes and methods, but we
do not use inheritance as an extension to implement an
extension framework.

• The use of inheritance or other C++-specific features
like virtual or multiple inheritance is kept to a minimum
in order to keep the size of the constructed CodeStore
objects themselves small, and to keep the runtime
overhead of using the system low -- recall that
CodeStore methods are used in the inner loops of an
incremental compiler, and so efficiency is important.

• Rather than trying to provide all of the methods that tool
writers will need, a choice was made to export the
CodeStore structure, and let tool writers have access to
the same interfaces as the CodeStore implementors.
Thus the CodeStore is an information repository, not an
extension framework. The extension facilities,
previously described, are cleanly separated from the
information access facilities.

• Maintenance of tools is always an issue. In order to
make tools based on CodeStore readable as well as
writeable, we have tried to give the tool writer access to
the control flow as much as possible by minimizing
access to the information via call-backs and instead
providing methods for type-case statements and

downcasts. This makes the program control-flow much
easier to understand and maintain.

3.1 Keep it Small and Simple

In order to reduce the size of a CodeStore instance and the
cost of using one, complex C++ inheritance mechanisms are
not used. The CodeStore classes use inheritance to provide
implementations, and not as part of an extension framework.
There is no virtual inheritance, because the storage layouts
for classes with virtual inheritance tend to be larger than
those without. This means that there are a number of
methods in the CodeStore interface that are used by
CodeStore itself, that should not be used by users of
CodeStore. Instead of separating these using language
features or as separate interfaces, they are separated as
different parts of the particular CodeStore interface class, in
much the same way that methods in Smalltalk classes are
grouping together into public and implementations parts by
convention. We document a "line" in each CodeStore
interface class that separates out end-user methods from
internal CodeStore methods. By doing this, we have traded
off speed and interface simplicity against safety. We have
further traded off simplicity against extensibility by not
defming an extension framework. It was decided that the
compilation algorithms and internal data structures are
sufficiently complicated that providing extension through
interface inheritance was only asking for trouble. Instead, we
studied the compilation process, and tailored specific kinds
of extensions facilities.

In order to reduce the size of a given CodeStore object, each
interface object has a number of implementations. As an
example of this the CodeStore interface object
F u n c t i o n P a r a m e t e r has a number of sub-classes
corresponding to different implementations, as shown in
Figure 4. For example, most function parameters do not
have default arguments, so we provide two different
implementations of the function parameter interface, and use
an optional return argument of type Expression to denote a
default argument in the instance. Having multiple
implementation classes trades off code size against data size.
There are two implementations of the i s R e g i s t e r method
instead of one, but no data to represent this in instances of
any of the four classes. Default return values are provided in
base classes, and are overridden in the mixins. Thus we are

137

template<bool reg>
class FunctionParameterTemplate: public FunctionParameter

{
public:

FunctionParameterTemplate(const Atom&, TypeDescriptor&);
virtual const Atom& identifier() { return _id; }
virtual bool isRegister() { return reg; }
virtual Expression* defaultArgument() { return 0; }

i;
template<bool reg>
class FunctionParameterWithDefaultTemplate: public FunctionParameterTemplate<reg>

{
public:

DefaultedFunctionParameterTemplate(const Atom&, TypeDescriptor&, Expression&);

i,
typedef FunctionParameterTemplate<false> FunctionParameterImpl;
typedef FunctionParameterTemplate<true> RegisterFunctionParameterImpl;
typedef DefaultedFunctionParameterTemplate<false> DefaultedFunctionParameterImpl;
typedef DefaultedFunctionParameterTemplate<true> DefaultedRegisterFunctionParameterImpl;

Figure 4. Implementation classes for CodeStore objects are specialized to reduce object size.

able to provide very simple interfaces for the tool writer, and
continue to keep the runtime size of CodeStore objects down.

There are three consequences of using multiple
implementation classes. First, object construction is
complicated, because the proper implementation class must
be chosen. This is mitigated by providing factories to
construct instances of CodeStore objects. For example, there
might be 60 classes that implement different flavors of
functions, but there is only one method for creating function
declarations in the CodeStore factory class that creates
declarations. Because inheritance is not used for extension,
factories are not overridden by tool writers, and so the details
of the different implementation classes can be hidden. This
fosters open tool-writing at the expense of extensibility
because one common kind of extension framework is to
allow programmers to store data nuggets with the repository
objects themselves.

The second consequence of using multiple implementation
classes is more subtle, and deals with object mutability. As a
consequence of incorporation processing, we might
determine that, for example, a function that used to be a static
member function is now a regular member function. Because
we happen to have chosen to represent the linkage of a
function indirectly using the template-mixin mechanism, the
identity (address) of the represented function in the
CodeStore can not be maintained. This causes change
propagation to be done, and function bodies that invoke this
function must then be recompiled. For this particular
example, it is not serious, because the invocation code
changes anyway. The trick is to use the mixin technique for

aspects of the CodeStore objects that we expect to be
invariant, or for aspects, which, if changed, necessitate
recompilation anyway. Thus we must trade off CodeStore
runtime size against compilation incrementality.

The third consequence of using multiple implementation
classes is that of indirection, which impacts the runtime cost
of using these CodeStore objects. Whether these multiple
implementations are implemented by delegation, or by use of
an indirect (virtual) function call, the overhead of obtaining
data from a CodeStore object is increased. This cost can be
reduced by pushing common data up the hierarchy tree, so
that access does not require any fimction-call overhead
whatsoever. In tuning the system, this proved to be a
dramatic win for certain often-accessed data, like the name or
enclosing scope of a declaration.

CodeStore size is dramatically lessened by not explicitly
storing abstract syntax trees of function bodies and nonlocal
variable initializers. These are computed on demand.
Because all of the declarations to which they refer are stored
away in the CodeStore, construction of an abstract syntax
tree (AST) for a function body is very fast -- it consists of
parsing the preprocessed token stream for the function body,
and semantically analyzing the AST. This computation
on-demand paradigm is used throughout the Montana system.
For example, when a user of the Montana user interface sets

a breakpoint at a file/line/column source location, the source
region is parsed and analyzed, then the source location is
correlated against the AST in order to obtain a program
counter for the breakpoint. In practice, the response time is
instantaneous.

138

3.2 Export the CodeStore Functionality

The key to making the CodeStore functionality available for
programmers has been to separate out representation from
behavior, so that programmers have access to the
functionality that CodeStore provides, like lexing, parsing,
type analysis, diagnosis, etc. By separating these capabilities
out from the CodeStore representation itself, tool writers are
able to use them in tools. Rather than try to predict the kinds
of things that users of the CodeStore programming interfaces
will wish to do, we provide set/get methods and general
extension mechanisms as previously described. The model
that we adopted treats the CodeStore as a repository, with
each function that operates on the CodeStore implemented by
separate, "helper" classes. This opens up the CodeStore to
tool writers, because there are no restrictions on who
implements these helper classes. Furthermore, it provides a
single uniform tool extension model, that is shared by both
the CodeStore implementor and the tool writer. As an
example of this, it is not possible to change what "parse"
means for a function body, but it is possible for programmers
to define their own parser implementations which might, for
example, construct abstract syntax trees directly.

By making the CodeStore just an information repository, and
separating behavior from implementation, we make it
possible for programmers to use the helper classes directly in
ways not anticipated by the CodeStore designers. There are
many examples of this. We provide a method for a parser to
produce an abstract syntax tree from a character string. Thus
CodeStore users can construct strings directly and process
them using the same code as does CodeStore. Two examples
of this are expression evaluation in the CodeStore debugger,
and searches for declarations in the CodeStore. The first
works by using the CodeStore parser, type analyzer,
diagnostician, and transformer to process a character string
representing the expression. The second example, searching
for declarations in the CodeStore, does not seem to require
any sophisticated support from the CodeStore until one
considers how to search for

A<int> : :B< (T&) foo> : :C<X+Y+Z>

in the program. By providing a way to parse this into an
abstract syntax tree for a name, and then type-analyze this,
the writer of the declaration searcher just has to write a
"one-liner" that is guaranteed to obtain the same result as a
CodeStore compilation. By separating out the operations
that produce and process abstract syntax trees from the
CodeStore itself, we are able to export powerful CodeStore
functionality to the tool writer very easily.

Another way in which the CodeStore functionality is
exported is the way in which the incorporation is invoked.
For incorporation either of function bodies or of an entire

program, the user supplies an IncorporationController
to CodeStore. This object provides a number of services.
Among them is a place in which to deposit error messages
generated as a result of incorporation. These error messages
are actually n-ary trees, structured so that children provide
more refined information about their parents. An example of
this is a type analysis error. The top-level message may say
something like "No best conversion between types A and B".
Other parts of the message give details about what the
choices were, and why one choice is not better than the
others. These error messages can be either graphically
presented as they are in the CodeStore UI, with a "more
detail" button, or they can be selectively displayed, as they
might be by the expression evaluator in the debugger.

3.3 CodeStore Programs must be Readable as
well as Writeable

One of the ways in which CodeStore programs have been
made readable is counter to the object-oriented way of
"doing things." We have already said that in CodeStore, data
and behavior are largely separated, so as to necessitate only
one set of programming interfaces for both the system and its
users. By separating out data and behavior, algorithms that
use the CodeStore programming interfaces become easier to
understand -- the control flow is directly manifested by the
code itself. By uniformly exploiting programming
conventions there becomes still less need for programmers to
deal with large numbet's of classes in order to understand
CodeStore program fragments. Another way in which the
data/behavior split simplifies tools is the way in which class
hierarchy navigation is implemented. Programmers can of
course use features provided by the language itself, like C++
runtime type identification (RTTI):

ClassDeclaration* c;
EnumDeclaration* v;
if (c = dynamic_cast<ClassDeclaration>(d))

/ / ;;
else if (e = dynamic__cast<EnumDeclaration(d))

// ;

Code like this is easy to write, easy to read, and more
importantly, gives the programmer control over the control
flow. There are instances where is useful to provide more
structured access to CodeStore data structures, using visitor
classes. While these are not useful in general, there are
certainly many situations where it is desirable to visit an
abstract syntax tree, performing certain actions at each of the
different subtrees. CodeStore provides classes for traversals,
and tool-writers can easily plug in actions to be performed,
for example, for each cast expression. Because the
implementation of these traversal classes does not use any
specialized methods that are not part of the CodeStore

139

programming interfaces, tool writers can implement
specialized traversal classes tailored for specific uses. It is
also worth noting that a very (very) early version of
CodeStore using only this style of navigation for both data
structure and class hierarchy traversal. It became clear very
early that this was inadequate for a general framework such
as CodeStore. Imagine a mechanism like this used to
compare a function parameter against an argument list.
There is also a granularity issue. Using such a scheme it
would have been very difficult to differentiate between
different kinds of functions and variables.

There are two class-hierarchy navigation primitives provided
by CodeStore that are used to implement data structure
navigation like that of Figure 4. The first is a type-case, and
the second is a single-level downcast, very similar to C++
RTTI. For each class A, with subclasses A0, A1
Ak, the methods look like the following:

class A
{

public :
enum Kind

{

I SAo,
I sAt,

IsAk,
numKinds
};

virtual Kind aKind() = 0;
Ao* asAo() ;
At* asA1() ;

Ak* asAk() ;

l;

Using these two mechanisms, it becomes very easy to write
code against the CodeStore interfaces. In particular, the code
is easy to write, understand, and debug. These are all
desirable characteristics of maintainable code. The downcast
and type methods are uniformly used throughout the
CodeStore classes. Each base class has a "Kind"
enumeration, and a set of downcasters to subclasses. By
requiring (by convention) that programmers use these
facilities instead of C++ RTTI, readability and flexibility is
obtained while maintaining structure. Additionally, the
programs tend to have a great deal of uniformity, and
CodeStore idioms like a type case become very easy to
identify. Common wisdom is that this kind of mechanism
causes type-errors to become runtime errors instead of
compile-time errors. We have found that not to be the case.
CodeStore is a large (750KLOC) program that is written in
this way, and the advantage of providing obvious control
flow swamps any disadvantages.

A programming convention that has proved very useful for
readability as well as writeability of CodeStore programs is
one that we call the pointer/reference convention. Simply
stated, pointers are used in CodeStore methods to denote
optional objects. Thus if a CodeStore method returns a
pointer, then that return value might be null, and should be
checked. (Recall the default function argument example from
the previous section). We ask that our tool writers obey the
same rule. Trivial as this convention sounds, it has
dramatically simplified the CodeStore programming
interface, and increased the readability of code written
against it.

One final aspect of readability is the notion of uniform
navigation through collections of CodeStore objects. For
most objects we can define a primary collection, i.e., the
collection primarily through which the object will be
obtained. For declarations, this primary collection is the
scope containing the declaration, for statements, the
containing block, for types, the type declarator list.
Navigation through this primary collection is made
deliberately easier. Code that navigates through these
collections looks very familiar to C/C++ programmers. As a
simple example of this, consider a function that determines
whether a class has any constructors defined. The code
searches through the members of a class (a mandatory part of
the CodeStore representation of a C++ class is a scope for
the members of the class). The code tests to see if each
declaration is a function, and if so, if that function is a
constructor (see Figure 5).

The largest client of the CodeStore interfaces so far is
Montana itself, which is approximately 0.75M lines of code,
and most of the system consists of code like this. The code is
very writeable and is certainly readable. This example does
not use the type-case idiom, but it does use a single-level
downcast, the pointer/reference convention, and collection
iteration.

140

bool
hasConstructor(ClassDeclaration& c)

{
MemberDeclarationStore& m = c.memberDeclarationStore();
for(Declaration* d = m.firstDeclaration() ; d; d = d->next())

{
FunctionDeclaration* f = d->asFunctionDeclaration();
if (f && f->isConstructor())

return true;
}

return false;
}

Figure 5. Deternine if a class has a constructor by examining each declaration, in
order, and determining if that declaration is a function and a constructor.

4. C O N C L U S I O N S

We have had a large amount of experience with the
CodeStore programming interfaces. A large number of tools
have been written against CodeStore. Some published
examples of these are: Rapid Type Analysis [1], a simple
analysis for determining when dispatched functions can be
called directly; a correct implementation of
reference-counted pointers [7]; and the most complicated of
the CodeStore tools, an implementation of subject-oriented
composition [9]. Other tools written have been: a semantic
definition/use view for the Montana user interface; a
diagnosis tool, that identifies erroneous C++ idioms; a code
generator that compiles C++ into SUIF [6]; and an extension
to the system that analyzes macro expansion during
compilation. Many of these tools were used to drive the
development of the CodeStore programming and extension
interfaces, and so consequently the writers of these tools did
not have as positive experience as the CodeStore developers
would have liked. To summarize their experiences, the
following lessons have been leamed:

1. Regardless of how good the programming interfaces are,
CodeStore is a big system, and there is a steep learning
curve. The programming interfaces are easy to learn,
but we need to publish a book of idioms, a programmers
guide. Once the idioms have been learned, tool writers
can be very productive.

2. We have made the system very powerful, at the expense
of safety. Not surprisingly, integration of complex tools
can cause the compiler to crash during compilation, and
debugging of integrated tools is not necessarily easy.
Not surprisingly, storage management is a perennial
problem. It is unclear whether garbage collection could
help, because the issue is memory staging. Even if we
supplied a garbage collector, persistent objects (stored in
the persistent CodeStore in a file) are different from
non-persistent ones.

3. The separation of data and function has been a huge win.
Tool writers have become very acclimated to the power
at their disposal. Post-hoe parsing, analysis and
tool-traversal of function bodies has been very useful.

4. The number of tools written against the different
extension mechanisms is inversely correlated with their
power. The addition of analysis and diagnosis phases to
function-body and variable-initializer analysis have been
widely used, perhaps because this is a very familiar
paradigm for compiler writers. The observer mechanism
has also proved to be useful. In fact we have used user
requirements to drive the addition of observers. Finally,
the dependency-graph extensions have been the least
used. They are by far the most powerful, but the most
complicated. Tool writers need to have a fairly deep
understanding of the incorporation process to use them.

5. The use of consistent programming conventions has
been a real aid to learning the interfaces. Even though
there are a large number of classes and methods in the
CodeStore programming interface, uniformity
conventions like the pointer/reference, downcast, and
collection iteration have dramatically reduced the
number of concepts that tool writers need to have.

6. The system is incremental, and so tools must also be
aware of this incrementality. This means that all tools
must to some extent be aware of the incorporation
model. In some cases, tools that assume views of the
entire program, like Rapid Type Analysis, have had to
be rethought. Other kinds of tools, like diagnosis tools,
fit very naturally into an incremental model.

The architecture of the system has proved amenable for C++
tools. Although the programming and extension interfaces
are necessarily complex, matching the semantics of the
language itself, the system has been able to show that this is a
very viable architecture for a compiler and programming
environment. CodeStore as a single source of information
has proven itself to be a very useful information source for a

141

tool writer, and the extension mechanisms have also proven
themselves, although to a lesser extent.

5. ACKNOWLEDGEMENTS

A large number of people have worked on the design and
implementation of the system over the last four years at IBM
research and development sites. In no particular order, other
contributors to the system design are John Barton, Lee
Nackman, Derek Lieber, Yi-Min Chee, Danny Soroker,
Robert Bowdidge, David Olshefski, Derek Inglis, David
Streeter, Mark Mendell, Ian Carmichael, David Brolley, Ed
Merks, Michael Wulkan, Jamie Schmeiser. Many, many
people have contributed to the implementation of the
graphical programming environment called Montana. Many
others have used the system, albeit with pain, during its
gestation. Finally, thanks to Peri Tarr who read this paper
very carefully and helped to fLX it.

6. REFERENCES

[1] Bacon D.F., Sweeney P.F., "Fast Static Analysis of C++
Virtual Function Calls" OOPSLA 1996, pp. 324-341.

[2] Cayenne Software Inc., Simplifying the Maintenance of
Your C Code Using Software Reverse Engineering
Technology, http ://www.cayennesofi.com.

[3] Edison Design Group, Compiler Front Ends for the OEM
Market, http://www.edg.com.

[4] Feldman S.I., "Make -- a computer program for
maintaining computer programs," Software Practice and
Experience, 9(4), pp. 255-265.

[5] Haberman N.A., Notldn D., "Gandalf: Software
Development Environments," Transactihons of Software
Engineering, 12(12),pp. 1117-1127.

[6] Hall M.W., Anderson S.P., Amarasinghe S.P., Murphy
B.R., Liao S.-W., Bugnion E., Lam M.S., "Maximizing
Multiprocessor Performance with the SUIF Compiler,"
1EEE Computer, Dec. 1996.

[7] Hamilton, J., "Montana Smart Pointers: They're Smart,
and They're Pointers", Proceedings of the Conference on
Object-Oriented Technology, Portland, OR., 1977.

[8] Nackman, L.R., "CodeStore and Incremental C++," Dr.
Dobbs Journal, Dec. 1997, pp. 92.

[9] Ossher H., Kaplan M., Katz A., Harrison W., Kruskal V.,
"Specifying Subject-Oriented Composition," TAPOS Special
Issue on Subjectivity in Object-Oriented Systems, 1996, pp.
179-202

[10] Reps T.W., Teitlebaum T., The Synthesizer Generator:
A Language for Constructing Language-Based Editors,
Pringer Verlag, 1988.

[11] Soroker D., Karasick M., Barton J., and Streeter D.,
"Extension Mechanisms in Montana," Proceedings of the
8th 1EEE lsraeli Conference on Computer Systems and
Software Engineering, Herzliya, Israel, June 1997, pp.
119-128.

[12] Take-Five Software Corporation, Sniff+ for C/C+ +,
http ://www.takefive.com.

[13] Bladen J.B., Blake S.J., Spenhoff D.,, "Ada Semantic
Interface", Proceedings Ada "91, San Jose, CA, Oct 1991,
pp. 6-15.

142

