
Detecting Table Clones and Smells in Spreadsheets

Wensheng Dou1, Shing-Chi Cheung2, Chushu Gao1, Chang Xu3, Liang Xu1, Jun Wei1
1State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2Dept. of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
3State Key Lab for Novel Software Technology and Dept. of Computer Sci. and Tech., Nanjing University, Nanjing, China

1{wsdou, gaochushu, xuliang12, wj}@otcaix.iscas.ac.cn, 2scc@cse.ust.hk, 3changxu@nju.edu.cn

ABSTRACT

Spreadsheets are widely used by end users for various business

tasks, such as data analysis and financial reporting. End users may

perform similar tasks by cloning a block of cells (table) in their

spreadsheets. The corresponding cells in these cloned tables are

supposed to keep the same or similar computational semantics.

However, when spreadsheets evolve, thus cloned tables can be-

come inconsistent due to ad-hoc modifications, and as a result

suffer from smells.

In this paper, we propose TableCheck to detect table clones and

related smells due to inconsistency among them. We observe that

two tables with the same header information at their correspond-

ing cells are likely to be table clones. Inspired by existing finger-

print-based code clone detection techniques, we developed a de-

tection algorithm to detect this kind of table clones. We further

detected outliers among corresponding cells as smells in the de-

tected table clones. We implemented our idea into TableCheck,

and applied it to real-world spreadsheets from the EUSES corpus.

Experimental results show that table clones commonly exist

(21.8%), and 25.6% of the spreadsheets with table clones suffer

from smells due to inconsistency among these clones. TableCheck

detected table clones and their smells with a precision of 92.2%

and 85.5%, respectively, while existing techniques detected no

more than 35.6% true smells that TableCheck could detect.

CCS Concepts

•Applied computing→Spreadsheets •Software and its engi-

neering→Software testing and debugging •Social and profes-

sional topics→Software maintenance.

Keywords

Spreadsheet; table clone; copy and paste; smell detection; end-

user programming

1. INTRODUCTION
Spreadsheets have been widely used by end users for various

business tasks, including data analysis, decision support, financial

reporting, and so on. Spreadsheets are more popularly used than

other computational paradigms [44]. Since spreadsheets are creat-

ed and maintained by non-expert end users, errors can be easily

induced into spreadsheets [36][41]. In order to improve the quality

of spreadsheets, researchers have applied various software engi-

neering techniques to spreadsheets [11], such as auditing [17],

testing [2][6][26], smell detection [14][19][30] and debugging

[4][43].

A spreadsheet comprises blocks of cells arranged in rows and

columns. Like code clones in conventional programs [34][39][45],

cells in spreadsheets can be copy-and-pasted (reused) during

spreadsheet development and maintenance. Copy-and-paste can

shorten the preparation time for spreadsheets. For example, a user

can quickly prepare a new financial report by updating a copy

based on an existing one. Commercial spreadsheet systems (e.g.,

Microsoft Excel) make it easy to copy cells from existing spread-

sheets. When a user copies a block of cells to a new location, such

spreadsheet systems can help deduce new formulas (if any) for

them based on the underlying patterns of the copied cells automat-

ically [47]. Thus, the computational semantics among the original

and new cells are kept consistent.

However, after copy-and-paste, there are rarely any records or

meta-data indicating which cells in a spreadsheet were thus creat-

ed, although they are supposed to be uniformly modified in future.

Besides, little provision is offered to warn users against arbitrary

modification of these cells [31]. The current practice assumes that

users should own conscientiousness to maintain the consistency

between copied (original) cells and pasted (new) cells. Users,

however, may unintentionally break the consistency when main-

taining the concerned cells. This would lead to undesirable conse-

quences, which could further manifest into errors. Caulkins’ sur-

vey [12] reported that 49% investigated users found errors in

spreadsheets that were prepared by reusing existing ones. This

motivates the need for effective techniques of detecting table

clones (groups of copied and pasted cells) and their related incon-

sistency problems (if any).

In this paper, we focus on detecting table clones resulted from

copy-and-paste operations and smells induced by the inconsisten-

cy among table clones. We refer to two rectangular blocks of cells

as table clones when their corresponding cells share the same or

similar computational semantics. For example, the corresponding

cells in [C3:D7] of Figure 1(a) and [B3:C7] of Figure 1(b) share

the same computation, although their contents can look different:

(1) some corresponding cells (e.g., C3 in Figure 1(a) and B3 in

Figure 1(b)) are both input cells, and some other corresponding

cells (e.g., C7 in Figure 1(a) and B7 in Figure 1(b)) prescribe the

same formula pattern although their concrete formulas take seem-

ingly different inputs (these inputs come from corresponding cells

in the two blocks); (2) all corresponding cells have the same

headers (e.g., D3 in Figure 1(a) and C3 in Figure 1(b) both have

the row header “Weekly” and column header “% Responses”).

Our empirical study found that such table clones commonly exist,

e.g., 1,214 table clone groups exist in 352 spreadsheets from the

widely-used EUSES corpus [25]. Besides, 25.6% of these spread-

sheets with table clones suffer from smells due to inconsistency

among these table clone groups. This indicates the necessity of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950359

787

detecting table clones in real-life spreadsheets and their contained

smells.

We propose TableCheck in this paper to detect table clones and

their related smells. The key challenge is how to determine which

cells can form table clones and which cells are subject to smells

when they are involved in inconsistency among table clone groups.

TableCheck works based on the observation that two tables

(blocks of cells), if having the same row and column headers at

their corresponding cells, are likely to share the same computa-

tional semantics and become table clones. However, simply exam-

ining each possible pair of cell blocks for detecting table clones

can be extremely time-consuming. As inspired by existing finger-

print-based code clone detection techniques [32], we exploit a

cell’s derived header information as its fingerprint for facilitating

table clone detection. Furthermore, to detect smells among

grouped table clones, we analyze possible inconsistency among

corresponding cells in these table clones (e.g., dissimilar formulas

from D3 in Figure 1(a) and C3 in Figure 1(b-c)), and mark outli-

ers from them as smells (e.g., C3 in Figure 1(c)).

We implemented TableCheck as a prototype tool and evaluated its

performance using the EUSES corpus [25] from two perspectives:

table clone detection and smell detection. Experimental results

show that: (1) table clones are common, and 21.8% of spread-

sheets with formulas contain table clones; (2) smells associated

with table clones are also common, and TableCheck detected

2,892 smelly cells in 177 table clone groups, which cover 14.6%

validated-as-true table clone groups; (3) smells among table

clones are harmful, and 971 smelly cells indeed contain wrong

values; (4) TableCheck detected table clones and their smells with

a high precision of 92.2% and 85.5%, respectively; (5) other exist-

ing smell detection techniques (e.g., AmCheck/CACheck [21][22],

CUSTODES [16], Excel and UCheck/Dimension [5][13]) detect-

ed no more than 35.6% true smells TableCheck detected.

TableCheck differs from Hermans’ data clone detection work [30]

in the types of detected clones. Their work considers two blocks

of cells with (almost) the same values as clones. Thus it cannot

detect table clones (with different values) and smells in Figure 1.

On the other hand, TableCheck can detect clones with the same

computational semantics but different values. TableCheck also

differs from our previous work AmCheck/CACheck [21][22] and

CUSTODES [16] in both cell clustering and smell detection. Ta-

bleCheck leverages the header information to detect table clones

in the same worksheets, different worksheets and different spread-

sheets. Unlike TableCheck, AmCheck/CACheck and CUSTODES

aggregate cells into clusters by their formula similarity (e.g., ref-

erenced cells and continuous cell locations) in a single worksheet.

As such, AmCheck/CACheck and CUSTODES cluster cells

[D3:D6] in Figure 1(a) and [C3:C6] in Figure 1(c) into different

clusters. Unlike TableCheck, which detects smells by cross-

checking inconsistency among table clones (across clusters),

AmCheck/CACheck and CUSTODES detect smells inside single

clusters. As such, the smell detection of AmCheck/CACheck and

CUSTODES are mostly restricted to those cells that can be clus-

tered by their formula similarity (e.g., they treat [C3:C6] in Figure

1(c) as a cluster, but there is no smell in it). Therefore, Ta-

bleCheck and AmCheck/CACheck/CUSTODES are working at

two different levels. Unlike TableCheck, which detects smells

among cells, UCheck [5] and dimension inference [13] exploit the

header information to detect type inconsistency in single formulas.

As a summary, no prior technique has been dedicated for detect-

ing table clones and their contained smells in spreadsheets.

We summarize our main contributions in this paper as follows:

 We proposed the notion of a new and commonly existing

structure in spreadsheets, table clone, in which corresponding

cells share the same or similar computational semantics.

 We proposed a fingerprint-based algorithm to detect table

clones in spreadsheets by exploiting the header information

derived from cells, and an outlier-based technique to detect

smells in grouped table clones. Both are automated.

 We implemented our work into a TableCheck tool and evalu-

ated it with real-life spreadsheets from the EUSES corpus. The

experimental results show that TableCheck could detect table

clones and smells effectively and precisely.

The remainder of this paper is organized as follows. Section 2

presents a motivating example. Section 3 explains the concept of

table clone. Section 4 presents our table clone and smell detection

approach. Section 5 presents our TableCheck implementation, and

Section 6 evaluates it experimentally. Sections 7 and 8 discuss

limitations and related work, and Section 9 concludes this paper.

2. MOTIVATION
In this section, we illustrate table clones and related smells using

an illustrative example extracted from the EUSES corpus [25],

and then explain how to detect them.

(a) Q1

(b) Q2

(c) Q3

(d) Q4

Figure 1. Table clones in a spreadsheet (in the A1 format)

extracted from the EUSES corpus. The cells marked by a red

right-cornered triangle are smelly. The subtitle for each ex-

cerpt is its worksheet name.

788

2.1 Example
Figure 1 shows four worksheet excerpts from the EUSES corpus.

These excerpts perform quantitative analysis on four questions,

and form a table clone group (marked by four rectangles).

Smells among table clones. A cell suffers from a smell when

there are inconsistent computations in the corresponding cells

among table clones. The above example contains 9 smelly cells

(marked with red right-cornered triangles), among which the val-

ue of cell C3 in Figure 1(d) is likely to be wrong. Note that smelly

cells do not necessarily contain wrong values. For instance,

smelly cells [C3:C6] in Figure 1(c) likely contain correct values.

Improper modifications of cell formulas in table clones are a ma-

jor cause for these smells. For example, users may prepare the

excerpt in Figure 1(c) based on the one in Figure 1(b). Cells

[C3:C6] in Figure 1(c) could be a consequence of improper cell

modifications that replace B7 with its computed value 30. Even

though the modifications do not alter the computed values, they

impose an assumption that the computed value of B7 is always

30 in view of spreadsheet updates. The four smelly cells can be-

come erroneous if the assumption is violated by later updates.

In the example, we observe two different types of smells that can

induce computation anomalies in cells, which are also studied by

our previous work AmCheck/CACheck [21][22] and CUSTODES

[16]. (1) Missing formula smell: The smell occurs when a cell is

supposed to contain a formula, but it does not. For example, cells

[C3:C6] in Figure 1(d) exhibit such smells. However, due to no

formula in Figure 1(d), formula-based smell detection (e.g., Am-

Check/CACheck and CUSTODES) cannot detect these smelly

cells [C3:C6]. (2) Inconsistent formula smells: The smell occurs

when a cell contains an incorrect formula. For example, cells

[C3:C6] in Figure 1(c) exhibit such smells (e.g., the formula in C3

should be B3/B7). However, since all formulas in cells [C3:C6]

in Figure 1(c) are the same, formula-based smell detection (e.g.,

AmCheck/CACheck and CUSTODES) treats these cells [C3:C6]

as correct ones. Note that none of the smells shown in Figure 1

can be detected by other existing tools, such as Excel 2013 and

UCheck/Dimension [5][13].

2.2 TableCheck Overview
Detecting table clones and their associated smells needs to address

three technical challenges. Let us explain them using the example

in Figure 1. First, how can one judge whether a cell (e.g., D3 in

Figure 1(a)) belongs to a table clone as well as the boundary of

the concerned table clone? Second, in which situation do the oc-

currences of dissimilar formulas in table clones suggest smells?

Note that the occurrence of two dissimilar formulas does not nec-

essarily suggest that the corresponding cells are smelly. For ex-

ample, cells D3 in Figure 1(a) and C3 in Figure 1(b) do not share

the same formula (in the R1C1 format; explained later in Section

3.1), but they are not smelly. Third, suppose that a group of cells

fall into the situation where smells must have occurred. How can

one locate the smelly cells in the group? For example, the group

formed by D3 in Figure 1(a) and C3 in Figure 1(b-d) falls into a

smelly situation, but only C3 in Figure 1(c-d) are smelly.

For the first challenge, we observe that table clones usually have

the same header information. Inspired by existing fingerprint-

based clone detection techniques [32], TableCheck uses cells’

header information as fingerprints, and groups cells with the same

header information as table clones. For the second challenge, we

observe that the formulas in table clones should reference their

input cells similarly using relative indices. Thus, we convert all

formulas into their relative R1C1 formats (e.g., the formulas in D3

in Figure 1(a) and C3 in Figure 1(b) would be converted into the

same formula RC[-1]/R[4]C[-1] in Figure 2). For the third chal-

lenge, cells dissimilar to most of their corresponding ones can be

identified as outliers. Such outliers are a good indicator of smells.

3. PRELIMINARIES
In this section, we introduce the terminologies used in this paper.

3.1 Spreadsheet Programming Model
A spreadsheet can be modeled as a set of cells with expressions,

which are indexed by two-dimensional cell addresses (e.g., C3)

[6]. A cell may contain a formula, which describes the computa-

tion of this cell, or contains a plain value.

A formula references another cell by a cell reference that denotes

the referenced cell’s address. Most spreadsheet systems have two

built-in formats to represent a cell reference: A1 and R1C1 for-

mats [46]. These two formats can be either absolute or relative.

An absolute reference keeps pointing to the same cell even if it is

copied to another cell. A relative reference encodes the cell ad-

dress offset between the current cell and the referenced cell, and

the offset keeps unchanged when it is copied to another cell. In

the A1 format, a cell at the x-th column and y-th row is notated as

xy in relative reference (e.g., C3), or xy in absolute reference

(e.g., C3). In the R1C1 format, a cell at m rows below and n

columns right to the current cell is notated as R[m]C[n] (in rela-

tive reference), and a cell at the m-th row and n-th column is no-

tated as RmCn (in absolute reference).

Let R be a set of cell references, EXP be a set of expressions, and

V be a set of plain values. A cell’s expression exp is either a plain

value (𝑣 ∈ 𝑉), a cell reference (𝑟 ∈ 𝑅), or a function 𝜑 over one

or more expressions: 𝑒𝑥𝑝 = 𝑣 | 𝑟 | 𝜑(𝑒𝑥𝑝1, … , 𝑒𝑥𝑝𝑛) . Functions

in a formula include basic operators, such as, “+”, “”, “*”, “/”,

and other built-in functions like SUM and MAX. Note that formu-

la cells in the corresponding cells among table clones often have

the same expressions in the R1C1 format.

3.2 Table Clone
We focus on numerical cells in this paper. A table is a rectangular

block of numerical cells (e.g., cells [C3:D7] in Figure 1(a) and

[B3:C7] in Figure 1(b)). Note that we also consider empty cells

(e.g., D7 in Figure 1(a)) and cells with some special strings (e.g.,

“NA” and “-”; discussed more in Section 4.1.1) as parts of a table,

because they are often used as default values in spreadsheets.

(a) Q1

(b) Q2

Figure 2. Table clones in the R1C1 format. Note that absolute

references (C7 and B7) in Figure 1(a) and Figure 1(b)

are converted into their relative references (C7 and B7).

789

Users often use headers to denote the meanings of cells. For ex-

ample, C3 in Figure 1(a) has a row header “Weekly” and a col-

umn header “Responses”, and these headers show that C3’s value

represents the number of weekly responses. We therefore look for

tables of cells labelled by the same set of row/column headers.

Note that headers are not treated as parts of a table in this paper.

Definition 1: A table clone (pair) is a tuple (𝑡1, 𝑡2) where 𝑡1 and

𝑡2 are two tables, in which corresponding cells are labelled by the

same headers.

We made three observations on table clones in EUSES. (1) It can,

of course, happen by chance that two irrelevant cells are labelled

by the same headers. However, two blocks of cells in the same

spreadsheet are more likely to be a table clone than not if their

cells at the same relative row/column have the same headers. (2)

Formula cells that have the same headers in a table clone usually

follow the same/similar computation. They often contain the same

or similar formulas in the R1C1 format. (3) If the tables in a clone

group contain only one row/column, it may not expose interesting

computational semantics. Thus, we require that tables in a clone

group have at least two rows and columns.

Definition 2: A table clone group is a group of tables in which

every two tables are a table clone pair.

We assume that the corresponding cells in a table clone group

share the same or similar computational semantics. If no cell in a

table clone group has a formula, these cells are all data ones, and

do not contain any clear computational semantics. Therefore, we

require that table clone groups should contain at least one formula

cell.

4. APPROACH
Given a spreadsheet, TableCheck analyzes it and reports all de-

tected table clones, as well as related smells, if any, with explana-

tions. TableCheck works in five steps as outlined in Figure 3. First,

it determines each cell’s type (data, formula, label or empty) in

the spreadsheet (Section 4.1.1). Second, it extracts headers for the

cells with types of data, formula and empty (Section 4.1.2). Third,

it builds a lookup table for all cells with complete header infor-

mation. Fourth, it detects and extracts table clones from these cells

(Section 4.1.3). Finally, it analyzes corresponding cells in detected

table clones, and detects smells, if any, inside them (Section 4.2).

4.1 Table Clone Detection
TableCheck extracts headers for all (data, formula and empty)

cells in a given spreadsheet, and then detects table clones based on

the fingerprints that are built on the cells’ headers.

4.1.1 Cell Classification
To distinguish different cell types, we follow the approaches de-

scribed by Hermans [28] and Abraham and Erwig [1] to classify

cells into four types: (1) data cells: numerical cells with plain

values; (2) formula cells: cells that contain formulas; (3) label

cells: cells that have strings and explain the meanings of other

cells, and (4) empty cells.

Our cell classification algorithm works as follows. First, all nu-

merical cells without formulas are marked as data cells, and all

numerical cells with formulas are marked as formula cells. Note

that, although strings could be results of formulas, they are typi-

cally used as labels. Therefore, we do not treat their concerned

cells as formula cells. Second, we observe that some common

strings in spreadsheets are usually used as data, not labels. (1)

Some special strings, e.g., “na”, “n/a” and “n.a.”, represent “not

applicable”, usually implying data cells in spreadsheets. (2) Some

special strings are usually used as default values (e.g., 0), such as,

“.”, “*” and “-”. Treating such strings as labels would definitely

affect the precision of the header inference (Section 4.1.2). There-

fore, we consider the cells with such special strings as data cells.

All cells, which do not get a type from the above steps, are classi-

fied as label cells when not empty, and empty cells, otherwise.

Note that the above classification algorithm differs slightly from

previous approaches [1][28][30]. First, all numerical cells without

formulas are considered as data cells. Thus, data cells are not

necessarily referenced by formulas (e.g., cells [B3:C7] in Figure

1(d)), which is mandatory in work [28]. Second, special strings

(e.g., “-” and “NA”) could mislead us to derive wrong headers if

not treated specially (i.e., we treat them as data rather than labels).

Applying the above algorithm to the examples in Figure 1(a) and

Figure 1(b) results in the colored excerpts in Figure 3(s1). For the

excerpt Q1 in Figure 3(s1), cells [C3:C6] are marked as data cells

(in yellow), and cells [D3:D6] and C7 are marked as formula cells

(in blue). The remaining gray cells are marked as label cells.

4.1.2 Cell Header Inference
According to Definition 1 in Section 3.2, tables can contain data,

formula and empty cells. Thus, we infer the headers for all non-

label (i.e., data, formula or empty) cells in a spreadsheet.

Each non-label cell is subject to two headers: a row header and a

column header. For a non-label cell c, we identify the nearest (to

the left in the same row as cell c lies) label cell as its row header.

Similarly, we consider the nearest (above in the same column as

cell c lies) label cell as its column header.

 s1. Classify cells. s2. Infer cell headers. s3. Create lookup table. s4. Find clones. s5. Detect smells.

Figure 3. Overview of TableCheck’s workflow. For ease of presentation, we give only the excerpts in Figure 1(a) and Figure 1(b).

790

Our algorithm for inferring the row header for a given cell c

works as follows. It starts from cell c’s neighboring cell to the left

in the same row as cell c lies. If the examined cell is a label cell,

its value is set as the row header of cell c. If the cell is a formula,

data or empty cell, the algorithm skips it and continues to examine

its left cell. The algorithm repeats until either a label cell is found

or the boundary of the current worksheet is reached. For the latter

case, the algorithm ends without assigning a row header to cell c.

The algorithm for inferring the column header for cell c is similar.

Once the row and column headers are found, they together form

the headers for cell c.

Note that the two headers of a cell generally denote the intended

computation of this cell. The row headers of cells in a column

usually differ. Similarly do the column headers of cells in a row.

The spreadsheet excerpt in Figure 4 shows an interesting case.

According to our previous algorithm, the column headers of cells

C11, D11 and E11 should be “£'000”. However, the string “£'000”

does not denote the intended computation of these cells. We

should identify “Rec”, “Non-rec” and “Total” as these cells’ col-

umn headers. Thus, we assume that if a string (e.g., “£'000” in

Figure 4) occurs frequently in a row/column (more than x% of all

label cells in the row/column; we set x to be 50 in TableCheck),

the concerned label cells in the row/column should not be consid-

ered as column/row headers for other cells.

Referring to the example in Figure 4, the inference of the column

header for C12 starts from C11, which is a data cell. Next, C10

and C9 are inspected one after another, which are empty cells.

Next, C8 is inspected. According to our rule above, the label cells

in Row 8 should not be used as column headers. Thus, C7 is next

inspected, where the right column header “Rec” is found. Similar-

ly, we identify “- Other funding” in B12 as C12’s row header.

Our inferred headers are comparable to the first-level headers in

UCheck [1]. For table clones, their first-level headers are often

reused, but their higher-level headers are usually changeable. For

example, in Figure 1(a), the label cell C1 (“Q1”) is treated as a

higher-level header for other data and formula cells. Similarly, in

Figure 1(b), the label cell B1 (“Q2”) is treated as a higher-level

header for other data and formula cells, too. These two higher-

level headers are not the same. Thus, treating them as headers for

other cells would make us miss table clones in Figure 1(a-b).

We note that the tabulation styles of cells in a spreadsheet often

vary. Thus, the above header inference is heuristic, and it may not

always find right headers for cells. Nevertheless, our experimental

evaluation in Section 6.2 reported that our inference algorithm

could already extract cell headers precisely, and generated only

few false positives in detecting table clones in the EUSES corpus.

4.1.3 Table Clone Detection Algorithm
We then explain how TableCheck detects table clones, in which

each pair of corresponding cells should have the same header

information. Our TableCheck’s clone detection approach was

inspired by Johnson’s fingerprint-based code clone detection

technique [32]. Still, we need to significantly extend it to handle

two-dimensional spreadsheet programs.

TableCheck creates a lookup table for all cells with both row and

column headers. In the lookup table, each cell’s row and column

headers are used as its key, and a list of cell addresses as the cor-

responding value (one-to-many mapping). For example, in Figure

3(s3), the key “Weekly:Responses” occurs in Q1!C3 and Q2!B3.

Note that TableCheck creates fingerprints only for cells with

complete (both row and column) header information. Users may

create table clones with no header or only incomplete headers

(e.g., only row or column header). However, given two cells

without any header or with only incomplete headers, it is hard to

tell whether they are clones. Therefore, TableCheck focus only on

cells with complete header information.

TableCheck’s clone detection algorithm (Algorithm 1) takes the

lookup table and all cells (allCells) with complete header infor-

mation as inputs, and returns table clone groups. The algorithm

works as follows. (1) It finds a seed cell that is contained in all-

Cells, and treats this seed cell as the initial table curTable (Lines

3-4). (2) It inspects all neighboring cells of curTable in each di-

rection (left, right, up and down). After curTable includes all cells

in one of the four directions, it may find some tables (get-

Clones method; Lines 22-38) in which all corresponding cells

share the same header information. Then the algorithm expands

curTable to include its neighboring cells in that direction (Lines 8-

10). (3) It repeats Step (2) until it cannot extend curTable in all

directions (Lines 5-13). (4) Now, curTable and its clones form a

new table clone group if they contain at least one formula cell,

two rows and columns. Then all cells in this group are removed

from allCells (Lines 14-18). (5) The algorithm repeats the above

Figure 4. Cell header inference example, extracted from the

EUSES corpus. The column headers of C11, D11 and E11

should be “Rec”, “Non-rec” and “Total”, respectively.

Algorithm 1. Table clone detection algorithm.
__
Input: lookup (lookup table), allCells (all cells with com-

plete header information).

Output: groups (all detected table clone groups).

 1: groups = EMPTY;

 2: while allCells not EMPTY do

 3: seedCell = allCells.removeOne(); // Retrieve one cell.

 4: curTable = {seedCell};

 5: foreach direction in {LEFT, RIGHT, UP, DOWN} do

 6: // newTable contains all cells in curTable and

 7: // curTable’s neighboring cells in the direction.

 8: newTable = genenrateTable(curTable, direction);

 9: if (getClones(newTable) not EMPTY) then

10: curTable = newTable;

11: goto Line 5;

12: end if

13: end for

14: group = {curTable, getClones(curTable)};

15: if (group contains formulas, >1 row and >1 column)

16: groups.add(group);

17: end if

18: allCells.removeCells(group); //Delete cells in group.

19: end while

20: return groups;

21:

22: // Return clones of table.

23: method getClones(table)

24: clones = EMPTY;

25: firstCell = table.firstCell(); // Upper-left cell.

26: cloneSeeds = lookup.get(firstCell.header);

27: foreach cloneSeed in cloneSeeds do

28: // cloneTable has the same size as table, and

29: // cloneSeed as cloneTable’s upper-left cell.

30: cloneTable = buildClone(cloneSeed, table);

31: // Check whether each pair of corresponding cells in

32: // table and cloneTable has the same headers.

33: if (isClone(table, cloneTable) then

34: clones.add(cloneTable);

35: end if

36: end for

37: return clones;

38: end method

791

four steps until allCells becomes empty (Lines 2-19). The get-

Clones method (Lines 2238) computes clones according to a

given table. It uses the upper-left cell of table to find potential

clones’ upper-left cells by inspecting the lookup table (Lines 25-

26). Starting from each potential clone’s upper-left cell, it builds a

cloneTable that has the same size as table, and then checks

whether cloneTable has the same header information with table. If

yes, cloneTable is treated as a clone of table (Lines 28-35).

Note that for each table clone group thus detected, there does not

exist another table clone group that contains all cells in this table

clone group. Consider our example in Figure 3. First, Algorithm 1

could select cell Q1!C3 as the initial table curTable = Q1![C3:C3].

Subsequently, curTable’s right neighbor Q1!D3 is inspected. The

algorithm now finds a table Q2![B3:C3] that has the same header

information as table Q1![C3:D3]. Thus, curTable is extended as

Q1![C3:D3]. Now, curTable cannot be extended to left or right,

because there is no other cell to the left or right of curTable. Then

the algorithm inspects the neighboring cells (Q1!C4 and Q1!D4)

below curTable. It can still find a table Q2![B3:C4] that has the

same header information as table Q1![C3:D4]. Thus, curTable is

extended as Q1![C3:D4]. Repeating the above process, the algo-

rithm finally finds a table clone group containing two tables:

Q1![C3:D7] and Q2![B3:C7].

4.2 Smell Detection among Table Clones
We then explain how to detect smells in extracted table clones.

4.2.1 Detection Strategy
Since table clones are used to express similar business tasks, the

corresponding cells among them usually share the same or similar

computational semantics. Inconsistent computational semantics in

corresponding cells usually indicate that some of them are smelly.

As smelly cells in a spreadsheet normally occur in minority, they

can be detected as outliers from these cells.

Let CellGroup be a group of corresponding cells from a table

clone group. Consider a table clone group containing n tables,

formally, CellGroup = {c1, c2, …, cn}. Referring to the example in

Figure 1, we can extract 10 CellGroups, e.g., CellGroup1 =

{Q1!C3, Q2!B3, Q3!B3, Q4!B3} and CellGroup2 = {Q1!D3,

Q2!C3, Q3!C3, Q4!C3}. Since cells in CellGroup are supposed to

share the same or similar computational semantics, all cells in

CellGroup should follow the same formula in the R1C1 format, or

none of them has a formula (e.g., CellGroup1). Otherwise, some

cells in CellGroup may suffer from smells among table clones. In

the following, we explain how TableCheck detects different types

of smells within table clones.

Missing Formula Smell. If some (not all) cells in CellGroup have

formulas, it indicates that the cells in CellGroup should be com-

puted by formulas. Thus, all data cells in CellGroup are consid-

ered smelly (i.e., suffering from missing formula smells). For

example, in CellGroup2 = {Q1!D3, Q2!C3, Q3!C3, Q4!C3}, the

first three cells are formula cells, and the last cell Q4!C3 is a data

cell. Thus, TableCheck considers Q4!C3 smelly. Similar smells

occur to cells [C4:C6] and B7 in Figure 1(d). For this type of

smell, TableCheck provides users with formula cells in CellGroup

for reference.

Inconsistent Formula Smell. If there is more than one different

formula in the R1C1 format in CellGroup, it indicates that some

cells in CellGroup are not computed in the same way. Thus, some

formula cells in CellGroup are considered smelly (i.e., suffering

from inconsistent formula smells). However, it is challenging to

determine which formula cells in CellGroup are smelly. Ta-

bleCheck detects this type of smell by the following strategy. (1)

It counts the number of cells that use the same formula (in the

R1C1 format) in CellGroup. (2) The cells with the formula that

occurs most frequently are considered correct, and the remaining

ones are considered smelly. (3) If there is more than one formula

identified in the previous step, TableCheck conservatively consid-

ers all formula cells smelly. Take CellGroup2 = {Q1!D3, Q2!C3,

Q3!C3, Q4!C3} for example. The first two cells share the same

formula RC[-1]/R[4]C[-1] (in the R1C1 format, discussed later as

Case 2 in Section 4.2.2), whereas the third cell Q3!C3 has a for-

mula RC[-1]/30. Thus, TableCheck considers Q3!C3 smelly.

4.2.2 Suppressing False Positives
Since cloning tables is usually adopted for new requirements by

users, inconsistency may not necessarily indicate smell. Thus, our

basic smell detection strategy could introduce false positives. We

observed three common cases that need to be taken care of before

applying the above detection strategy.

Case 1. A table contains a formula cell whose computation refer-

ences some cells outside the table. Due to the lack of header in-

formation for thus referenced cells, one has no idea about their

meanings, whether they represent the same cells as those in other

table clones, and whether the formula can be reused by other table

clones. TableCheck chooses to remove from CellGroup those

formula cells whose computations reference any other cell outside

their contained tables. After this removal, all formula cells in

CellGroup reference only cells within their contained tables. Fig-

ure 5 shows such an example. Based on our table clone detection

algorithm in Section 4.1, cells [B3:C7] in Figure 5 are treated as a

clone to cells [C3:D7] in Figure 1(a). Cells [B3:B6] in Figure 5

have formulas. According to our previous detection strategy, cells

[C3:C6] in Figure 1(a) are smelly (missing formula smells). How-

ever, they are not actually. Since cells [B3:B6] in Figure 5 refer-

ence cells outside table [B3:C7], TableCheck should exclude them

from smell detection. Thus, TableCheck would not consider cells

[C3:C6] in Figure 1(a) smelly.

Case 2. Some formula cells in CellGroup may use absolute refer-

ences, and these absolute references can make them have different

formulas in the R1C1 format. For example, in CellGroup2 =

{Q1!D3, Q2!C3, Q3!C3, Q4!C3}, the first two cells Q1!D3 and

Q2!C3 have different formulas in the R1C1 format (RC[-1]/R7C3

and RC[-1]/R7C2, respectively). However, the referenced cells

(e.g., C7 in Q1!D3 and B7 in Q2!C3) have the same relative

positions to the formula cells (e.g., Q1!D3 and Q2!C3, respective-

ly). Thus, for formula cells that use absolute references, we should

convert these references into their corresponding relative ones.

Figure 2 shows this conversion for the excerpts in Figure 1(a-b).

After this conversion, we observe that the corresponding cells in

Figure 1(a-b) now have the same formulas (e.g., D3 in Figure 2(a)

and C3 in Figure 2(b) have the same formula RC[-1]/R[4]C[-1]).

Case 3. Some formula cells in CellGroup use constants (e.g., 30

in cell C3 of Figure 1(c)). Formula cells that use different con-

Figure 5. Cells [B3:B6] compute total responses from Q1-Q4

in Figure 1(a-d), and they reference cells out of table [B3:C7].

792

stants imply different formulas in the R1C1 format. However,

different constant values can be necessary for intended computa-

tions. For example, the financial reports in different years can use

different interest rates as constants. Therefore, TableCheck treats

all constants in the formula cells of CellGroup as a unified ab-

stract constant, and does not consider them differently.

5. IMPLEMENTATION
This section briefly explains some necessary implementation de-

tails. Our TableCheck implementation uses the Apache POI li-

brary[48] to read and modify Excel files. TableCheck loads an

Excel file, analyzes its table clones, highlights table clones and

adds related comments explaining smells related to table clones.

For visualization, TableCheck marks its detection results by two

annotations: (1) All cells in a table clone group are colored in the

same color (except red); (2) Smelly cells are colored in red with

added comments suggesting the cells that can contain possible

fixes. These annotations can assist users to validate our detection

results. Figure 6 gives a screenshot of Our TableCheck’s results

for our motivating example in Figure 1(a) and (c).

6. EVALUATION
Our evaluation studies the following research questions:

RQ1: How common are table clones in real-life spreadsheets with

formulas? Can TableCheck detect table clones precisely?

RQ2: Can TableCheck detect table-clone-related smells precisely?

Are table-clone-related smells harmful?

RQ3: How is TableCheck compared with existing techniques, e.g.,

AmCheck/CACheck, CUSTODES, Excel, and UCheck/Dimension?

To answer questions RQ1-3, we ran TableCheck on all spread-

sheets with formulas in the EUSES corpus [25], and manually

validated all detected table clones and smelly cells. We further

checked whether smelly cells detected by TableCheck can also be

detected by existing techniques, e.g., AmCheck/CACheck

[21][22], CUSTODES [16], Excel and UCheck/Dimension [5][13].

6.1 Experimental Subjects and Methodology
We used spreadsheets from the EUSES corpus to conduct our

evaluation. The EUSES corpus consists of 4,037 real-life spread-

sheets from 11 categories. Since its creation in 2005, it has been

widely used for spreadsheet research [4][16][21][30]. Table 1 lists

the number of spreadsheets (SS) and number of spreadsheets that

have formulas and can be processed by the Apache POI library

(Formula) in each category (Category). Since TableCheck focuses

on tables with computational semantics, we conducted our exper-

iments on these 1,617 spreadsheets with formulas. We also made

our experimental data available online for future research [49].

TableCheck can detect table clones and their related smells among

spreadsheets. Since almost all spreadsheets in the EUSES corpus

are irrelevant with each other, table clones detected among

spreadsheets could be prone to false positives. Thus, we focused

only on table clones within each spreadsheet.

We manually validated all detected table clones and smells by

checking: 1) whether all corresponding cells in detected table

clones share the same headers, 2) whether the corresponding cells

in detected table clones share the same or similar computations,

and 3) whether detected smelly cells can be repaired by their re-

ferred cells as reported by TableCheck. A smell is considered real

if it can be repaired by inspecting its referred cells.

6.2 Table Clone Detection Results
We first investigate how common table clones occur in the

EUSES corpus (Section 6.2.1), and then investigate the precision

of our table clone detection (Section 6.2.2).

6.2.1 Statistics of Spreadsheets with Table Clones
Table 1 lists our statistics of spreadsheets that contain table clones

(Spreadsheets with table clones). Table 1 gives the number of

spreadsheets in which TableCheck detected table clones (Clone)

and number of spreadsheets in which table clones were confirmed

(True). As shown in Table 1 (True/Formula), 21.8% of our stud-

ied spreadsheets contain confirmed table clones. As reported by

Hermans’ data clone detection [30], they detected data clones only

in 86 spreadsheets in the same corpus. Thus, the spreadsheets

containing table clones are much more than those containing data

clones (352 vs. 86).

(a) Q1

(c) Q3

Figure 6. TableCheck’s screenshot for the example in Figure

1(a) and Figure 1(c).

Table 1. Statistics of spreadsheets in the EUSES corpus (n.a.: not applicable).

Category
Spreadsheets Spreadsheets with table clones

SS Formula Clone True True/Formula Intra Inter Smelly Smelly/True

cs101 8 8 2 2 25.0% 2 0 2 100.0%

database 678 200 58 54 27.0% 39 29 16 29.6%

filby 45 1 0 0 0.0% 0 0 0 n.a.
financial 720 358 100 96 26.8% 79 31 24 25.0%

forms3 26 18 3 3 16.7% 3 2 0 0.0%

grades 588 282 57 52 18.4% 42 19 11 21.2%

homework 576 277 56 53 19.1% 37 25 10 18.9%

inventory 699 278 72 68 24.5% 50 30 21 30.9%

jackson 13 0 0 0 n.a. 0 0 0 n.a.

modeling 679 190 25 21 11.1% 16 13 5 23.8%

personal 5 5 4 3 60.0% 3 1 1 33.3%

Total 4,037 1,617 377 352 21.8% 271 150 90 25.6%

793

We also investigate what kinds of table clones a spreadsheet can

contain. Table 1 lists the numbers of spreadsheets containing con-

firmed intra-worksheet table clones (Intra) and inter-worksheet

table clones (Inter). Note that a spreadsheet can contain both intra-

and inter-worksheet table clones simultaneously. As shown in

Table 1, intra-worksheet table clones occur more often than inter-

worksheet ones (271 vs. 150).

Table 1 also lists the number of spreadsheets in which table clones

contains smells (Smelly). We observe that 25.6% of spreadsheets

with confirmed table clones contain smells (Smelly/True). This

proportion (25.6%) is non-negligible, and discloses that smells

related to table clones are also common in real-life spreadsheets.

Therefore, we draw the following conclusion:

Table clones commonly occur in real-life spreadsheets

with formulas, with intra-worksheet clones occurring

more often than inter-worksheet ones. Smells related to

table clones are also common, and thus deserve detection.

6.2.2 Results and Analyses
TableCheck detects table clones based on cells’ header inference

that may not be fully precise. We are thus interested in the preci-

sion of our table clone detection. Since we observed that in all

detected table clone groups, none of them has both true and false

clone pairs, we thus measured the precision of table clone detec-

tion based on table clone groups.

Table 2 gives our table clone detection results on the EUSES cor-

pus. In total, TableCheck detected 1,317 table clone groups (Table

clone groups/Detected). We confirmed that 1,214 table clone

groups are true (Table clone groups/True). The precision for table

clone detection is thus 92.2%. This also discloses that our header

inference works well for our table clone detection algorithm.

We also investigate what kinds of table clones a table clone group

can contain. If two tables in a table clone group are located in the

same worksheet, this table clone group is considered as an intra-

worksheet group. Otherwise, they are located in two different

worksheets, and the clone group is considered an inter-worksheet

group. Note that a table clone group can be both intra- and inter-

worksheet if some of its contained tables satisfy both conditions.

Table 2 lists the number of confirmed intra- and inter-worksheet

clone groups (Intra and Inter, respectively). We can observe that a

high proportion (42.6% = 517/1,214) of table clone groups con-

tain clones among worksheets. This discloses that detecting smells

only within worksheets (e.g., AmCheck/CACheck) would miss

smells that need to consider cells from different worksheets.

Table 2 also lists the number of table clone groups that contain

smells (Smelly table clone groups/Detected). We confirmed that

92.2% of these smelly table clone groups are true. The precision is

also promising. In total, 14.6% (177/1,214) of confirmed table

clone groups contain smells. This also indicates that smells asso-

ciated with table clones are common.

False positives of table clones. The differences in value for the

second (Detected) and third (True) columns in Table 2 give the

number of false positives, which arise because extracted table

clones do not have the same or similar computation. Out of these

103 (1,317 1,214) false positives, 100 are caused by wrongly

inferred headers (in Section 4.1.2). For the remaining three cases,

although they share the same header information, their contained

cells do not have the same or similar computational semantics.

That said, in 99.8% (1,214 / (1,214 + 3)) of detected table clone

groups that share the same header information, their correspond-

ing cells have the same or similar computational semantics. This

validates our observation in Section 3.2. A more precise header

inference process could help improve TableCheck’s precision. We

leave it to our future work.

Therefore, we draw the following conclusion:

TableCheck detects table clones precisely. The precision

for table clone and smelly table clone detection happens

to be both 92.2%.

6.3 Smell Detection Results
Table 3 shows TableCheck’s smell detection results. In total, Ta-

bleCheck detected 3,382 (Smelly cells/Detected) from the 177

smelly table clone groups. Among these detected smelly cells,

2,892 (85.5%) were confirmed as true positives. Note that each

smelly table clone may contain a different number of smelly cells.

We further investigate missing formula smells and inconsistent

formula smells out of these 3,382 smells. Table 3 shows the num-

bers of missing formula smells (Missing formula smells) and in-

consistent formula smells (Inconsistent formula smells) that were

detected (Detected) and confirmed (True). Out of 3,382 detected

smells, 2,383 (70.5%) are missing formula smells, and the remain-

ing 999 (29.5%) are inconsistent formula smells. We observe that

the smell detection precisions of these two types of smells are

comparable (83.6% vs. 90.2%), and do not differ significantly.

Harmfulness of smells. We manually inspected the confirmed

2,892 smelly cells, and used their referred corresponding cells to

try to recover their formulas. Then, we validated whether these

smelly cells’ values can be computed by the recovered formulas.

We observed that 971 (33.6%) smelly cells contain wrong values.

Thus, TableCheck’s detected smells are indeed harmful.

False positives of smells. The differences in value for the second

(Detected) and third (True) columns in Table 3 give the number of

Table 2. The detected table clone groups on the EUSES corpus.

Category
Table clone groups Smelly table clone groups

Detected True Intra Inter Detected True

cs101 2 2 2 0 2 2

database 217 205 118 114 49 46

filby 0 0 0 0 0 0
financial 396 383 304 116 63 59

forms3 5 5 5 2 0 0

grades 202 183 119 73 18 17

homework 145 124 74 55 15 13

inventory 253 231 132 113 37 33

jackson 0 0 0 0 0 0

modeling 92 77 39 43 6 6

personal 5 4 3 1 2 1

Total 1,317
1,214

(92.2%)
796 517 192

177

(92.2%)

794

false positives of smells. We observed three reasons why these

490 (3,382 2,892) false positives occurred: (1) Some cells in a

table clone indeed have different computations, e.g., in a financial

report, an earning computation may differ in different years. It is

difficult to distinguish such different computations without under-

standing the meanings of all related cells in spreadsheets. 404

(82.4%) false positives belong to this case. (2) Our outlier-based

smell detection technique relies on heuristics, and it may wrongly

treat correct cells as smelly. For example, if only two correspond-

ing cells have different formulas, TableCheck has no idea about

which one should be smelly. Thus, TableCheck conservatively

considers both of them smelly. 47 (9.6%) false positives belong to

this case. For the remaining 39 (8.0%) false positives, they are

caused by wrongly detected table clones.

Therefore, we draw the following conclusion:

TableCheck can precisely (85.5%) detects smells associat-

ed with table clones, which are harmful. Missing formula

smells occur more often than inconsistent formula smells.

6.4 Comparison with Existing Techniques
To better evaluate the effectiveness of our TableCheck in smell

detection, we compared TableCheck with AmCheck/CACheck

[21][22], CUSTODES [16], Excel 2013’s built-in error checking

mechanism, and UCheck/Dimension [5][13]. For these tech-

niques/tools, we investigate whether TableCheck’s 2,892 validat-

ed-as-true smells could also be detected by them.

6.4.1 Comparison with AmCheck/CACheck and

CUSTODES
AmCheck/CACheck [21][22] aggregates a row or column of con-

tiguous cells into a cell array if: (1) none of these cells is empty or

contains any label, (2) these cells share the same/similar input

dependence and (3) at least one cell contains a formula. For ex-

ample, AmCheck/CACheck considers [C3:C6] in Figure 1(c) as a

well-formed cell array, and no smell can be detected in it. CUS-

TODES [16] uses strong features (e.g., same or similar R1C1

formulas) and weak features (e.g., same labels and font colors) to

classify cells into different clusters. It then identifies smelly cells

in each cluster. CUSTODES detects a cell cluster mainly by the

equivalence of formulas contained by its cells. For example,

CUSTODES considers cells [C3:C6] in Figure 1(c) as a correct

cell cluster, and cannot detect any cell cluster in Figure 1(d). Thus,

CUSTODES cannot detect smells in them.

We ran AmCheck/CACheck and CUSTODES on the EUSES

corpus, and checked how many TableCheck’s validated-as-true

smelly cells could be detected by them. In Table 3, the AmCheck,

CACheck and CUSTODES columns give the comparison results.

We observe that AmCheck, CACheck and CUSTODES detected

only 15.4% (444/2,892), 20.7% (599/2,892) and 35.6%

(1,029/2,892) validated-as-true smelly cells, respectively. Thus,

AmCheck/CACheck and CUSTODES missed a lot that could be

detected by TableCheck. Note that AmCheck/CACheck and

CUSTODES could also detect smelly cells that are not related to

table clones. Thus, TableCheck is orthogonal to Am-

Check/CACheck and CUSTODES in spreadsheet smell detection.

6.4.2 Comparison with Excel
Microsoft Excel has its built-in support for detecting inconsistent

formula smells among cells. However, this smell detection is ap-

plicable when: (1) a cell’s formula is syntactically inconsistent

with those of its two adjacent cells, and (2) the formulas of the

two adjacent cells are syntactically consistent. Besides, Excel also

supports detecting some well-known smells like division by zero.

We used Excel 2013 for the comparison, and enabled all its

checking rules. In Table 3, the Excel column shows that Excel

2013 issued warnings for only 0.4% (12/2,892) validated-as-true

smelly cells detected by TableCheck.

6.4.3 Comparison with UCheck/Dimension
UCheck [5] and Dimension[13] also exploit the header infor-

mation from spreadsheets to check type inconsistency in formulas.

UCheck uses unit to represent the type of a cell, and defines some

rules to detect type inconsistency. Dimension detects smells by

inspecting whether units of measurement are used incorrectly.

UCheck and Dimension are only applicable to formula cells. As

such, smelly cells without formulas cannot be detected.

We ran UCheck/Dimension tool (obtained from its authors) on the

EUSES corpus. In Table 3, the UCheck column shows that

UCheck/Dimension detected only 0.3% (9/2,892) validated-as-

true smelly cells by checking type inconsistency in formulas. Note

that if a type inconsistency does not relate to any table clone, our

TableCheck will not detect it. Therefore, TableCheck is orthogo-

nal to UCheck/Dimension in smell detection.

Therefore, we draw the following conclusion:

TableCheck can detect smells that existing techniques fail

to detect. Existing techniques detected at most 35.6%

smells that TableCheck detected.

7. DISCUSSION
While our evaluation shows that TableCheck is promising for

detecting table clones and their related smells in EUSES spread-

sheets, we discuss potential threats and issues below.

Table 3. Smell detection results compared with existing techniques.

Category
Smelly cells Missing formula smells Inconsistent formula smells Existing techniques

Detected True Error Detected True Detected True AmCheck CACheck CUSTODES Excel UCheck

cs101 2 2 0 2 2 0 0 0 0 2 0 0

database 1,524 1,441 767 818 739 706 702 333 331 357 2 0

filby 0 0 0 0 0 0 0 0 0 0 0 0
financial 821 780 66 684 669 137 111 62 224 492 4 6

forms3 0 0 0 0 0 0 0 0 0 0 0 0

grades 289 267 19 228 228 61 39 28 26 13 0 0

homework 56 45 33 36 26 20 19 3 1 5 3 0

inventory 637 305 67 564 276 73 29 17 16 159 3 3

jackson 0 0 0 0 0 0 0 0 0 0 0 0

modeling 46 45 19 44 44 2 1 1 1 1 0 0

personal 7 7 0 7 7 0 0 0 0 0 0 0

Total 3,382
2,892

(85.5%)*
971 2,383

1,991

(83.6%)*
999

901

(90.2%)*

444

(15.4%)§

599

(20.7%)§

1,029

(35.6%)§

12

(0.4%)§

9

(0.3%)§

* The precision for responding smell detection.
§ The proportion of all confirmed smells (2,892) that can be detected by the corresponding techniques.

795

7.1 Threats to Validity
Representativeness of our experimental subjects. One threat to

the external validity is the representativeness of experimental

subjects used in our evaluation. We selected the EUSES corpus

that has been widely used for spreadsheet-related studies [4][16]

[21][30]. These spreadsheets span across 11 application domains,

and represent the ones used in practice.

Table clone and smelly cell validation. Since the EUSES corpus

was collected in the wild without any explanation for table clones

and smells, we were unable to validate our results by their original

users. Thus, we manually validated our detected table clones and

smells. To alleviate possible mistakes, two authors of this paper

cross-checked all detected results.

Recall study of TableCheck. Since we do not have the ground

truth for all table clones in the EUSES corpus, we did not measure

the recall of TableCheck. It is challenging and almost infeasible to

find all table clones and smells by manually inspecting and under-

standing each cell’s meaning of all EUSES spreadsheets. Besides,

this could also cause extra speculation and bias. Similar cases also

happened to the recall evaluation for code clone detection in con-

ventional programs [9][32][38]. In the future, we plan to conduct

a recall study in a company where we can find the concerned us-

ers for their spreadsheets to fairly evaluate TableCheck’s recall.

7.2 Limitations
Our TableCheck assumes the existence of meaningful row/column

headers in tables. If such headers are missing, incomplete or

mixed with other label cells in spreadsheets, TableCheck may not

detect table clones and smells effectively. This limitation is com-

mon to existing header-based techniques [5][14][28]. Further,

after cloning a table, users may modify the header information or

add/remove rows/columns according to new requirements. Then

TableCheck could fail to detect such table clones. However, we

argue that TableCheck is a valuable step towards table clone de-

tection for spreadsheets, which is a hard problem in general, since

table styles can vary significantly among spreadsheets.

Table cloning can help save editing efforts when repeating similar

tasks. However, we still do not know how and why smells among

table clones occurred. A real-life spreadsheet corpus with detailed

version information will definitely be helpful for understanding

such causes. In the future, we plan to conduct a user study on this.

8. RELATED WORK
In the section, we discuss the pieces of work that concern the code

clone detection in conventional programs and the maintenance of

spreadsheet quality (e.g., error, detection, testing and evolution).

Clone detection. Code clone detection in conventional programs

is a well-studied problem. Bruntink et al. [10] classified these

techniques into four categories. (1) Text-based techniques

[24][32]: little or no transformation to the source code is per-

formed before attempting to detect identical or similar lines of

code. (2) Token-based techniques [7][33][38]: they apply a lexical

analysis (tokenization) to the source code and then use the tokens

as a basis for clone detection. (3) AST-based techniques [8]: they

use parsers to obtain a syntactical representation (e.g., an abstract

syntax tree (AST)) of the source code, and then search for similar

subtrees in the AST. (4) PDG-based techniques [37]: they use

program dependence graphs (PDGs), and then look for similar

subgraphs in PDGs. These code clone detection techniques cannot

easily be applied to spreadsheets, which adopt a different pro-

gramming model with variables indexed by rows and columns.

Our table clone detection algorithm was inspired by a text-based

clone detection technique [32]. The most related work is data

clone detection [30], which detects clones with the same values in

spreadsheets. To the best of our knowledge, no prior technique for

detecting table clones in spreadsheets has ever be proposed.

Spreadsheet error and detection. Spreadsheet errors are common

[40][41][42]. Various techniques have been proposed to detect

errors in spreadsheets. UCheck/Dimension[5][13] use a type sys-

tem to check type inconsistency in formulas. Smellsheet Detective

[19][20] detects statistical smells, functional dependence smells

and so on. Hermans et al. proposed visualizing spreadsheets by

dataflow graphs [28], and detected inter-worksheet smells in them

[29]. These techniques mostly focus on syntactic errors, while our

TableCheck focuses on inconsistency among table clones that can

concern semantic errors, which are more challenging to detect.

Our previous work AmCheck/CACheck [21][22] and CUSTO-

DES [16] detect smells in a group of similar cells, while Ta-

bleCheck detects smells from a group of table clones. Thus, our

TableCheck is orthogonal to these pieces of existing work.

Spreadsheet modeling and testing. Building rigorous models for

spreadsheets [3][18][27] can help users reduce the chance of in-

troducing errors. However, it is challenging to construct such

models. Testing spreadsheets [6][26][35] can be an alternative,

but its major challenge comes from the lack of test oracles. Ta-

bleCheck extracts table clones and detects inconsistency among

them. TableCheck does not require explicit test oracles.

Spreadsheet evolution. Table clones are often created during

spreadsheet evolution when cells are copied for different purposes.

SheetDiff [15] identifies changes between two spreadsheets as a

whole and does not detect table clones and smells directly. VEn-

ron [23] publishes the first versioned spreadsheet corpus to facili-

tate spreadsheet evolution analysis. TableCheck can be used on

VEnron to detect smells across multiple versions of spreadsheets.

9. CONCLUSION
In this paper, we study table clones in spreadsheets. These clones

occur when copying spreadsheet cells during spreadsheet devel-

opment. We have also proposed an automated approach, Ta-

bleCheck, to extracting table clones by grouping cells with the

same header information. Further, we propose an outlier-based

technique to detect smells among table clones by cross-checking

the corresponding cells among table clones. Our empirical study

shows that table clones and their related smells are common in

real-life spreadsheets. Our experimental evaluation shows that our

table clone and smell detection approach is both effective and

precise, while existing techniques can only detect at most 35.6%

of validated-as-true smells detected by our TableCheck.

We plan to pursue our future work in three ways. First, Ta-

bleCheck can be improved by more precise spreadsheet header

inference. Second, TableCheck can also be improved by handling

table clones with missing or incomplete header information. Third,

more case studies on real-life spreadsheets would be conducted

for evaluating TableCheck’s practical effectiveness in companies.

10. ACKNOWLEDGMENTS
This work was supported in part by Beijing Natural Science

Foundation (4164104), National Key Research and Development

Plan (2016YFB1000803), the Hong Kong SAR RGC/GRF grant

(611811), National Natural Science Foundation (Grant Nos.

61472174, 91318301, 61321491) of China, and the Collaborative

Innovation Center of Novel Software Technology and Industriali-

zation, Jiangsu, China.

796

11. REFERENCES
[1] R. Abraham and M. Erwig. Header and Unit Inference for

Spreadsheets through Spatial Analyses. In IEEE Symposi-

um on Visual Languages and Human Centric Computing

(VL/HCC), pages 165–172. 2004.

[2] R. Abraham and M. Erwig. AutoTest: A Tool for Automat-

ic Test Case Generation in Spreadsheets. In IEEE Sympo-

sium on Visual Languages and Human-Centric Computing

(VL/HCC), pages 43–50. 2006.

[3] R. Abraham and M. Erwig. Inferring Templates from

Spreadsheets. In Proceedings of the 28th International

Conference on Software Engineering (ICSE), pages 182–

191. 2006.

[4] R. Abraham and M. Erwig. GoalDebug: A Spreadsheet

Debugger for End Users. In Proceedings of the 29th Inter-

national Conference on Software Engineering (ICSE), pag-

es 251–260. 2007.

[5] R. Abraham and M. Erwig. UCheck: A Spreadsheet Type

Checker for End Users. J. Vis. Lang. Comput., 18(1):71–95,

2007.

[6] R. Abraham and M. Erwig. Mutation Operators for Spread-

sheets. IEEE Trans. Softw. Eng., 35(1):94–108, 2009.

[7] B.S. Baker. On Finding Duplication and Near-duplication

in Large Software Systems. In Proceedings of the Second

Working Conference on Reverse Engineering (WCRE),

pages 86–95. 1995.

[8] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L.

Bier. Clone Detection Using Abstract Syntax Trees. In

Proceedings of the International Conference on Software

Maintenance (ICSM), pages 368–377. 1998.

[9] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Mer-

lo. Comparison and Evaluation of Clone Detection Tools.

IEEE Trans. Softw. Eng., 33(9):577–591, 2007.

[10] M. Bruntink, A. van Deursen, R. van Engelen, and T.

Tourwe. On the Use of Clone Detection for Identifying

Crosscutting Concern Code. IEEE Trans. Softw. Eng.,

31(10):804–818, 2005.

[11] M. Burnett and B.A. Myers. Future of End-user Software

Engineering: Beyond the Silos. In Proceedings of the on

Future of Software Engineering (FOSE), pages 201–211.

2014.

[12] J.P. Caulkins, E.L. Morrison, and T. Weidemann. Spread-

sheet Errors and Decision Making: Evidence from Field In-

terviews. J. Organ. End User Comput., 19(3):1–23, 2007.

[13] C. Chambers and M. Erwig. Automatic Detection of Di-

mension Errors in Spreadsheets. J. Vis. Lang. Comput.,

20(4):269–283, 2009.

[14] C. Chambers and M. Erwig. Reasoning About Spread-

sheets with Labels and Dimensions. J. Vis. Lang. Comput.,

21(5):249–262, 2010.

[15] C. Chambers, M. Erwig, and M. Luckey. SheetDiff: A

Tool for Identifying Changes in Spreadsheets. In IEEE

Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), pages 85–92. 2010.

[16] S.C. Cheung, W. Chen, Y. Liu, and C. Xu. CUSTODES:

Automatic Spreadsheet Cell Clustering and Smell Detec-

tion Using Strong and Weak Features. In Proceedings of

the 38th International Conference on Software Engineer-

ing (ICSE), pages 464–475. 2016.

[17] M. Clermont and R. Mittermeir. Auditing Large Spread-

sheet Programs. In Proceedings of the International Con-

ference on Information Systems Implementation and Mod-

eling, pages 87–97. 2003.

[18] J. Cunha, M. Erwig, and J. Saraiva. Automatically Infer-

ring ClassSheet Models from Spreadsheets. In IEEE Sym-

posium on Visual Languages and Human-Centric Compu-

ting (VL/HCC), pages 93–100. 2010.

[19] J. Cunha, J.P. Fernandes, P. Martins, J. Mendes, and J.

Saraiva. SmellSheet Detective: A tool for Detecting Bad

Smells in Spreadsheets. In IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC),

pages 243–244. 2012.

[20] J. Cunha, J.P. Fernandes, H. Ribeiro, and J. Saraiva. To-

wards a Catalog of Spreadsheet Smells. In Computational

Science and Its Applications, pages 202–216. 2012.

[21] W. Dou, S.C. Cheung, and J. Wei. Is Spreadsheet Ambigu-

ity Harmful? Detecting and Repairing Spreadsheet Smells

Due to Ambiguous Computation. In Proceedings of the

36th International Conference on Software Engineering

(ICSE), pages 848–858. 2014.

[22] W. Dou, C. Xu, S.C. Cheung, and J. Wei. CACheck: De-

tecting and Repairing Cell Arrays in Spreadsheets. IEEE

Trans. Softw. Eng., 2016, preprint.

[23] W. Dou, L. Xu, S.C. Cheung, C. Gao, J. Wei, and T.

Huang. VEnron: A Versioned Spreadsheet Corpus and Re-

lated Evolution Analysis. In Proceedings of the 38th Inter-

national Conference on Software Engineering (ICSE SEIP),

pages 162–171. 2016.

[24] S. Ducasse, M. Rieger, and S. Demeyer. A Language Inde-

pendent Approach for Detecting Duplicated Code. In Pro-

ceedings of the IEEE International Conference on Software

Maintenance (ICSM), pages 109–118. 1999.

[25] M. Fisher and G. Rothermel. The EUSES Spreadsheet

Corpus: A Shared Resource for Supporting Experimenta-

tion with Spreadsheet Dependability Mechanisms. ACM

SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[26] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What You

See Is What You Test: A Methodology for Testing Form-

based Visual Programs. In Proceedings of the International

Conference on Software Engineering (ICSE), pages 198–

207. 1998.

[27] F. Hermans, M. Pinzger, and A. van Deursen. Automatical-

ly Extracting Class Diagrams from Spreadsheets. In Pro-

ceedings of the 24th European Conference on Object-

Oriented Programming (ECOOP), pages 52–75. 2010.

[28] F. Hermans, M. Pinzger, and A. van Deursen. Supporting

Professional Spreadsheet Users by Generating Leveled Da-

taflow Diagrams. In Proceedings of International Confer-

ence on Software Engineering (ICSE), pages 451–460.

2011.

[29] F. Hermans, M. Pinzger, and A. van Deursen. Detecting

and Visualizing Inter-worksheet Smells in Spreadsheets. In

Proceedings of the International Conference on Software

Engineering (ICSE), pages 441–451. 2012.

[30] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen.

Data Clone Detection and Visualization in Spreadsheets. In

Proceedings of the International Conference on Software

Engineering (ICSE), pages 292–301. 2013.

[31] F. Hermans and T. van der Storm. Copy-Paste Tracking:

Fixing Spreadsheets Without Breaking Them. In Proceed-

ings of the 1st International Conference on Live Coding

(ICLC). 2015.

[32] J.H. Johnson. Identifying Redundancy in Source Code

Using Fingerprints. In Proceedings of the Conference of

the Centre for Advanced Studies on Collaborative Re-

search: Software Engineering - Volume 1, pages 171–183.

1993.

797

[33] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Mul-

tilinguistic Token-based Code Clone Detection System for

Large Scale Source Code. IEEE Trans. Softw. Eng.,

28(7):654–670, 2002.

[34] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An Em-

pirical Study of Code Clone Genealogies. In Proceedings

of the 10th European Software Engineering Conference

Held Jointly with 13th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering

(ESEC/FSE), pages 187–196. 2005.

[35] K.J. Rothermel, C.R. Cook, M. Burnett, J. Schonfeld,

T.R.G. Green, and G. Rothermel. WYSIWYT Testing in

the Spreadsheet Paradigm: An Empirical Evaluation. In

Proceedings of the International Conference on Software

Engineering (ICSE), pages 230–239. 2000.

[36] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Bur-

nett, M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B.

Myers, M.B. Rosson, G. Rothermel, M. Shaw, and S.

Wiedenbeck. The State of the Art in End-user Software

Engineering. ACM Comput. Surv., 43(3):21:1–21:44, 2011.

[37] J. Krinke. Identifying Similar Code with Program Depend-

ence Graphs. In Proceedings of 8th Working Conference

on Reverse Engineering (WCRE), pages 301–309. 2001.

[38] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding

Copy-Paste and Related Bugs in Large-Scale Software

Code. IEEE Trans. Softw. Engeneering, 32(3):176–192,

2006.

[39] H.A. Nguyen, T.T. Nguyen, N.H. Pham, J. Al-Kofahi, and

T.N. Nguyen. Clone Management for Evolving Software.

IEEE Trans. Softw. Eng., 38(5):1008–1026, 2012.

[40] R.R. Panko and S. Aurigemma. Revising the Panko–

Halverson Taxonomy of Spreadsheet Errors. Decis. Sup-

port Syst., 49(2):235–244, 2010.

[41] S.G. Powell, K.R. Baker, and B. Lawson. A Critical Re-

view of the Literature on Spreadsheet Errors. Decis. Sup-

port Syst., 46(1):128–138, 2008.

[42] K. Rajalingham, D.R. Chadwick, and B. Knight. Classifi-

cation of Spreadsheet Errors. In European Spreadsheet

Risks Interest Group (EuSpRIG), pages 23–34. 2001.

[43] J. Reichwein, G. Rothermel, and M. Burnett. Slicing

Spreadsheets: An Integrated Methodology for Spreadsheet

Testing and Debugging. ACM SIGPLAN Not., 35(1):25–38,

1999.

[44] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Num-

bers of End Users and End User Programmers. In Proceed-

ings of the IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), pages 207–214.

2005.

[45] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di

Penta. An Empirical Study on the Maintenance of Source

Code Clones. Empir. Softw. Eng., 15(1):1–34, 2010.

[46] J. Walkenbach. Excel 2013 Power Programming with VBA.

Wiley.com, 2013.

[47] How to use the Auto Fill Options button in Excel.

http://support.microsoft.com/kb/291359 .

[48] Apache POI - the Java API for Microsoft Documents.

http://poi.apache.org/ .

[49] TableCheck project (including experimental subjects and

results). http://www.tcse.cn/~wsdou/project/clone/ .

798

