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ABSTRACT 

Spreadsheets are widely used by end users for various business 

tasks, such as data analysis and financial reporting. End users may 

perform similar tasks by cloning a block of cells (table) in their 

spreadsheets. The corresponding cells in these cloned tables are 

supposed to keep the same or similar computational semantics. 

However, when spreadsheets evolve, thus cloned tables can be-

come inconsistent due to ad-hoc modifications, and as a result 

suffer from smells. 

In this paper, we propose TableCheck to detect table clones and 

related smells due to inconsistency among them. We observe that 

two tables with the same header information at their correspond-

ing cells are likely to be table clones. Inspired by existing finger-

print-based code clone detection techniques, we developed a de-

tection algorithm to detect this kind of table clones. We further 

detected outliers among corresponding cells as smells in the de-

tected table clones. We implemented our idea into TableCheck, 

and applied it to real-world spreadsheets from the EUSES corpus. 

Experimental results show that table clones commonly exist 

(21.8%), and 25.6% of the spreadsheets with table clones suffer 

from smells due to inconsistency among these clones. TableCheck 

detected table clones and their smells with a precision of 92.2% 

and 85.5%, respectively, while existing techniques detected no 

more than 35.6% true smells that TableCheck could detect. 
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•Applied computing→Spreadsheets •Software and its engi-

neering→Software testing and debugging •Social and profes-

sional topics→Software maintenance. 
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1. INTRODUCTION 
Spreadsheets have been widely used by end users for various 

business tasks, including data analysis, decision support, financial 

reporting, and so on. Spreadsheets are more popularly used than 

other computational paradigms [44]. Since spreadsheets are creat-

ed and maintained by non-expert end users, errors can be easily 

induced into spreadsheets [36][41]. In order to improve the quality 

of spreadsheets, researchers have applied various software engi-

neering techniques to spreadsheets [11], such as auditing [17], 

testing [2][6][26], smell detection [14][19][30] and debugging 

[4][43]. 

A spreadsheet comprises blocks of cells arranged in rows and 

columns. Like code clones in conventional programs [34][39][45], 

cells in spreadsheets can be copy-and-pasted (reused) during 

spreadsheet development and maintenance. Copy-and-paste can 

shorten the preparation time for spreadsheets. For example, a user 

can quickly prepare a new financial report by updating a copy 

based on an existing one. Commercial spreadsheet systems (e.g., 

Microsoft Excel) make it easy to copy cells from existing spread-

sheets. When a user copies a block of cells to a new location, such 

spreadsheet systems can help deduce new formulas (if any) for 

them based on the underlying patterns of the copied cells automat-

ically [47]. Thus, the computational semantics among the original 

and new cells are kept consistent. 

However, after copy-and-paste, there are rarely any records or 

meta-data indicating which cells in a spreadsheet were thus creat-

ed, although they are supposed to be uniformly modified in future. 

Besides, little provision is offered to warn users against arbitrary 

modification of these cells [31]. The current practice assumes that 

users should own conscientiousness to maintain the consistency 

between copied (original) cells and pasted (new) cells. Users, 

however, may unintentionally break the consistency when main-

taining the concerned cells. This would lead to undesirable conse-

quences, which could further manifest into errors. Caulkins’ sur-

vey [12] reported that 49% investigated users found errors in 

spreadsheets that were prepared by reusing existing ones. This 

motivates the need for effective techniques of detecting table 

clones (groups of copied and pasted cells) and their related incon-

sistency problems (if any). 

In this paper, we focus on detecting table clones resulted from 

copy-and-paste operations and smells induced by the inconsisten-

cy among table clones. We refer to two rectangular blocks of cells 

as table clones when their corresponding cells share the same or 

similar computational semantics. For example, the corresponding 

cells in [C3:D7] of Figure 1(a) and [B3:C7] of Figure 1(b) share 

the same computation, although their contents can look different: 

(1) some corresponding cells (e.g., C3 in Figure 1(a) and B3 in 

Figure 1(b)) are both input cells, and some other corresponding 

cells (e.g., C7 in Figure 1(a) and B7 in Figure 1(b)) prescribe the 

same formula pattern although their concrete formulas take seem-

ingly different inputs (these inputs come from corresponding cells 

in the two blocks); (2) all corresponding cells have the same 

headers (e.g., D3 in Figure 1(a) and C3 in Figure 1(b) both have 

the row header “Weekly” and column header “% Responses”). 

Our empirical study found that such table clones commonly exist, 

e.g., 1,214 table clone groups exist in 352 spreadsheets from the 

widely-used EUSES corpus [25]. Besides, 25.6% of these spread-

sheets with table clones suffer from smells due to inconsistency 

among these table clone groups. This indicates the necessity of 
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detecting table clones in real-life spreadsheets and their contained 

smells. 

We propose TableCheck in this paper to detect table clones and 

their related smells. The key challenge is how to determine which 

cells can form table clones and which cells are subject to smells 

when they are involved in inconsistency among table clone groups. 

TableCheck works based on the observation that two tables 

(blocks of cells), if having the same row and column headers at 

their corresponding cells, are likely to share the same computa-

tional semantics and become table clones. However, simply exam-

ining each possible pair of cell blocks for detecting table clones 

can be extremely time-consuming. As inspired by existing finger-

print-based code clone detection techniques [32], we exploit a 

cell’s derived header information as its fingerprint for facilitating 

table clone detection. Furthermore, to detect smells among 

grouped table clones, we analyze possible inconsistency among 

corresponding cells in these table clones (e.g., dissimilar formulas 

from D3 in Figure 1(a) and C3 in Figure 1(b-c)), and mark outli-

ers from them as smells (e.g., C3 in Figure 1(c)). 

We implemented TableCheck as a prototype tool and evaluated its 

performance using the EUSES corpus [25] from two perspectives: 

table clone detection and smell detection. Experimental results 

show that: (1) table clones are common, and 21.8% of spread-

sheets with formulas contain table clones; (2) smells associated 

with table clones are also common, and TableCheck detected 

2,892 smelly cells in 177 table clone groups, which cover 14.6% 

validated-as-true table clone groups; (3) smells among table 

clones are harmful, and 971 smelly cells indeed contain wrong 

values; (4) TableCheck detected table clones and their smells with 

a high precision of 92.2% and 85.5%, respectively; (5) other exist-

ing smell detection techniques (e.g., AmCheck/CACheck [21][22], 

CUSTODES [16], Excel and UCheck/Dimension [5][13]) detect-

ed no more than 35.6% true smells TableCheck detected. 

TableCheck differs from Hermans’ data clone detection work [30] 

in the types of detected clones. Their work considers two blocks 

of cells with (almost) the same values as clones. Thus it cannot 

detect table clones (with different values) and smells in Figure 1. 

On the other hand, TableCheck can detect clones with the same 

computational semantics but different values. TableCheck also 

differs from our previous work AmCheck/CACheck [21][22] and 

CUSTODES [16] in both cell clustering and smell detection. Ta-

bleCheck leverages the header information to detect table clones 

in the same worksheets, different worksheets and different spread-

sheets. Unlike TableCheck, AmCheck/CACheck and CUSTODES 

aggregate cells into clusters by their formula similarity (e.g., ref-

erenced cells and continuous cell locations) in a single worksheet. 

As such, AmCheck/CACheck and CUSTODES cluster cells 

[D3:D6] in Figure 1(a) and [C3:C6] in Figure 1(c) into different 

clusters. Unlike TableCheck, which detects smells by cross-

checking inconsistency among table clones (across clusters), 

AmCheck/CACheck and CUSTODES detect smells inside single 

clusters. As such, the smell detection of AmCheck/CACheck and 

CUSTODES are mostly restricted to those cells that can be clus-

tered by their formula similarity (e.g., they treat [C3:C6] in Figure 

1(c) as a cluster, but there is no smell in it). Therefore, Ta-

bleCheck and AmCheck/CACheck/CUSTODES are working at 

two different levels. Unlike TableCheck, which detects smells 

among cells, UCheck [5] and dimension inference [13] exploit the 

header information to detect type inconsistency in single formulas. 

As a summary, no prior technique has been dedicated for detect-

ing table clones and their contained smells in spreadsheets. 

We summarize our main contributions in this paper as follows: 

 We proposed the notion of a new and commonly existing 

structure in spreadsheets, table clone, in which corresponding 

cells share the same or similar computational semantics. 

 We proposed a fingerprint-based algorithm to detect table 

clones in spreadsheets by exploiting the header information 

derived from cells, and an outlier-based technique to detect 

smells in grouped table clones. Both are automated. 

 We implemented our work into a TableCheck tool and evalu-

ated it with real-life spreadsheets from the EUSES corpus. The 

experimental results show that TableCheck could detect table 

clones and smells effectively and precisely. 

The remainder of this paper is organized as follows. Section 2 

presents a motivating example. Section 3 explains the concept of 

table clone. Section 4 presents our table clone and smell detection 

approach. Section 5 presents our TableCheck implementation, and 

Section 6 evaluates it experimentally. Sections 7 and 8 discuss 

limitations and related work, and Section 9 concludes this paper. 

2. MOTIVATION 
In this section, we illustrate table clones and related smells using 

an illustrative example extracted from the EUSES corpus [25], 

and then explain how to detect them. 

 
(a) Q1 

 
(b) Q2 

 
(c) Q3 

 
(d) Q4 

Figure 1. Table clones in a spreadsheet (in the A1 format) 

extracted from the EUSES corpus. The cells marked by a red 

right-cornered triangle are smelly. The subtitle for each ex-

cerpt is its worksheet name. 
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2.1 Example 
Figure 1 shows four worksheet excerpts from the EUSES corpus. 

These excerpts perform quantitative analysis on four questions, 

and form a table clone group (marked by four rectangles). 

Smells among table clones. A cell suffers from a smell when 

there are inconsistent computations in the corresponding cells 

among table clones. The above example contains 9 smelly cells 

(marked with red right-cornered triangles), among which the val-

ue of cell C3 in Figure 1(d) is likely to be wrong. Note that smelly 

cells do not necessarily contain wrong values. For instance, 

smelly cells [C3:C6] in Figure 1(c) likely contain correct values. 

Improper modifications of cell formulas in table clones are a ma-

jor cause for these smells. For example, users may prepare the 

excerpt in Figure 1(c) based on the one in Figure 1(b). Cells 

[C3:C6] in Figure 1(c) could be a consequence of improper cell 

modifications that replace $B$7 with its computed value 30. Even 

though the modifications do not alter the computed values, they 

impose an assumption that the computed value of $B$7 is always 

30 in view of spreadsheet updates. The four smelly cells can be-

come erroneous if the assumption is violated by later updates. 

In the example, we observe two different types of smells that can 

induce computation anomalies in cells, which are also studied by 

our previous work AmCheck/CACheck [21][22] and CUSTODES 

[16]. (1) Missing formula smell: The smell occurs when a cell is 

supposed to contain a formula, but it does not. For example, cells 

[C3:C6] in Figure 1(d) exhibit such smells. However, due to no 

formula in Figure 1(d), formula-based smell detection (e.g., Am-

Check/CACheck and CUSTODES) cannot detect these smelly 

cells [C3:C6]. (2) Inconsistent formula smells: The smell occurs 

when a cell contains an incorrect formula. For example, cells 

[C3:C6] in Figure 1(c) exhibit such smells (e.g., the formula in C3 

should be B3/$B$7). However, since all formulas in cells [C3:C6] 

in Figure 1(c) are the same, formula-based smell detection (e.g., 

AmCheck/CACheck and CUSTODES) treats these cells [C3:C6] 

as correct ones. Note that none of the smells shown in Figure 1 

can be detected by other existing tools, such as Excel 2013 and 

UCheck/Dimension [5][13]. 

2.2 TableCheck Overview 
Detecting table clones and their associated smells needs to address 

three technical challenges. Let us explain them using the example 

in Figure 1. First, how can one judge whether a cell (e.g., D3 in 

Figure 1(a)) belongs to a table clone as well as the boundary of 

the concerned table clone? Second, in which situation do the oc-

currences of dissimilar formulas in table clones suggest smells? 

Note that the occurrence of two dissimilar formulas does not nec-

essarily suggest that the corresponding cells are smelly. For ex-

ample, cells D3 in Figure 1(a) and C3 in Figure 1(b) do not share 

the same formula (in the R1C1 format; explained later in Section 

3.1), but they are not smelly. Third, suppose that a group of cells 

fall into the situation where smells must have occurred. How can 

one locate the smelly cells in the group? For example, the group 

formed by D3 in Figure 1(a) and C3 in Figure 1(b-d) falls into a 

smelly situation, but only C3 in Figure 1(c-d) are smelly. 

For the first challenge, we observe that table clones usually have 

the same header information. Inspired by existing fingerprint-

based clone detection techniques [32], TableCheck uses cells’ 

header information as fingerprints, and groups cells with the same 

header information as table clones. For the second challenge, we 

observe that the formulas in table clones should reference their 

input cells similarly using relative indices. Thus, we convert all 

formulas into their relative R1C1 formats (e.g., the formulas in D3 

in Figure 1(a) and C3 in Figure 1(b) would be converted into the 

same formula RC[-1]/R[4]C[-1] in Figure 2). For the third chal-

lenge, cells dissimilar to most of their corresponding ones can be 

identified as outliers. Such outliers are a good indicator of smells. 

3. PRELIMINARIES 
In this section, we introduce the terminologies used in this paper. 

3.1 Spreadsheet Programming Model 
A spreadsheet can be modeled as a set of cells with expressions, 

which are indexed by two-dimensional cell addresses (e.g., C3) 

[6]. A cell may contain a formula, which describes the computa-

tion of this cell, or contains a plain value. 

A formula references another cell by a cell reference that denotes 

the referenced cell’s address. Most spreadsheet systems have two 

built-in formats to represent a cell reference: A1 and R1C1 for-

mats [46]. These two formats can be either absolute or relative. 

An absolute reference keeps pointing to the same cell even if it is 

copied to another cell. A relative reference encodes the cell ad-

dress offset between the current cell and the referenced cell, and 

the offset keeps unchanged when it is copied to another cell. In 

the A1 format, a cell at the x-th column and y-th row is notated as 

xy in relative reference (e.g., C3), or $x$y in absolute reference 

(e.g., $C$3). In the R1C1 format, a cell at m rows below and n 

columns right to the current cell is notated as R[m]C[n] (in rela-

tive reference), and a cell at the m-th row and n-th column is no-

tated as RmCn (in absolute reference). 

Let R be a set of cell references, EXP be a set of expressions, and 

V be a set of plain values. A cell’s expression exp is either a plain 

value (𝑣 ∈ 𝑉), a cell reference (𝑟 ∈ 𝑅), or a function 𝜑 over one 

or more expressions: 𝑒𝑥𝑝 = 𝑣 | 𝑟 | 𝜑(𝑒𝑥𝑝1, … , 𝑒𝑥𝑝𝑛) . Functions 

in a formula include basic operators, such as, “+”, “”, “*”, “/”, 

and other built-in functions like SUM and MAX. Note that formu-

la cells in the corresponding cells among table clones often have 

the same expressions in the R1C1 format. 

3.2 Table Clone 
We focus on numerical cells in this paper. A table is a rectangular 

block of numerical cells (e.g., cells [C3:D7] in Figure 1(a) and 

[B3:C7] in Figure 1(b)). Note that we also consider empty cells 

(e.g., D7 in Figure 1(a)) and cells with some special strings (e.g., 

“NA” and “-”; discussed more in Section 4.1.1) as parts of a table, 

because they are often used as default values in spreadsheets. 

 
(a) Q1 

 
(b) Q2 

Figure 2. Table clones in the R1C1 format. Note that absolute 

references ($C$7 and $B$7) in Figure 1(a) and Figure 1(b) 

are converted into their relative references (C7 and B7). 
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Users often use headers to denote the meanings of cells. For ex-

ample, C3 in Figure 1(a) has a row header “Weekly” and a col-

umn header “Responses”, and these headers show that C3’s value 

represents the number of weekly responses. We therefore look for 

tables of cells labelled by the same set of row/column headers. 

Note that headers are not treated as parts of a table in this paper. 

Definition 1: A table clone (pair) is a tuple (𝑡1, 𝑡2) where 𝑡1 and 

𝑡2 are two tables, in which corresponding cells are labelled by the 

same headers. 

We made three observations on table clones in EUSES. (1) It can, 

of course, happen by chance that two irrelevant cells are labelled 

by the same headers. However, two blocks of cells in the same 

spreadsheet are more likely to be a table clone than not if their 

cells at the same relative row/column have the same headers. (2) 

Formula cells that have the same headers in a table clone usually 

follow the same/similar computation. They often contain the same 

or similar formulas in the R1C1 format. (3) If the tables in a clone 

group contain only one row/column, it may not expose interesting 

computational semantics. Thus, we require that tables in a clone 

group have at least two rows and columns. 

Definition 2: A table clone group is a group of tables in which 

every two tables are a table clone pair. 

We assume that the corresponding cells in a table clone group 

share the same or similar computational semantics. If no cell in a 

table clone group has a formula, these cells are all data ones, and 

do not contain any clear computational semantics. Therefore, we 

require that table clone groups should contain at least one formula 

cell. 

4. APPROACH 
Given a spreadsheet, TableCheck analyzes it and reports all de-

tected table clones, as well as related smells, if any, with explana-

tions. TableCheck works in five steps as outlined in Figure 3. First, 

it determines each cell’s type (data, formula, label or empty) in 

the spreadsheet (Section 4.1.1). Second, it extracts headers for the 

cells with types of data, formula and empty (Section 4.1.2). Third, 

it builds a lookup table for all cells with complete header infor-

mation. Fourth, it detects and extracts table clones from these cells 

(Section 4.1.3). Finally, it analyzes corresponding cells in detected 

table clones, and detects smells, if any, inside them (Section 4.2). 

4.1 Table Clone Detection 
TableCheck extracts headers for all (data, formula and empty) 

cells in a given spreadsheet, and then detects table clones based on 

the fingerprints that are built on the cells’ headers. 

4.1.1 Cell Classification 
To distinguish different cell types, we follow the approaches de-

scribed by Hermans [28] and Abraham and Erwig [1] to classify 

cells into four types: (1) data cells: numerical cells with plain 

values; (2) formula cells: cells that contain formulas; (3) label 

cells: cells that have strings and explain the meanings of other 

cells, and (4) empty cells. 

Our cell classification algorithm works as follows. First, all nu-

merical cells without formulas are marked as data cells, and all 

numerical cells with formulas are marked as formula cells. Note 

that, although strings could be results of formulas, they are typi-

cally used as labels. Therefore, we do not treat their concerned 

cells as formula cells. Second, we observe that some common 

strings in spreadsheets are usually used as data, not labels. (1) 

Some special strings, e.g., “na”, “n/a” and “n.a.”, represent “not 

applicable”, usually implying data cells in spreadsheets. (2) Some 

special strings are usually used as default values (e.g., 0), such as, 

“.”, “*” and “-”. Treating such strings as labels would definitely 

affect the precision of the header inference (Section 4.1.2). There-

fore, we consider the cells with such special strings as data cells. 

All cells, which do not get a type from the above steps, are classi-

fied as label cells when not empty, and empty cells, otherwise. 

Note that the above classification algorithm differs slightly from 

previous approaches [1][28][30]. First, all numerical cells without 

formulas are considered as data cells. Thus, data cells are not 

necessarily referenced by formulas (e.g., cells [B3:C7] in Figure 

1(d)), which is mandatory in work [28]. Second, special strings 

(e.g., “-” and “NA”) could mislead us to derive wrong headers if 

not treated specially (i.e., we treat them as data rather than labels). 

Applying the above algorithm to the examples in Figure 1(a) and 

Figure 1(b) results in the colored excerpts in Figure 3(s1). For the 

excerpt Q1 in Figure 3(s1), cells [C3:C6] are marked as data cells 

(in yellow), and cells [D3:D6] and C7 are marked as formula cells 

(in blue). The remaining gray cells are marked as label cells. 

4.1.2 Cell Header Inference 
According to Definition 1 in Section 3.2, tables can contain data, 

formula and empty cells. Thus, we infer the headers for all non-

label (i.e., data, formula or empty) cells in a spreadsheet. 

Each non-label cell is subject to two headers: a row header and a 

column header. For a non-label cell c, we identify the nearest (to 

the left in the same row as cell c lies) label cell as its row header. 

Similarly, we consider the nearest (above in the same column as 

cell c lies) label cell as its column header. 

 

 
    s1. Classify cells.                  s2. Infer cell headers.       s3. Create lookup table.                              s4. Find clones.           s5. Detect smells. 

Figure 3. Overview of TableCheck’s workflow. For ease of presentation, we give only the excerpts in Figure 1(a) and Figure 1(b). 
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Our algorithm for inferring the row header for a given cell c 

works as follows. It starts from cell c’s neighboring cell to the left 

in the same row as cell c lies. If the examined cell is a label cell, 

its value is set as the row header of cell c. If the cell is a formula, 

data or empty cell, the algorithm skips it and continues to examine 

its left cell. The algorithm repeats until either a label cell is found 

or the boundary of the current worksheet is reached. For the latter 

case, the algorithm ends without assigning a row header to cell c. 

The algorithm for inferring the column header for cell c is similar. 

Once the row and column headers are found, they together form 

the headers for cell c. 

Note that the two headers of a cell generally denote the intended 

computation of this cell. The row headers of cells in a column 

usually differ. Similarly do the column headers of cells in a row. 

The spreadsheet excerpt in Figure 4 shows an interesting case. 

According to our previous algorithm, the column headers of cells 

C11, D11 and E11 should be “£'000”. However, the string “£'000” 

does not denote the intended computation of these cells. We 

should identify “Rec”, “Non-rec” and “Total” as these cells’ col-

umn headers. Thus, we assume that if a string (e.g., “£'000” in 

Figure 4) occurs frequently in a row/column (more than x% of all 

label cells in the row/column; we set x to be 50 in TableCheck), 

the concerned label cells in the row/column should not be consid-

ered as column/row headers for other cells. 

Referring to the example in Figure 4, the inference of the column 

header for C12 starts from C11, which is a data cell. Next, C10 

and C9 are inspected one after another, which are empty cells. 

Next, C8 is inspected. According to our rule above, the label cells 

in Row 8 should not be used as column headers. Thus, C7 is next 

inspected, where the right column header “Rec” is found. Similar-

ly, we identify “- Other funding” in B12 as C12’s row header. 

Our inferred headers are comparable to the first-level headers in 

UCheck [1]. For table clones, their first-level headers are often 

reused, but their higher-level headers are usually changeable. For 

example, in Figure 1(a), the label cell C1 (“Q1”) is treated as a 

higher-level header for other data and formula cells. Similarly, in 

Figure 1(b), the label cell B1 (“Q2”) is treated as a higher-level 

header for other data and formula cells, too. These two higher-

level headers are not the same. Thus, treating them as headers for 

other cells would make us miss table clones in Figure 1(a-b). 

We note that the tabulation styles of cells in a spreadsheet often 

vary. Thus, the above header inference is heuristic, and it may not 

always find right headers for cells. Nevertheless, our experimental 

evaluation in Section 6.2 reported that our inference algorithm 

could already extract cell headers precisely, and generated only 

few false positives in detecting table clones in the EUSES corpus. 

4.1.3 Table Clone Detection Algorithm 
We then explain how TableCheck detects table clones, in which 

each pair of corresponding cells should have the same header 

information. Our TableCheck’s clone detection approach was 

inspired by Johnson’s fingerprint-based code clone detection 

technique [32]. Still, we need to significantly extend it to handle 

two-dimensional spreadsheet programs. 

TableCheck creates a lookup table for all cells with both row and 

column headers. In the lookup table, each cell’s row and column 

headers are used as its key, and a list of cell addresses as the cor-

responding value (one-to-many mapping). For example, in Figure 

3(s3), the key “Weekly:Responses” occurs in Q1!C3 and Q2!B3. 

Note that TableCheck creates fingerprints only for cells with 

complete (both row and column) header information. Users may 

create table clones with no header or only incomplete headers 

(e.g., only row or column header). However, given two cells 

without any header or with only incomplete headers, it is hard to 

tell whether they are clones. Therefore, TableCheck focus only on 

cells with complete header information. 

TableCheck’s clone detection algorithm (Algorithm 1) takes the 

lookup table and all cells (allCells) with complete header infor-

mation as inputs, and returns table clone groups. The algorithm 

works as follows. (1) It finds a seed cell that is contained in all-

Cells, and treats this seed cell as the initial table curTable (Lines 

3-4). (2) It inspects all neighboring cells of curTable in each di-

rection (left, right, up and down). After curTable includes all cells 

in one of the four directions, it may find some tables (get-

Clones method; Lines 22-38) in which all corresponding cells 

share the same header information. Then the algorithm expands 

curTable to include its neighboring cells in that direction (Lines 8-

10). (3) It repeats Step (2) until it cannot extend curTable in all 

directions (Lines 5-13). (4) Now, curTable and its clones form a 

new table clone group if they contain at least one formula cell, 

two rows and columns. Then all cells in this group are removed 

from allCells (Lines 14-18). (5) The algorithm repeats the above 

 
Figure 4. Cell header inference example, extracted from the 

EUSES corpus. The column headers of C11, D11 and E11 

should be “Rec”, “Non-rec” and “Total”, respectively. 

_____________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 1. Table clone detection algorithm. 
______________________________________________________________________________________________________________________________________________________________________________________________________ 
Input: lookup (lookup table), allCells (all cells with com-

plete header information). 

Output: groups (all detected table clone groups).  

 1:  groups = EMPTY; 

 2:  while allCells not EMPTY do 

 3:    seedCell = allCells.removeOne(); // Retrieve one cell. 

 4:    curTable = {seedCell}; 

 5:    foreach direction in {LEFT, RIGHT, UP, DOWN} do 

 6:      // newTable contains all cells in curTable and  

 7:      // curTable’s neighboring cells in the direction. 

 8:      newTable = genenrateTable(curTable, direction);  

 9:      if (getClones(newTable) not EMPTY) then 

10:        curTable = newTable; 

11:        goto Line 5; 

12:      end if 

13:    end for 

14:    group = {curTable, getClones(curTable)};  

15:    if (group contains formulas, >1 row and >1 column) 

16:      groups.add(group);  

17:    end if 

18:    allCells.removeCells(group); //Delete cells in group. 

19:  end while 

20:  return groups; 

21:  

22:  // Return clones of table. 

23:  method getClones(table) 

24:    clones = EMPTY;  

25:    firstCell = table.firstCell(); // Upper-left cell. 

26:    cloneSeeds = lookup.get(firstCell.header); 

27:    foreach cloneSeed in cloneSeeds do 

28:      // cloneTable has the same size as table, and 

29:      // cloneSeed as cloneTable’s upper-left cell. 

30:      cloneTable = buildClone(cloneSeed, table); 

31:      // Check whether each pair of corresponding cells in  

32:      // table and cloneTable has the same headers.  

33:      if (isClone(table, cloneTable) then 

34:        clones.add(cloneTable); 

35:      end if 

36:    end for 

37:    return clones; 

38:  end method 
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four steps until allCells becomes empty (Lines 2-19). The get-

Clones method (Lines 2238) computes clones according to a 

given table. It uses the upper-left cell of table to find potential 

clones’ upper-left cells by inspecting the lookup table (Lines 25-

26). Starting from each potential clone’s upper-left cell, it builds a 

cloneTable that has the same size as table, and then checks 

whether cloneTable has the same header information with table. If 

yes, cloneTable is treated as a clone of table (Lines 28-35). 

Note that for each table clone group thus detected, there does not 

exist another table clone group that contains all cells in this table 

clone group. Consider our example in Figure 3. First, Algorithm 1 

could select cell Q1!C3 as the initial table curTable = Q1![C3:C3]. 

Subsequently, curTable’s right neighbor Q1!D3 is inspected. The 

algorithm now finds a table Q2![B3:C3] that has the same header 

information as table Q1![C3:D3]. Thus, curTable is extended as 

Q1![C3:D3]. Now, curTable cannot be extended to left or right, 

because there is no other cell to the left or right of curTable. Then 

the algorithm inspects the neighboring cells (Q1!C4 and Q1!D4) 

below curTable. It can still find a table Q2![B3:C4] that has the 

same header information as table Q1![C3:D4]. Thus, curTable is 

extended as Q1![C3:D4]. Repeating the above process, the algo-

rithm finally finds a table clone group containing two tables: 

Q1![C3:D7] and Q2![B3:C7]. 

4.2 Smell Detection among Table Clones 
We then explain how to detect smells in extracted table clones. 

4.2.1 Detection Strategy 
Since table clones are used to express similar business tasks, the 

corresponding cells among them usually share the same or similar 

computational semantics. Inconsistent computational semantics in 

corresponding cells usually indicate that some of them are smelly. 

As smelly cells in a spreadsheet normally occur in minority, they 

can be detected as outliers from these cells. 

Let CellGroup be a group of corresponding cells from a table 

clone group. Consider a table clone group containing n tables, 

formally, CellGroup = {c1, c2, …, cn}. Referring to the example in 

Figure 1, we can extract 10 CellGroups, e.g., CellGroup1 = 

{Q1!C3, Q2!B3, Q3!B3, Q4!B3} and CellGroup2 = {Q1!D3, 

Q2!C3, Q3!C3, Q4!C3}. Since cells in CellGroup are supposed to 

share the same or similar computational semantics, all cells in 

CellGroup should follow the same formula in the R1C1 format, or 

none of them has a formula (e.g., CellGroup1). Otherwise, some 

cells in CellGroup may suffer from smells among table clones. In 

the following, we explain how TableCheck detects different types 

of smells within table clones. 

Missing Formula Smell. If some (not all) cells in CellGroup have 

formulas, it indicates that the cells in CellGroup should be com-

puted by formulas. Thus, all data cells in CellGroup are consid-

ered smelly (i.e., suffering from missing formula smells). For 

example, in CellGroup2 = {Q1!D3, Q2!C3, Q3!C3, Q4!C3}, the 

first three cells are formula cells, and the last cell Q4!C3 is a data 

cell. Thus, TableCheck considers Q4!C3 smelly. Similar smells 

occur to cells [C4:C6] and B7 in Figure 1(d). For this type of 

smell, TableCheck provides users with formula cells in CellGroup 

for reference. 

Inconsistent Formula Smell. If there is more than one different 

formula in the R1C1 format in CellGroup, it indicates that some 

cells in CellGroup are not computed in the same way. Thus, some 

formula cells in CellGroup are considered smelly (i.e., suffering 

from inconsistent formula smells). However, it is challenging to 

determine which formula cells in CellGroup are smelly. Ta-

bleCheck detects this type of smell by the following strategy. (1) 

It counts the number of cells that use the same formula (in the 

R1C1 format) in CellGroup. (2) The cells with the formula that 

occurs most frequently are considered correct, and the remaining 

ones are considered smelly. (3) If there is more than one formula 

identified in the previous step, TableCheck conservatively consid-

ers all formula cells smelly. Take CellGroup2 = {Q1!D3, Q2!C3, 

Q3!C3, Q4!C3} for example. The first two cells share the same 

formula RC[-1]/R[4]C[-1] (in the R1C1 format, discussed later as 

Case 2 in Section 4.2.2), whereas the third cell Q3!C3 has a for-

mula RC[-1]/30. Thus, TableCheck considers Q3!C3 smelly. 

4.2.2 Suppressing False Positives 
Since cloning tables is usually adopted for new requirements by 

users, inconsistency may not necessarily indicate smell. Thus, our 

basic smell detection strategy could introduce false positives. We 

observed three common cases that need to be taken care of before 

applying the above detection strategy. 

Case 1. A table contains a formula cell whose computation refer-

ences some cells outside the table. Due to the lack of header in-

formation for thus referenced cells, one has no idea about their 

meanings, whether they represent the same cells as those in other 

table clones, and whether the formula can be reused by other table 

clones. TableCheck chooses to remove from CellGroup those 

formula cells whose computations reference any other cell outside 

their contained tables. After this removal, all formula cells in 

CellGroup reference only cells within their contained tables. Fig-

ure 5 shows such an example. Based on our table clone detection 

algorithm in Section 4.1, cells [B3:C7] in Figure 5 are treated as a 

clone to cells [C3:D7] in Figure 1(a). Cells [B3:B6] in Figure 5 

have formulas. According to our previous detection strategy, cells 

[C3:C6] in Figure 1(a) are smelly (missing formula smells). How-

ever, they are not actually. Since cells [B3:B6] in Figure 5 refer-

ence cells outside table [B3:C7], TableCheck should exclude them 

from smell detection. Thus, TableCheck would not consider cells 

[C3:C6] in Figure 1(a) smelly. 

Case 2. Some formula cells in CellGroup may use absolute refer-

ences, and these absolute references can make them have different 

formulas in the R1C1 format. For example, in CellGroup2 = 

{Q1!D3, Q2!C3, Q3!C3, Q4!C3}, the first two cells Q1!D3 and 

Q2!C3 have different formulas in the R1C1 format (RC[-1]/R7C3 

and RC[-1]/R7C2, respectively). However, the referenced cells 

(e.g., $C$7 in Q1!D3 and $B$7 in Q2!C3) have the same relative 

positions to the formula cells (e.g., Q1!D3 and Q2!C3, respective-

ly). Thus, for formula cells that use absolute references, we should 

convert these references into their corresponding relative ones. 

Figure 2 shows this conversion for the excerpts in Figure 1(a-b). 

After this conversion, we observe that the corresponding cells in 

Figure 1(a-b) now have the same formulas (e.g., D3 in Figure 2(a) 

and C3 in Figure 2(b) have the same formula RC[-1]/R[4]C[-1]). 

Case 3. Some formula cells in CellGroup use constants (e.g., 30 

in cell C3 of Figure 1(c)). Formula cells that use different con-

 
Figure 5. Cells [B3:B6] compute total responses from Q1-Q4 

in Figure 1(a-d), and they reference cells out of table [B3:C7]. 
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stants imply different formulas in the R1C1 format. However, 

different constant values can be necessary for intended computa-

tions. For example, the financial reports in different years can use 

different interest rates as constants. Therefore, TableCheck treats 

all constants in the formula cells of CellGroup as a unified ab-

stract constant, and does not consider them differently. 

5. IMPLEMENTATION 
This section briefly explains some necessary implementation de-

tails. Our TableCheck implementation uses the Apache POI li-

brary[48] to read and modify Excel files. TableCheck loads an 

Excel file, analyzes its table clones, highlights table clones and 

adds related comments explaining smells related to table clones. 

For visualization, TableCheck marks its detection results by two 

annotations: (1) All cells in a table clone group are colored in the 

same color (except red); (2) Smelly cells are colored in red with 

added comments suggesting the cells that can contain possible 

fixes. These annotations can assist users to validate our detection 

results. Figure 6 gives a screenshot of Our TableCheck’s results 

for our motivating example in Figure 1(a) and (c). 

6. EVALUATION 
Our evaluation studies the following research questions: 

RQ1: How common are table clones in real-life spreadsheets with 

formulas? Can TableCheck detect table clones precisely? 

RQ2: Can TableCheck detect table-clone-related smells precisely? 

Are table-clone-related smells harmful? 

RQ3: How is TableCheck compared with existing techniques, e.g., 

AmCheck/CACheck, CUSTODES, Excel, and UCheck/Dimension? 

To answer questions RQ1-3, we ran TableCheck on all spread-

sheets with formulas in the EUSES corpus [25], and manually 

validated all detected table clones and smelly cells. We further 

checked whether smelly cells detected by TableCheck can also be 

detected by existing techniques, e.g., AmCheck/CACheck 

[21][22], CUSTODES [16], Excel and UCheck/Dimension [5][13]. 

6.1 Experimental Subjects and Methodology 
We used spreadsheets from the EUSES corpus to conduct our 

evaluation. The EUSES corpus consists of 4,037 real-life spread-

sheets from 11 categories. Since its creation in 2005, it has been 

widely used for spreadsheet research [4][16][21][30]. Table 1 lists 

the number of spreadsheets (SS) and number of spreadsheets that 

have formulas and can be processed by the Apache POI library 

(Formula) in each category (Category). Since TableCheck focuses 

on tables with computational semantics, we conducted our exper-

iments on these 1,617 spreadsheets with formulas. We also made 

our experimental data available online for future research [49]. 

TableCheck can detect table clones and their related smells among 

spreadsheets. Since almost all spreadsheets in the EUSES corpus 

are irrelevant with each other, table clones detected among 

spreadsheets could be prone to false positives. Thus, we focused 

only on table clones within each spreadsheet. 

We manually validated all detected table clones and smells by 

checking: 1) whether all corresponding cells in detected table 

clones share the same headers, 2) whether the corresponding cells 

in detected table clones share the same or similar computations, 

and 3) whether detected smelly cells can be repaired by their re-

ferred cells as reported by TableCheck. A smell is considered real 

if it can be repaired by inspecting its referred cells. 

6.2 Table Clone Detection Results 
We first investigate how common table clones occur in the 

EUSES corpus (Section 6.2.1), and then investigate the precision 

of our table clone detection (Section 6.2.2). 

6.2.1 Statistics of Spreadsheets with Table Clones 
Table 1 lists our statistics of spreadsheets that contain table clones 

(Spreadsheets with table clones). Table 1 gives the number of 

spreadsheets in which TableCheck detected table clones (Clone) 

and number of spreadsheets in which table clones were confirmed 

(True). As shown in Table 1 (True/Formula), 21.8% of our stud-

ied spreadsheets contain confirmed table clones. As reported by 

Hermans’ data clone detection [30], they detected data clones only 

in 86 spreadsheets in the same corpus. Thus, the spreadsheets 

containing table clones are much more than those containing data 

clones (352 vs. 86). 

 
(a) Q1 

 
(c) Q3 

Figure 6. TableCheck’s screenshot for the example in Figure 

1(a) and Figure 1(c). 

Table 1. Statistics of spreadsheets in the EUSES corpus (n.a.: not applicable). 

Category 
Spreadsheets Spreadsheets with table clones 

SS Formula Clone True True/Formula Intra Inter Smelly Smelly/True 

cs101 8 8 2 2  25.0% 2  0  2  100.0% 

database 678 200 58 54  27.0% 39  29  16  29.6% 

filby 45 1 0 0  0.0% 0  0  0  n.a. 
financial 720 358 100 96  26.8% 79  31  24  25.0% 

forms3 26 18 3 3  16.7% 3  2  0  0.0% 

grades 588 282 57 52  18.4% 42  19  11  21.2% 

homework 576 277 56 53  19.1% 37  25  10  18.9% 

inventory 699 278 72 68  24.5% 50  30  21  30.9% 

jackson 13 0 0 0  n.a. 0  0  0  n.a. 

modeling 679 190 25 21  11.1% 16  13  5  23.8% 

personal 5 5 4 3  60.0% 3  1  1  33.3% 

Total 4,037 1,617 377 352 21.8% 271 150 90 25.6% 

 

793



We also investigate what kinds of table clones a spreadsheet can 

contain. Table 1 lists the numbers of spreadsheets containing con-

firmed intra-worksheet table clones (Intra) and inter-worksheet 

table clones (Inter). Note that a spreadsheet can contain both intra- 

and inter-worksheet table clones simultaneously. As shown in 

Table 1, intra-worksheet table clones occur more often than inter-

worksheet ones (271 vs. 150). 

Table 1 also lists the number of spreadsheets in which table clones 

contains smells (Smelly). We observe that 25.6% of spreadsheets 

with confirmed table clones contain smells (Smelly/True). This 

proportion (25.6%) is non-negligible, and discloses that smells 

related to table clones are also common in real-life spreadsheets. 

Therefore, we draw the following conclusion: 

Table clones commonly occur in real-life spreadsheets 

with formulas, with intra-worksheet clones occurring 

more often than inter-worksheet ones. Smells related to 

table clones are also common, and thus deserve detection. 

6.2.2 Results and Analyses 
TableCheck detects table clones based on cells’ header inference 

that may not be fully precise. We are thus interested in the preci-

sion of our table clone detection. Since we observed that in all 

detected table clone groups, none of them has both true and false 

clone pairs, we thus measured the precision of table clone detec-

tion based on table clone groups. 

Table 2 gives our table clone detection results on the EUSES cor-

pus. In total, TableCheck detected 1,317 table clone groups (Table 

clone groups/Detected). We confirmed that 1,214 table clone 

groups are true (Table clone groups/True). The precision for table 

clone detection is thus 92.2%. This also discloses that our header 

inference works well for our table clone detection algorithm. 

We also investigate what kinds of table clones a table clone group 

can contain. If two tables in a table clone group are located in the 

same worksheet, this table clone group is considered as an intra-

worksheet group. Otherwise, they are located in two different 

worksheets, and the clone group is considered an inter-worksheet 

group. Note that a table clone group can be both intra- and inter-

worksheet if some of its contained tables satisfy both conditions. 

Table 2 lists the number of confirmed intra- and inter-worksheet 

clone groups (Intra and Inter, respectively). We can observe that a 

high proportion (42.6% = 517/1,214) of table clone groups con-

tain clones among worksheets. This discloses that detecting smells 

only within worksheets (e.g., AmCheck/CACheck) would miss 

smells that need to consider cells from different worksheets. 

Table 2 also lists the number of table clone groups that contain 

smells (Smelly table clone groups/Detected). We confirmed that 

92.2% of these smelly table clone groups are true. The precision is 

also promising. In total, 14.6% (177/1,214) of confirmed table 

clone groups contain smells. This also indicates that smells asso-

ciated with table clones are common. 

False positives of table clones. The differences in value for the 

second (Detected) and third (True) columns in Table 2 give the 

number of false positives, which arise because extracted table 

clones do not have the same or similar computation. Out of these 

103 (1,317  1,214) false positives, 100 are caused by wrongly 

inferred headers (in Section 4.1.2). For the remaining three cases, 

although they share the same header information, their contained 

cells do not have the same or similar computational semantics. 

That said, in 99.8% (1,214 / (1,214 + 3)) of detected table clone 

groups that share the same header information, their correspond-

ing cells have the same or similar computational semantics. This 

validates our observation in Section 3.2. A more precise header 

inference process could help improve TableCheck’s precision. We 

leave it to our future work. 

Therefore, we draw the following conclusion: 

TableCheck detects table clones precisely. The precision 

for table clone and smelly table clone detection happens 

to be both 92.2%. 

6.3 Smell Detection Results 
Table 3 shows TableCheck’s smell detection results. In total, Ta-

bleCheck detected 3,382 (Smelly cells/Detected) from the 177 

smelly table clone groups. Among these detected smelly cells, 

2,892 (85.5%) were confirmed as true positives. Note that each 

smelly table clone may contain a different number of smelly cells. 

We further investigate missing formula smells and inconsistent 

formula smells out of these 3,382 smells. Table 3 shows the num-

bers of missing formula smells (Missing formula smells) and in-

consistent formula smells (Inconsistent formula smells) that were 

detected (Detected) and confirmed (True). Out of 3,382 detected 

smells, 2,383 (70.5%) are missing formula smells, and the remain-

ing 999 (29.5%) are inconsistent formula smells. We observe that 

the smell detection precisions of these two types of smells are 

comparable (83.6% vs. 90.2%), and do not differ significantly. 

Harmfulness of smells. We manually inspected the confirmed 

2,892 smelly cells, and used their referred corresponding cells to 

try to recover their formulas. Then, we validated whether these 

smelly cells’ values can be computed by the recovered formulas. 

We observed that 971 (33.6%) smelly cells contain wrong values. 

Thus, TableCheck’s detected smells are indeed harmful. 

False positives of smells. The differences in value for the second 

(Detected) and third (True) columns in Table 3 give the number of 

Table 2. The detected table clone groups on the EUSES corpus. 

Category 
Table clone groups Smelly table clone groups 

Detected True Intra Inter Detected True 

cs101 2  2  2  0  2  2  

database 217  205  118  114  49  46  

filby 0  0  0  0  0  0  
financial 396  383  304  116  63  59  

forms3 5  5  5  2  0  0  

grades 202  183  119  73  18  17  

homework 145  124  74  55  15  13  

inventory 253  231  132  113  37  33  

jackson 0  0  0  0  0  0  

modeling 92  77  39  43  6  6  

personal 5  4  3  1  2  1  

Total 1,317  
1,214 

(92.2%) 
796 517 192 

177  

(92.2%) 

 

794



false positives of smells. We observed three reasons why these 

490 (3,382  2,892) false positives occurred: (1) Some cells in a 

table clone indeed have different computations, e.g., in a financial 

report, an earning computation may differ in different years. It is 

difficult to distinguish such different computations without under-

standing the meanings of all related cells in spreadsheets. 404 

(82.4%) false positives belong to this case. (2) Our outlier-based 

smell detection technique relies on heuristics, and it may wrongly 

treat correct cells as smelly. For example, if only two correspond-

ing cells have different formulas, TableCheck has no idea about 

which one should be smelly. Thus, TableCheck conservatively 

considers both of them smelly. 47 (9.6%) false positives belong to 

this case. For the remaining 39 (8.0%) false positives, they are 

caused by wrongly detected table clones. 

Therefore, we draw the following conclusion: 

TableCheck can precisely (85.5%) detects smells associat-

ed with table clones, which are harmful. Missing formula 

smells occur more often than inconsistent formula smells. 

6.4 Comparison with Existing Techniques 
To better evaluate the effectiveness of our TableCheck in smell 

detection, we compared TableCheck with AmCheck/CACheck 

[21][22], CUSTODES [16], Excel 2013’s built-in error checking 

mechanism, and UCheck/Dimension [5][13]. For these tech-

niques/tools, we investigate whether TableCheck’s 2,892 validat-

ed-as-true smells could also be detected by them. 

6.4.1 Comparison with AmCheck/CACheck and 

CUSTODES 
AmCheck/CACheck [21][22] aggregates a row or column of con-

tiguous cells into a cell array if: (1) none of these cells is empty or 

contains any label, (2) these cells share the same/similar input 

dependence and (3) at least one cell contains a formula. For ex-

ample, AmCheck/CACheck considers [C3:C6] in Figure 1(c) as a 

well-formed cell array, and no smell can be detected in it. CUS-

TODES [16] uses strong features (e.g., same or similar R1C1 

formulas) and weak features (e.g., same labels and font colors) to 

classify cells into different clusters. It then identifies smelly cells 

in each cluster. CUSTODES detects a cell cluster mainly by the 

equivalence of formulas contained by its cells. For example, 

CUSTODES considers cells [C3:C6] in Figure 1(c) as a correct 

cell cluster, and cannot detect any cell cluster in Figure 1(d). Thus, 

CUSTODES cannot detect smells in them. 

We ran AmCheck/CACheck and CUSTODES on the EUSES 

corpus, and checked how many TableCheck’s validated-as-true 

smelly cells could be detected by them. In Table 3, the AmCheck, 

CACheck and CUSTODES columns give the comparison results. 

We observe that AmCheck, CACheck and CUSTODES detected 

only 15.4% (444/2,892), 20.7% (599/2,892) and 35.6% 

(1,029/2,892) validated-as-true smelly cells, respectively. Thus, 

AmCheck/CACheck and CUSTODES missed a lot that could be 

detected by TableCheck. Note that AmCheck/CACheck and 

CUSTODES could also detect smelly cells that are not related to 

table clones. Thus, TableCheck is orthogonal to Am-

Check/CACheck and CUSTODES in spreadsheet smell detection. 

6.4.2 Comparison with Excel 
Microsoft Excel has its built-in support for detecting inconsistent 

formula smells among cells. However, this smell detection is ap-

plicable when: (1) a cell’s formula is syntactically inconsistent 

with those of its two adjacent cells, and (2) the formulas of the 

two adjacent cells are syntactically consistent. Besides, Excel also 

supports detecting some well-known smells like division by zero. 

We used Excel 2013 for the comparison, and enabled all its 

checking rules. In Table 3, the Excel column shows that Excel 

2013 issued warnings for only 0.4% (12/2,892) validated-as-true 

smelly cells detected by TableCheck. 

6.4.3 Comparison with UCheck/Dimension 
UCheck [5] and Dimension[13] also exploit the header infor-

mation from spreadsheets to check type inconsistency in formulas. 

UCheck uses unit to represent the type of a cell, and defines some 

rules to detect type inconsistency. Dimension detects smells by 

inspecting whether units of measurement are used incorrectly. 

UCheck and Dimension are only applicable to formula cells. As 

such, smelly cells without formulas cannot be detected. 

We ran UCheck/Dimension tool (obtained from its authors) on the 

EUSES corpus. In Table 3, the UCheck column shows that 

UCheck/Dimension detected only 0.3% (9/2,892) validated-as-

true smelly cells by checking type inconsistency in formulas. Note 

that if a type inconsistency does not relate to any table clone, our 

TableCheck will not detect it. Therefore, TableCheck is orthogo-

nal to UCheck/Dimension in smell detection. 

Therefore, we draw the following conclusion: 

TableCheck can detect smells that existing techniques fail 

to detect. Existing techniques detected at most 35.6% 

smells that TableCheck detected. 

7. DISCUSSION 
While our evaluation shows that TableCheck is promising for 

detecting table clones and their related smells in EUSES spread-

sheets, we discuss potential threats and issues below. 

Table 3. Smell detection results compared with existing techniques. 

Category 
Smelly cells Missing formula smells Inconsistent formula smells Existing techniques 

Detected True Error Detected True Detected True AmCheck CACheck CUSTODES Excel UCheck 

cs101 2  2  0  2  2  0  0  0  0  2  0  0  

database 1,524  1,441  767  818  739  706  702  333  331  357  2  0  

filby 0  0  0  0  0  0  0  0  0  0  0  0  
financial 821  780  66  684  669  137  111  62  224  492  4  6  

forms3 0  0  0  0  0  0  0  0  0  0  0  0  

grades 289  267  19  228  228  61  39  28  26  13  0  0  

homework 56  45  33  36  26  20  19  3  1  5  3  0  

inventory 637  305  67  564  276  73  29  17  16  159  3  3  

jackson 0  0  0  0  0  0  0  0  0  0  0  0  

modeling 46  45  19  44  44  2  1  1  1  1  0  0  

personal 7  7  0  7  7  0  0  0  0  0  0  0  

Total 3,382 
2,892 

(85.5%)* 
971  2,383 

1,991 

(83.6%)* 
999 

901 

(90.2%)* 

444 

(15.4%)§ 

599 

(20.7%)§ 

1,029 

(35.6%)§ 

12 

(0.4%)§ 

9 

(0.3%)§ 

* The precision for responding smell detection. 
§ The proportion of all confirmed smells (2,892) that can be detected by the corresponding techniques. 
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7.1 Threats to Validity 
Representativeness of our experimental subjects. One threat to 

the external validity is the representativeness of experimental 

subjects used in our evaluation. We selected the EUSES corpus 

that has been widely used for spreadsheet-related studies [4][16] 

[21][30]. These spreadsheets span across 11 application domains, 

and represent the ones used in practice. 

Table clone and smelly cell validation. Since the EUSES corpus 

was collected in the wild without any explanation for table clones 

and smells, we were unable to validate our results by their original 

users. Thus, we manually validated our detected table clones and 

smells. To alleviate possible mistakes, two authors of this paper 

cross-checked all detected results. 

Recall study of TableCheck. Since we do not have the ground 

truth for all table clones in the EUSES corpus, we did not measure 

the recall of TableCheck. It is challenging and almost infeasible to 

find all table clones and smells by manually inspecting and under-

standing each cell’s meaning of all EUSES spreadsheets. Besides, 

this could also cause extra speculation and bias. Similar cases also 

happened to the recall evaluation for code clone detection in con-

ventional programs [9][32][38]. In the future, we plan to conduct 

a recall study in a company where we can find the concerned us-

ers for their spreadsheets to fairly evaluate TableCheck’s recall. 

7.2 Limitations 
Our TableCheck assumes the existence of meaningful row/column 

headers in tables. If such headers are missing, incomplete or 

mixed with other label cells in spreadsheets, TableCheck may not 

detect table clones and smells effectively. This limitation is com-

mon to existing header-based techniques [5][14][28]. Further, 

after cloning a table, users may modify the header information or 

add/remove rows/columns according to new requirements. Then 

TableCheck could fail to detect such table clones. However, we 

argue that TableCheck is a valuable step towards table clone de-

tection for spreadsheets, which is a hard problem in general, since 

table styles can vary significantly among spreadsheets. 

Table cloning can help save editing efforts when repeating similar 

tasks. However, we still do not know how and why smells among 

table clones occurred. A real-life spreadsheet corpus with detailed 

version information will definitely be helpful for understanding 

such causes. In the future, we plan to conduct a user study on this. 

8. RELATED WORK 
In the section, we discuss the pieces of work that concern the code 

clone detection in conventional programs and the maintenance of 

spreadsheet quality (e.g., error, detection, testing and evolution). 

Clone detection. Code clone detection in conventional programs 

is a well-studied problem. Bruntink et al. [10] classified these 

techniques into four categories. (1) Text-based techniques 

[24][32]: little or no transformation to the source code is per-

formed before attempting to detect identical or similar lines of 

code. (2) Token-based techniques [7][33][38]: they apply a lexical 

analysis (tokenization) to the source code and then use the tokens 

as a basis for clone detection. (3) AST-based techniques [8]: they 

use parsers to obtain a syntactical representation (e.g., an abstract 

syntax tree (AST)) of the source code, and then search for similar 

subtrees in the AST. (4) PDG-based techniques [37]: they use 

program dependence graphs (PDGs), and then look for similar 

subgraphs in PDGs. These code clone detection techniques cannot 

easily be applied to spreadsheets, which adopt a different pro-

gramming model with variables indexed by rows and columns. 

Our table clone detection algorithm was inspired by a text-based 

clone detection technique [32]. The most related work is data 

clone detection [30], which detects clones with the same values in 

spreadsheets. To the best of our knowledge, no prior technique for 

detecting table clones in spreadsheets has ever be proposed. 

Spreadsheet error and detection. Spreadsheet errors are common 

[40][41][42]. Various techniques have been proposed to detect 

errors in spreadsheets. UCheck/Dimension[5][13] use a type sys-

tem to check type inconsistency in formulas. Smellsheet Detective 

[19][20] detects statistical smells, functional dependence smells 

and so on. Hermans et al. proposed visualizing spreadsheets by 

dataflow graphs [28], and detected inter-worksheet smells in them 

[29]. These techniques mostly focus on syntactic errors, while our 

TableCheck focuses on inconsistency among table clones that can 

concern semantic errors, which are more challenging to detect. 

Our previous work AmCheck/CACheck [21][22] and CUSTO-

DES [16] detect smells in a group of similar cells, while Ta-

bleCheck detects smells from a group of table clones. Thus, our 

TableCheck is orthogonal to these pieces of existing work. 

Spreadsheet modeling and testing. Building rigorous models for 

spreadsheets [3][18][27] can help users reduce the chance of in-

troducing errors. However, it is challenging to construct such 

models. Testing spreadsheets [6][26][35] can be an alternative, 

but its major challenge comes from the lack of test oracles. Ta-

bleCheck extracts table clones and detects inconsistency among 

them. TableCheck does not require explicit test oracles. 

Spreadsheet evolution. Table clones are often created during 

spreadsheet evolution when cells are copied for different purposes. 

SheetDiff [15] identifies changes between two spreadsheets as a 

whole and does not detect table clones and smells directly. VEn-

ron [23] publishes the first versioned spreadsheet corpus to facili-

tate spreadsheet evolution analysis. TableCheck can be used on 

VEnron to detect smells across multiple versions of spreadsheets. 

9. CONCLUSION 
In this paper, we study table clones in spreadsheets. These clones 

occur when copying spreadsheet cells during spreadsheet devel-

opment. We have also proposed an automated approach, Ta-

bleCheck, to extracting table clones by grouping cells with the 

same header information. Further, we propose an outlier-based 

technique to detect smells among table clones by cross-checking 

the corresponding cells among table clones. Our empirical study 

shows that table clones and their related smells are common in 

real-life spreadsheets. Our experimental evaluation shows that our 

table clone and smell detection approach is both effective and 

precise, while existing techniques can only detect at most 35.6% 

of validated-as-true smells detected by our TableCheck. 

We plan to pursue our future work in three ways. First, Ta-

bleCheck can be improved by more precise spreadsheet header 

inference. Second, TableCheck can also be improved by handling 

table clones with missing or incomplete header information. Third, 

more case studies on real-life spreadsheets would be conducted 

for evaluating TableCheck’s practical effectiveness in companies. 
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