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ABSTRACT 

Montana is an open, extensible integrated programming 
environment for C++ that supports incremental compilation 
and linking, a persistent code cache called a CodeStore, and 
a set of programming interfaces to the CodeStore for tool 
writers. CodeStore serves as a central source of information 
for compiling, browsing, and debugging. CodeStore contains 
information about both the static and dynamic structure of  
the compiled program. This information spans files, macros, 
declarations, function bodies, templates and their 
instantiations, program fragment dependencies, linker 
relocation information, and debugging information. 

Montana allows the compilation process to be extended and 
modified [11]. Montana has been used as the basis of  a 
number of  tools [1,7], and is also used as the infrastructure of  
a production compiler, IBM's Visual Age C++ 4.0 [8]. 
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1. INTRODUCTION 

In order to program with a computer language effectively, it 
is often necessary to use extra-lingual tools that either extend 
the build process (e.g., make, yacc, cpp) or extract static and 
dynamic information from the program. Examples of those 
that extend the build process are automated testing tools, stub 
generators, metadata catalog processors, GUI builders, and 
program transformers. These kinds of  tools either transform 
the source language (in our case, C++) or use scripting 
languages specific to the individual tool. Tool invocation is 
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typically incorporated into the build process with 
coarse-grained facilities, like make. Montana is designed 
and implemented to address the tool integration problem in 
three ways: 

Open: Tools often need to access information about the static 
or dynamic structure of a compiled program. For example, 
analysis tools might need control-flow information or 
structural information about objects. Without this kind of  
information, tool writers need to reimplement parts of  the 
compiler (a daunting prospect for C++), or modify the 
compiler itself to obtain the needed information. Both are 
difficult, and not possible in many cases. Both are also 
maintenance nightmares. Montana provides a set of 
programming interfaces that give access to the program at 
different levels of  abstraction, from source files and macros, 
to abstract syntax trees for function bodies, to object-code 
relocations. 

Extensible: Even though a program representation might be 
available, it is often necessary, or desirable to gather 
information during the compilation process, or modify the 
compilation process. It is unlikely that compiler writers can 
predict the different kinds of information that a tool writer 
might need. Furthermore, some tools, like style checkers and 
stub generators and naturally invoked during the compilation 
itself. Montana supplies a set of  extension interfaces that 
allow tool writers to get fragments of  their tools inserted 
directly into the compilation stream, without modification of  
the compiler itself [ 11]. 

_Incremental: Montana updates its program representation in 
response to source code changes. This update is incremental, 
and so results in better performance for the compiler and 
tools. For example, an automatic testing tool need only test 
for function bodies that have changed since the last 
compilation. 

The way in which a system like Montana is architected 
directly affects how well these three goals are achieved. One 
example of this is the tradeoff between performance and 
extensibility. Because Montana serves as an incremental 
C++ compiler as well as a tool framework, it is important 
that the "inner loop" run efficiently. This means that any 
extension mechanism which affects this inner loop must be 
carefully crafted. There is also a tradeoff between 
performance and openness. Providing programming 
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interfaces that access different aspects of the compiled 
program can cause performance problems, because these 
interfaces might not be the most convenient or efficient for a 
compiler. To ameliorate this Montana separates data from 
function. There are no "privileged tools," including the 
compiler. Tools use the programming interfaces to extract 
data and construct appropriate data structures for a given 
task. These data structures are either hidden or exposed by 
the tool, as necessary. 

The lack of  a system like Montana means that tools must 
either provide their own parser and semantic analyzers, or 
must be inherently imprecise by approximating syntactic or 
semantic information. There are several offerings currently 
in the marketplace that attempt to provide parsing and 
analysis tools. Sniff [12] uses approximate parsing and 
serves as a reasonably powerful cross-referencer, but is not 
precise enough for tools like style checkers, program 
transformers, or code wizards. Edison Design Group [3] has 
written an a C++ front end that is designed to be used as the 
basis of  tools. It is quite ambitious, with a plethora of 
options that implement "bugs" in versions of different 
vendor compilers. This front end suffers from the problem 
that tools can only manipulate information that is obtained 
from their abstract syntax trees. The ubiquitous GNU C++ 
compiler has been lovingly tailored by legions of graduate 
students in order to extract information of interest. 
Unfortunately, the language recognized by this compiler 
bears only a passing resemblance to the C++ recognized by 
most other C++ compilers. Consequently, the GNU compiler 
servers more as a research vehicle than the basis of  any 
standardized tool suite. Ensemble [2] is a vendor-neutral 
tool for analyzing C programs. It provides programming 
representations for C program fragments, along with a 
number of  tools that use these representations. ASIS [13] is 
a vendor-neutral program representation for Ada that allows 
access to information about compiled Ada programs. The 
Synthesizer Generator [10] provides ways to specify the 
syntax and semantics of target languages and then "build" an 
environment from that specification. Gandalf [5] 
additionally allows these specifications to describe how 
externally written programs (e.g., configuration management 
systems) can be invoked as part of  the compilation. All of the 
systems described above are open, in that they allow access 
to program information. 

Montana is most similar to either EDG or ASIS, but is more 
ambitious in several ways. ASIS and EDG provide 
non-extensible programming interfaces to data structures like 
Abstract Syntax Trees, so the available information is 
limited. In contrast, Montana provides similar information, 
but additionally provides ways in which tool writers can 
augment the information stored away (data extension), can 
add additional processing phases to the compilation process 

(tool extension), and provide event handlers for distinguished 
events during the compilation process (event extension). 

Montana works by constructing and modifying a program 
representation, called CodeStore, stored in a persistent or 
transient cache. The programming interfaces to CodeStore 
are open, and available to tool writers. In order to access the 
program representation the tool writer writes a small C++ 
program fragment that constructs and then queries (or 
modifies) the CodeStore. It is also possible to extend the 
compilation process itself, by registering code fragments that 
are triggered during the compilation. These fragments can 
collect information, generate error messages, or modify the 
CodeStore directly [11]. As an example of  this, consider a 
style checker might be as an extension to Montana: (1) the 
error messages produced are integrated with those produced 
by the compilation itself; (2) the style checker is run 
automatically as part of  the compilation process, so the 
abstract syntax trees used by the compiler itself are available 
for diagnosis; (3) because the compilation is incremental, 
only program fragments that have changed are diagnosed, 
making the style checker inexpensive to use; and (4) the style 
checker written in this way can be extended and customized 
to check for those idioms of interest. The Montana 
architecture is flexible enough to allow any number of style 
checkers, program analyzers, and transformers to be 
registered as extensions. 

Like any system that works with a persistent program 
representation, Montana is necessarily incremental. The 
compilation process (which we call incorporation), works by 
taking changed source files, and "incorporating" changes into 
the CodeStore. A side effect of  this process is an 
incrementally compiled and linked program, if desired. 

The remainder of  this paper describes the architecture of 
Montana. Aspects of the architecture discussed are the 
compilation model, and the design of  the CodeStore and its 
programming interfaces. (See [11] for more details of the 
CodeStore extension mechanism.) This paper focuses on the 
engineering tradeoffs inherent in an open, extensible system 
like Montana. 

2. THE COMPILATION MODEL 

In order that the compiler be incremental, the compilation 
model is quite different from that of  traditional compilers. 
Just like conventional compilers, program text is stored in 
files, and the CodeStore is updated to reflect changes in the 
source files. However, the grain of  incrementality is much 
smaller -- top-level declarations instead of  files. This 
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provides for a much more efficient compilation, but has some 
consequences. 

The compilation model is not that different from that used 
by program construction tools like Make [4]. In particular, 
the only kind of dependency that makefiles capture is a 
source/target dependency, e.g., reprocess a source file (.cpp) 
if it, or header-files or libraries on which it depends change. 
The simplest of these kinds of dependencies are often created 
automatically. For example, Microsoft Visual C++ 
constructs stylized makefiles for predefmed kinds of 
applications. These makefiles are then automatically 
maintained by the Microsoft development environment. 
These make files can be subsequently edited if the 
conventions that the development environment requires are 
maintained, otherwise the development environment will not 
"understand" the semantics of the make file. 

In Montana, source files listed in the configuration file 
(including header files) are processed only once, regardless 
of include directives. This makes incremental update of  the 
CodeStore very fast. In order to make this work, global 
declarations declared in one file become automatically 
visible in all of  the other files. Include directives are ignored 
for files named in the configuration file, and forward 
declarations are unnecessary. Finally, declarations are not 
assumed to be topologically ordered within a file. This 
means that function bodies and global initializers cannot be 
processed until all of  the top-level type and function 
signatures have been processed. These processing rules work 
together to relieve the programmer of much of the drudgery 
associated with the maintenance of complex systems of 
header and source files. As an example of this, consider the 
simple Montana configuration of  Figure 1, which consists of 
three files and a configuration file. 

Contrast Figure 1 with the same program, as shown in Figure 
2, written for a traditional compiler. Note that both classes 
must be complete before either of  the inline function bodies 
can be compiled. Note that Montana will happily compile 
the program of Figure 2 with the trivial configuration file 

target "main.exe" { "main.C" }. 

This is because by default Montana defines macros to be 
local to the file in which they are defined. Because neither 
"A.h" nor "B.h" are listed in the configuration file, the 
#include directives are processed normally, and all of the 
macros become local to the span off "main.C'. Macros that 
must be global to the program can either be included in every 
source file, or can be written in special source files that are 
annotated as "macro" files in the configuration file. These 
files are preprocessed in the order in which they are written 
in the configuration file unless they appear in include 
directives, in which case the order dictated by the include file 
graph is used. An example of  this is shown in Figure 3. 

Because the vz macro is included in "formulas.h", PI is 
guaranteed to be defined before macro area. This 
discrimination between local and global macros is necessary 
to obtain reasonable semantics for the compilation model. 
because macro processing is inherently a file- and not 
program-scoped operation. 

2.1 Semantic Differences Between ANSI C++ 
and "Montana" C++ 

Because top level declarations are automatically exported to 
all files in the C++ program in Montana, certain 
order-specific intra-file idioms are explicitly disallowed in 
order to obtain the same semantics as the inter-file 
equivalents. This means that when files are considered in 
isolation, the language that Montana recognizes differs from 
ANSI C++ in certain specific ways. Consider the following 
example: 

const char* f (double) 
{ 
return "double" ; 
} 

const char* g() 
{ 
// in Montana this is f(int); 
// in ANSI C++, f(double) 
// 
return f(5) ; 
} 

const char* f(int) 
{ 
return "int"; 
} 

Using a traditional compiler, the result of calling g0 is 
"double", and in Montana, "int". As a second example, 
consider the following code fragment, written at global 
scope: 

class C; 

// In Montana the following is an error. 
// The programmer must write "class C* x;" 
// 
C* x; 

int C ; 

In Montana, if these declarations are at global scope, then 
this is a syntax error, because the "c"  in "c* x" refers to the 
non-type. In both of these examples, the Montana semantics 
are roughly the following: 

1. Treat the declarations as if each is written in a 
separate file. 

2. Compile all top-level signatures first, assuming that 
each non-static declaration is automatically visible 
to every other file in the program. 
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main.C:int A.h: struct A B.h: struct B: A 
main() { { 

{ B* b() A* a() 
B thing; { { 
thing.b(); return new B; return new A; 
thing.a); } } 
} }; }; 

maindcc: target "main.exe" 
{ 
source "main.C" 
source "A.h" 
source "B.h" 
} 

Figure 1. Montana source files do not need header guards, not do they need explicit header files. If a file is 
listed in the Montana configurationfile, then non-static declarations are automatically visible across the 
D r o p r a m .  

3. Compile all of  the function bodies and variable 
initializers. 

(Most of) the designers of  the system consider the behavior 
of Montana for these kinds of  examples as a feature, and not 
a bug. By automatically making declarations visible across 
the program without using header files, we obtain efficient 
incremental recompilation, because there is no need to 
recompile entire files if a file has changed. Only those 
portions of  the file that correspond to changed declarations 
need to be recompiled. The compilation model is both clean 
and simple, and name resolution is not affected by lexical 
position within a file. In particular, Montana has strict 
enforcement of  the ANSI one-definition rule, which says that 
class declarations are global across a program, not just a 
translation unit. There is also an additional benefit to tool 
writers because the lack of order dependencies inherently 
simplifies the language compiled. Some complexities vanish, 
e.g., in Montana the point of  template instantiation is simply 
a namespace, and not a lexical location in a translation unit. 

2.2 Compiling Declaration Signatures and 
Function Bodies 

Montana provides several ways to extend the compilation 
process [11]. For example, there are a number of  
distinguished points at which tool writers can insert code. By 
understanding the compilation model, tool writers can 
effectively extend the compilation by adding code in just the 
right places. The incremental compilation process, called 
incorporation, is now briefly described. 

Recall that top-level declarations are unordered, and so their 
signatures must be completely processed before function 
bodies and variable initializers. The unordered processing of 
top-level declaration signatures is done by building a 
dependency graph, containing entities like files, macros, 
regions of source files corresponding to top-level 
declarations, declarations, and function bodies. This 
dependency graph is used to guarantee that changes to source 
files cause correct changes to be made to the CodeStore. 
Compilation works by adding work items to a priority queue, 
and using the dependency graph to create work items to be 
scheduled. 

main.C: #include "B.h" 
int 
main ( ) 

{ 
B thing ; 
thing.b() ; 
thing.a() ; 
} 

A.h: 

A.inh 

#ifndef A_h 
#define A__h 
struct B; 
struct A 

{ 
B* b(); 
}; 

#include "B.h" 
#endif 

inline B* A::b() 
{ 
return new B; 
} 

B.h: #ifndef B_h 
#define B_h 
#include "A.h" 
struct B: A 

{ 
A* a() 

{ 
return new A; 
} 

}; 
#include "A.inl" 
#endif 

Figure 2. The traditional compilation model (header files + declaration ordering) requires that programmers use 
preprocessor directives to control the order in which declarations are processed by the compiler. For complex class 
hierarchies it is also necessary to split inline function bodies into separate files. 
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fi.h: #define PI 3.14159 

area.h: #include "pi.h" 

#define area(r) (PI*r*r) 

main.C:int main() 
{ 
cerr << area(5) << endl; 
} 

Figure 3. Macros that are global to the entire program 
file~ in the e.nfim|ration file. 

main.icc: target "main.exe" 
{ 
options macros(global) 

{ 
source "iostream.h" 
source "pi.h", "area.h" 
} 

source "main. C" 
} 

are listed in files that are listed in special "global macro" 

Incorporation begins by processing source files whose time 
stamps have changed, subdividing the token stream into 
regions corresponding to top-level declarations. This 
subdivision is done by looking for fiducial symbols like 
braces, semicolons, and parentheses. For each of these 
changed files, its token stream is compared against the one 
obtained from the last incorporation, looking for source 
region differences. Only those regions that have changed 
must be processed. Processing of  a source region is done by 
parsing and then reconciling the parsed declaration. 
Reconciling means finding the declaration, if any, from the 
CodeStore that matches. A change-analysis is done, and 
dependent declarations that need to be recompiled are 
scheduled as work items on a priority queue. Processing for 
function bodies and variables initializers is quite traditional. 
They are parsed, semantically analyzed, and then code is 
generated for them. In order to extend this, tool writers can 
replace any of these phases or add new ones. 

In order to allow for incremental recompilation, dependency 
arcs are added to antecedent declarations, ones referenced 
inside declaration signatures, function bodies or variable 
initializers. Note that tool writers might have to add arcs as 
well in order to guarantee correctness of their extensions. 

Parsed function bodies are not kept in the CodeStore. 
Instead, CodeStore provides facilities for function bodies to 
be processed on the fly. For example, the CodeStore 
method 

b o o l  
FunctionBody: :build 

( 
LexicalBlockS tatement* &, 
Phase, 
Storage, . . . 
) 

has several parameters, three of  which are described here. 
This method returns a boolean that denotes success -- the 
resulting abstract syntax tree is returned as the first 
parameter. The second parameter denotes the last 
compilation phase (from parsing through code generation) 
that is to be done. The third parameter is an object that 
denotes where the storage for the compiled function body is 
to be allocated. By convention, this storage is "owned" by 

the caller of this method. In this way, a caching strategy is 
the responsibility of  the caller of  the build method. For 
example, non-local flow analysis that uses a subset of  the 
entire program call graph can be written, in which the writer 
of the analysis has complete control over the lifetimes of  the 
abstract syntax trees used by the analysis. This behavior, 
giving the tool writer control over the lifetime of  the objects 
created by the CodeStore, makes the system both more open 
and more extensible. 

2.3 E x t e n d i n g  M o n t a n a  

Extension writers use the CodeStore programming interfaces 
to modify or extend the CodeStore contents and the 
compilation process. Extensions are supplied in dynamically 
loaded libraries, which are automatically loaded as part of  the 
configuration file processing. Extensions are defined in a 
special " . i c e "  file, which names each extension, names the 
library that implements it, describes the options (if any) that 
can be specified in a configuration file. Incorporation 
extensions modify the function body and variable initializer 
processing, by adding additional phases to the process. For 
example, the incorporation extension mechanism is used to 
add style checkers to the compilation process. Event-based 
notification, or observer extensions are used to gather 
information about the compilation process. For example, the 
Montana user interface is notified whenever a declaration is 
removed from the CodeStore. Dependency graph extensions 
are parameterized by source files. Instances of  dependency 
graph extensions are created by the configuration file 
processor when it encounters source files whose suffixes are 
registered with the extension. Each such instance induces a 
node in the CodeStore dependency graph corresponding to 
the extension source file. In this way, when the time stamp 
of the extension source file changes, extension-specific 
processing is automatically triggered to run against the file. 
As an example of this, it is easy to specify a yacc extension 
that process " . ~ "  files, and constructs a C++ source file that 
is then compiled. Certain predefmed 'Tneta" extensions are 
defined as part of the system. The filter extension runs an 
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external command, e.g., yacc, whenever the time stamp of 
an input file changes.. These filters are easily daisy-chained 
by listing the output of the filter as a source in the 
configuration file. The different extension types are often 
mixed together to extend the compilation process in 
significant ways. A single "compound" extension may add 
dependency nodes to the graph, modify the way functions 
and variables are compiled, and gather information about 
other parts of  the incorporation process itself. 

Of relevance to this paper are the design choices that led to 
the kinds of  extensions that the system provides. A much 
more complete description of  the Montana extension 
mechanism is given in by Soroker et. al. [11], including 
comparisons to other well-known extension techniques, like 
meta-object protocols. 

There is a tension in the design of  the extension mechanisms 
between providing convenient hooks for tool writers and not 
compromising the compilation time. As an example of this, 
it is useful to provide a hook so that a tool writer can obtain 
control every time a token is scanned, but without slowing 
down the compilation if the hook is not used. Different kinds 
of  extension require different kinds of  hooks in the 
incorporation process, and these hooks must be implemented 
as efficiently as possible. Thus dependency graph extensions 
are attached to the dependency graph with dependency arcs, 
incorporation extensions are attached to lists of compilation 
phases, and observer extensions are added to context-specific 
lists. 

The three extension mechanisms appear arbitrary, but were 
chosen to provide for different styles of extensions. 

• Incorporation extensions arise naturally from the need to 
add new kinds of algorithms that operate on function 
bodies and variable initializers. Most optimizers are 
designed to modify abstract syntax trees produced by 
either semantic analysis or by a previous optimization 
phase. 

• The observer extension arises from the need to gather 
information during the compilation process, typically for 
analysis. Aside from efficiency considerations 
(observation is used extensively to implement the 
preprocessor and so must be very efficient), observers 
gather data at a number of different phases in the 
incorporation process, and it is necessary to provide a 
uniform interface for observation. 

• Dependency graph extensions also fulfill a very-specific 
need, to extend the compilation processing by adding 
specific processing for new kinds of  source files, and to 
provide a way for extension-specific data to persist as 
part of the dependency graph in the CodeStore. 

Each extension mechanism is registered with the CodeStore 
in a different, but appropriate way. Incorporation extensions 
are added by registering a procedure to be called after a 
given (named phase). Observer extensions are registered by 
adding a procedure to a list associated with a particular 
event. Dependency-graph extensions are registered by 
creating dependency arcs that join them to other dependency 
nodes in the CodeStore. 

2.4 Trade-Offs 

Because of the need to temper extensibility with efficiency, 
there are some drawbacks to the extension mechanism. Each 
of the three mechanisms has its problems. Dpendency-graph 
extensions are the most powerful, but also the most difficult 
to use. Tool writers must understand the dependency-graph 
processing deeply in order to implement sophisticated 
extensions. Additionally, these extensions are not easy to 
debug, as they can cause the compiler to stop working. 
Montana explicitly chooses to give the programmer power at 
the expense of safety. 

Incorporation extensions provide for a single tool writer to 
extend the system by adding extra compilation phases, but 
provide only limited ways to sequence the phases. In 
particular, if several phases of  the same type are added to the 
compilation, e.g., several optimization phases, the only way 
to sequence them is to manually add them one at a time. This 
makes it difficult to use third-party incorporation extensions, 
because the extensions themselves are not named. This can 
be fixed by adding some complexity to the registration 
mechanism, either by naming extensions or phases. 

Finally, observer extensions are the most problematic. The 
designers of Montana have to predetermine all of those 
events for which a tool might want notification. A given 
event might notify its observers from many different points in 
the compilation, so that adding new types of  observers 
requires (some) knowledge of  the compilation process. The 
preprocessor, the only completely instrumented part of the 
system, has about 50 different events. Depending on the 
desired event granularity, there might be thousands of 
different events of interest to tool writers if the system were 
completely instrumented, which it currently is not. 
Furthermore, each event requires some custom code because 
different kinds of event notifications have different 
parameters to them. The number of events has been reduced 
by making them less specific. For example, observers are 
notified when processing of  a dependency node is completed. 
The observer is responsible for checking if this dependency 
node is of interest. 
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3. T H E  C O D E S T O R E  P R O G R A M M I N G  

I N T E R F A C E  

CodeStore is a C++ class library for describing the different 
static and dynamic aspects of  a C++ program. There are 
class hierarchies for describing static aspects of  the program 
like tokens, source files, macros, source regions, 
declarations, abstract syntax trees, expressions, types, 
statements, compilation targets, linker relocations. Dynamic 
aspects like machine registers, storage, call stacks, and 
breakpoints are available as well. The programming 
interface provides basic, but complete information. Rather 
than attempt to provide complete representations for all 
aspects of  compilation, the idea is to provide a repository 
whose contents can be used to construct other data structures, 
e.g., control flow graphs or SSA. In order to provide for this 
kind of  extensibility, we have tried to minimize the number 
of  ways in which the different parts of  the CodeStore 
interact. The themes that underly the design, like CodeStore 
size, consistency, simplicity, and openness are now 
described. 

The Montana system is also extensible, as we have described, 
and one way that object-oriented systems are often extended 
is using inheritance as an extension framework. Not 
surprisingly, Montana is implemented in C++, and the 
CodeStore is implemented using classes and methods, but we 
do not use inheritance as an extension to implement an 
extension framework. 

• The use of  inheritance or other C++-specific features 
like virtual or multiple inheritance is kept to a minimum 
in order to keep the size of  the constructed CodeStore 
objects themselves small, and to keep the runtime 
overhead of using the system low -- recall that 
CodeStore methods are used in the inner loops of  an 
incremental compiler, and so efficiency is important. 

• Rather than trying to provide all of  the methods that tool 
writers will need, a choice was made to export the 
CodeStore structure, and let tool writers have access to 
the same interfaces as the CodeStore implementors. 
Thus the CodeStore is an information repository, not an 
extension framework. The extension facilities, 
previously described, are cleanly separated from the 
information access facilities. 

• Maintenance of tools is always an issue. In order to 
make tools based on CodeStore readable as well as 
writeable, we have tried to give the tool writer access to 
the control flow as much as possible by minimizing 
access to the information via call-backs and instead 
providing methods for type-case statements and 

downcasts. This makes the program control-flow much 
easier to understand and maintain. 

3.1 Keep it Small and Simple 

In order to reduce the size of  a CodeStore instance and the 
cost of  using one, complex C++ inheritance mechanisms are 
not used. The CodeStore classes use inheritance to provide 
implementations, and not as part of  an extension framework. 
There is no virtual inheritance, because the storage layouts 
for classes with virtual inheritance tend to be larger than 
those without. This means that there are a number of  
methods in the CodeStore interface that are used by 
CodeStore itself, that should not be used by users of  
CodeStore. Instead of separating these using language 
features or as separate interfaces, they are separated as 
different parts of  the particular CodeStore interface class, in 
much the same way that methods in Smalltalk classes are 
grouping together into public and implementations parts by 
convention. We document a "line" in each CodeStore 
interface class that separates out end-user methods from 
internal CodeStore methods. By doing this, we have traded 
off speed and interface simplicity against safety. We have 
further traded off simplicity against extensibility by not 
defming an extension framework. It was decided that the 
compilation algorithms and internal data structures are 
sufficiently complicated that providing extension through 
interface inheritance was only asking for trouble. Instead, we 
studied the compilation process, and tailored specific kinds 
of  extensions facilities. 

In order to reduce the size of  a given CodeStore object, each 
interface object has a number of  implementations. As an 
example of  this the CodeStore interface object 
F u n c t i o n P a r a m e t e r  has a number of  sub-classes 
corresponding to different implementations, as shown in 
Figure 4. For example, most function parameters do not 
have default arguments, so we provide two different 
implementations of  the function parameter interface, and use 
an optional return argument of  type Expression to denote a 
default argument in the instance. Having multiple 
implementation classes trades off code size against data size. 
There are two implementations of  the i s R e g i s t e r  method 
instead of one, but no data to represent this in instances of  
any of the four classes. Default return values are provided in 
base classes, and are overridden in the mixins. Thus we are 
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template<bool reg> 
class FunctionParameterTemplate: public FunctionParameter 

{ 
public: 

FunctionParameterTemplate(const Atom&, TypeDescriptor&); 
virtual const Atom& identifier() { return _id; } 
virtual bool isRegister() { return reg; } 
virtual Expression* defaultArgument() { return 0; } 

i; 
template<bool reg> 
class FunctionParameterWithDefaultTemplate: public FunctionParameterTemplate<reg> 

{ 
public: 

DefaultedFunctionParameterTemplate(const Atom&, TypeDescriptor&, Expression&); 

i, 
typedef FunctionParameterTemplate<false> FunctionParameterImpl; 
typedef FunctionParameterTemplate<true> RegisterFunctionParameterImpl; 
typedef DefaultedFunctionParameterTemplate<false> DefaultedFunctionParameterImpl; 
typedef DefaultedFunctionParameterTemplate<true> DefaultedRegisterFunctionParameterImpl; 

Figure 4. Implementation classes for CodeStore objects are specialized to reduce object size. 

able to provide very simple interfaces for the tool writer, and 
continue to keep the runtime size of  CodeStore objects down. 

There are three consequences of  using multiple 
implementation classes. First, object construction is 
complicated, because the proper implementation class must 
be chosen. This is mitigated by providing factories to 
construct instances of CodeStore objects. For example, there 
might be 60 classes that implement different flavors of 
functions, but there is only one method for creating function 
declarations in the CodeStore factory class that creates 
declarations. Because inheritance is not used for extension, 
factories are not overridden by tool writers, and so the details 
of  the different implementation classes can be hidden. This 
fosters open tool-writing at the expense of extensibility 
because one common kind of  extension framework is to 
allow programmers to store data nuggets with the repository 
objects themselves. 

The second consequence of using multiple implementation 
classes is more subtle, and deals with object mutability. As a 
consequence of  incorporation processing, we might 
determine that, for example, a function that used to be a static 
member function is now a regular member function. Because 
we happen to have chosen to represent the linkage of  a 
function indirectly using the template-mixin mechanism, the 
identity (address) of  the represented function in the 
CodeStore can not be maintained. This causes change 
propagation to be done, and function bodies that invoke this 
function must then be recompiled. For this particular 
example, it is not serious, because the invocation code 
changes anyway. The trick is to use the mixin technique for 

aspects of the CodeStore objects that we expect to be 
invariant, or for aspects, which, if changed, necessitate 
recompilation anyway. Thus we must trade off  CodeStore 
runtime size against compilation incrementality. 

The third consequence of  using multiple implementation 
classes is that of  indirection, which impacts the runtime cost 
of  using these CodeStore objects. Whether these multiple 
implementations are implemented by delegation, or by use of  
an indirect (virtual) function call, the overhead of  obtaining 
data from a CodeStore object is increased. This cost can be 
reduced by pushing common data up the hierarchy tree, so 
that access does not require any fimction-call overhead 
whatsoever. In tuning the system, this proved to be a 
dramatic win for certain often-accessed data, like the name or 
enclosing scope of  a declaration. 

CodeStore size is dramatically lessened by not explicitly 
storing abstract syntax trees of  function bodies and nonlocal 
variable initializers. These are computed on demand. 
Because all of  the declarations to which they refer are stored 
away in the CodeStore, construction of  an abstract syntax 
tree (AST) for a function body is very fast -- it consists of  
parsing the preprocessed token stream for the function body, 
and semantically analyzing the AST. This computation 
on-demand paradigm is used throughout the Montana system. 
For example, when a user of  the Montana user interface sets 

a breakpoint at a file/line/column source location, the source 
region is parsed and analyzed, then the source location is 
correlated against the AST in order to obtain a program 
counter for the breakpoint. In practice, the response time is 
instantaneous. 
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3.2 Export the CodeStore Functionality 

The key to making the CodeStore functionality available for 
programmers has been to separate out representation from 
behavior, so that programmers have access to the 
functionality that CodeStore provides, like lexing, parsing, 
type analysis, diagnosis, etc. By separating these capabilities 
out from the CodeStore representation itself, tool writers are 
able to use them in tools. Rather than try to predict the kinds 
of things that users of the CodeStore programming interfaces 
will wish to do, we provide set/get methods and general 
extension mechanisms as previously described. The model 
that we adopted treats the CodeStore as a repository, with 
each function that operates on the CodeStore implemented by 
separate, "helper" classes. This opens up the CodeStore to 
tool writers, because there are no restrictions on who 
implements these helper classes. Furthermore, it provides a 
single uniform tool extension model, that is shared by both 
the CodeStore implementor and the tool writer. As an 
example of  this, it is not possible to change what "parse" 
means for a function body, but it is possible for programmers 
to define their own parser implementations which might, for 
example, construct abstract syntax trees directly. 

By making the CodeStore just an information repository, and 
separating behavior from implementation, we make it 
possible for programmers to use the helper classes directly in 
ways not anticipated by the CodeStore designers. There are 
many examples of  this. We provide a method for a parser to 
produce an abstract syntax tree from a character string. Thus 
CodeStore users can construct strings directly and process 
them using the same code as does CodeStore. Two examples 
of this are expression evaluation in the CodeStore debugger, 
and searches for declarations in the CodeStore. The first 
works by using the CodeStore parser, type analyzer, 
diagnostician, and transformer to process a character string 
representing the expression. The second example, searching 
for declarations in the CodeStore, does not seem to require 
any sophisticated support from the CodeStore until one 
considers how to search for 

A<int> : :B< (T&) foo> : :C<X+Y+Z> 

in the program. By providing a way to parse this into an 
abstract syntax tree for a name, and then type-analyze this, 
the writer of  the declaration searcher just has to write a 
"one-liner" that is guaranteed to obtain the same result as a 
CodeStore compilation. By separating out the operations 
that produce and process abstract syntax trees from the 
CodeStore itself, we are able to export powerful CodeStore 
functionality to the tool writer very easily. 

Another way in which the CodeStore functionality is 
exported is the way in which the incorporation is invoked. 
For incorporation either of  function bodies or of an entire 

program, the user supplies an IncorporationController 
to CodeStore. This object provides a number of services. 
Among them is a place in which to deposit error messages 
generated as a result of incorporation. These error messages 
are actually n-ary trees, structured so that children provide 
more refined information about their parents. An example of 
this is a type analysis error. The top-level message may say 
something like "No best conversion between types A and B". 
Other parts of the message give details about what the 
choices were, and why one choice is not better than the 
others. These error messages can be either graphically 
presented as they are in the CodeStore UI, with a "more 
detail" button, or they can be selectively displayed, as they 
might be by the expression evaluator in the debugger. 

3.3 CodeStore Programs must be Readable as 
well as Writeable 

One of the ways in which CodeStore programs have been 
made readable is counter to the object-oriented way of  
"doing things." We have already said that in CodeStore, data 
and behavior are largely separated, so as to necessitate only 
one set of programming interfaces for both the system and its 
users. By separating out data and behavior, algorithms that 
use the CodeStore programming interfaces become easier to 
understand -- the control flow is directly manifested by the 
code itself. By uniformly exploiting programming 
conventions there becomes still less need for programmers to 
deal with large numbet's of  classes in order to understand 
CodeStore program fragments. Another way in which the 
data/behavior split simplifies tools is the way in which class 
hierarchy navigation is implemented. Programmers can of 
course use features provided by the language itself, like C++ 
runtime type identification (RTTI): 

ClassDeclaration* c; 
EnumDeclaration* v; 
if (c = dynamic_cast<ClassDeclaration>(d)) 

/ /  ;; 
else if (e = dynamic__cast<EnumDeclaration(d)) 

// ; 

Code like this is easy to write, easy to read, and more 
importantly, gives the programmer control over the control 
flow. There are instances where is useful to provide more 
structured access to CodeStore data structures, using visitor 
classes. While these are not useful in general, there are 
certainly many situations where it is desirable to visit an 
abstract syntax tree, performing certain actions at each of  the 
different subtrees. CodeStore provides classes for traversals, 
and tool-writers can easily plug in actions to be performed, 
for example, for each cast expression. Because the 
implementation of  these traversal classes does not use any 
specialized methods that are not part of  the CodeStore 
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programming interfaces, tool writers can implement 
specialized traversal classes tailored for specific uses. It is 
also worth noting that a very (very) early version of 
CodeStore using only this style of navigation for both data 
structure and class hierarchy traversal. It became clear very 
early that this was inadequate for a general framework such 
as CodeStore. Imagine a mechanism like this used to 
compare a function parameter against an argument list. 
There is also a granularity issue. Using such a scheme it 
would have been very difficult to differentiate between 
different kinds of  functions and variables. 

There are two class-hierarchy navigation primitives provided 
by CodeStore that are used to implement data structure 
navigation like that of Figure 4. The first is a type-case, and 
the second is a single-level downcast, very similar to C++ 
RTTI. For each class A, with subclasses A0, A1 . . . . .  
Ak, the methods look like the following: 

class A 
{ 

public : 
enum Kind 

{ 

I SAo, 
I sAt, 

IsAk, 
numKinds 
}; 

virtual Kind aKind() = 0; 
Ao* asAo() ; 
At* asA1() ; 

Ak* asAk() ; 

l; 

Using these two mechanisms, it becomes very easy to write 
code against the CodeStore interfaces. In particular, the code 
is easy to write, understand, and debug. These are all 
desirable characteristics of maintainable code. The downcast 
and type methods are uniformly used throughout the 
CodeStore classes. Each base class has a "Kind" 
enumeration, and a set of  downcasters to subclasses. By 
requiring (by convention) that programmers use these 
facilities instead of  C++ RTTI, readability and flexibility is 
obtained while maintaining structure. Additionally, the 
programs tend to have a great deal of  uniformity, and 
CodeStore idioms like a type case become very easy to 
identify. Common wisdom is that this kind of mechanism 
causes type-errors to become runtime errors instead of 
compile-time errors. We have found that not to be the case. 
CodeStore is a large (750KLOC) program that is written in 
this way, and the advantage of providing obvious control 
flow swamps any disadvantages. 

A programming convention that has proved very useful for 
readability as well as writeability of  CodeStore programs is 
one that we call the pointer/reference convention. Simply 
stated, pointers are used in CodeStore methods to denote 
optional objects. Thus if a CodeStore method returns a 
pointer, then that return value might be null, and should be 
checked. (Recall the default function argument example from 
the previous section). We ask that our tool writers obey the 
same rule. Trivial as this convention sounds, it has 
dramatically simplified the CodeStore programming 
interface, and increased the readability of  code written 
against it. 

One final aspect of  readability is the notion of  uniform 
navigation through collections of  CodeStore objects. For 
most objects we can define a primary collection, i.e., the 
collection primarily through which the object will be 
obtained. For declarations, this primary collection is the 
scope containing the declaration, for statements, the 
containing block, for types, the type declarator list. 
Navigation through this primary collection is made 
deliberately easier. Code that navigates through these 
collections looks very familiar to C/C++ programmers. As a 
simple example of  this, consider a function that determines 
whether a class has any constructors defined. The code 
searches through the members of  a class (a mandatory part of  
the CodeStore representation of  a C++ class is a scope for 
the members of the class). The code tests to see if each 
declaration is a function, and if so, if that function is a 
constructor (see Figure 5). 

The largest client of  the CodeStore interfaces so far is 
Montana itself, which is approximately 0.75M lines of  code, 
and most of the system consists of code like this. The code is 
very writeable and is certainly readable. This example does 
not use the type-case idiom, but it does use a single-level 
downcast, the pointer/reference convention, and collection 
iteration. 
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bool 
hasConstructor(ClassDeclaration& c) 

{ 
MemberDeclarationStore& m = c.memberDeclarationStore(); 
for(Declaration* d = m.firstDeclaration() ; d; d = d->next()) 

{ 
FunctionDeclaration* f = d->asFunctionDeclaration(); 
if (f && f->isConstructor()) 

return true; 
} 

return false; 
} 

Figure 5. Deternine if a class has a constructor by examining each declaration, in 
order, and determining if that declaration is a function and a constructor. 

4. C O N C L U S I O N S  

We have had a large amount of experience with the 
CodeStore programming interfaces. A large number of tools 
have been written against CodeStore. Some published 
examples of  these are: Rapid Type Analysis [1], a simple 
analysis for determining when dispatched functions can be 
called directly; a correct implementation of 
reference-counted pointers [7]; and the most complicated of 
the CodeStore tools, an implementation of subject-oriented 
composition [9]. Other tools written have been: a semantic 
definition/use view for the Montana user interface; a 
diagnosis tool, that identifies erroneous C++ idioms; a code 
generator that compiles C++ into SUIF [6]; and an extension 
to the system that analyzes macro expansion during 
compilation. Many of these tools were used to drive the 
development of  the CodeStore programming and extension 
interfaces, and so consequently the writers of these tools did 
not have as positive experience as the CodeStore developers 
would have liked. To summarize their experiences, the 
following lessons have been leamed: 

1. Regardless of  how good the programming interfaces are, 
CodeStore is a big system, and there is a steep learning 
curve. The programming interfaces are easy to learn, 
but we need to publish a book of idioms, a programmers 
guide. Once the idioms have been learned, tool writers 
can be very productive. 

2. We have made the system very powerful, at the expense 
of safety. Not surprisingly, integration of  complex tools 
can cause the compiler to crash during compilation, and 
debugging of  integrated tools is not necessarily easy. 
Not surprisingly, storage management is a perennial 
problem. It is unclear whether garbage collection could 
help, because the issue is memory staging. Even if we 
supplied a garbage collector, persistent objects (stored in 
the persistent CodeStore in a file) are different from 
non-persistent ones. 

3. The separation of data and function has been a huge win. 
Tool writers have become very acclimated to the power 
at their disposal. Post-hoe parsing, analysis and 
tool-traversal of function bodies has been very useful. 

4. The number of  tools written against the different 
extension mechanisms is inversely correlated with their 
power. The addition of analysis and diagnosis phases to 
function-body and variable-initializer analysis have been 
widely used, perhaps because this is a very familiar 
paradigm for compiler writers. The observer mechanism 
has also proved to be useful. In fact we have used user 
requirements to drive the addition of observers. Finally, 
the dependency-graph extensions have been the least 
used. They are by far the most powerful, but the most 
complicated. Tool writers need to have a fairly deep 
understanding of the incorporation process to use them. 

5. The use of consistent programming conventions has 
been a real aid to learning the interfaces. Even though 
there are a large number of classes and methods in the 
CodeStore programming interface, uniformity 
conventions like the pointer/reference, downcast, and 
collection iteration have dramatically reduced the 
number of concepts that tool writers need to have. 

6. The system is incremental, and so tools must also be 
aware of this incrementality. This means that all tools 
must to some extent be aware of the incorporation 
model. In some cases, tools that assume views of the 
entire program, like Rapid Type Analysis, have had to 
be rethought. Other kinds of  tools, like diagnosis tools, 
fit very naturally into an incremental model. 

The architecture of the system has proved amenable for C++ 
tools. Although the programming and extension interfaces 
are necessarily complex, matching the semantics of the 
language itself, the system has been able to show that this is a 
very viable architecture for a compiler and programming 
environment. CodeStore as a single source of information 
has proven itself to be a very useful information source for a 
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tool writer, and the extension mechanisms have also proven 
themselves, although to a lesser extent. 
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