
Fundamental Concepts for Practical Software Architecture
Alexander Ran

Nokia Research Center,
alexander.ran@nokia.com

ABSTRACT
Architecture of software is a collection of design decisions

that are expensive to change. How to identify which design
decisions are expensive to change? What are architecture views and
which views are needed to adequately describe the architecture of
a specific system? How to create and manage software
architecture for a product family? This tutorial offers answers to
these and other questions that arise in the context of complex
software development.

We introduce a system of concepts useful in order to
understand, design, and evaluate architecture of software intensive
systems and system families. Our approach utilizes different
software structures in order to control important system qualities
related to its development, performance, and evolution.

We draw our experience primarily from software embedded
in voice and data communication systems. However the same
principles can be applied to software architecture in other
domains. This tutorial should be useful to engineers and technical
managers involved in construction or evaluation of complex
software.

1. INTRODUCTION
This is a brief overview of the ideas and concepts presented

in our tutorial. Some of this material was described in more detail
in [1].

The initial interest in architecture emerged when software
built by companies crossed a certain threshold of complexity. This
happened across industries sometime between mid seventies and
mid eighties. The general situation could be characterized as a loss
of intellectual control over the software developed in industry.
Therefore a useful understanding of architecture should offer a tool
for dealing with the complexity of software development and
maintaining intellectual control over design, construction, and
evolution of software-intensive systems and system families.

Abstraction is one of the most effective ways to deal with
complexity. Effective abstraction preserves the essence of what it

represents. Therefore software architecture must be an
abstraction, representing most essential decisions made in the
design of a system. Which design decisions should be considered
most essential? We make a simple proposition: essentials of
software design are decisions that are expensive to change.
Of course, the most-expensive-to-change decisions are those on
which most other design decisions depend. This is why
architecture is often associated with the early phases of system
design. In practice, architecture management continues through the
lifecycle of the product monitoring that later design decisions do
not violate the initial architecture and also evolving the architecture
as necessary in correspondence with new information,
requirements, and technology.

We identify four categories of essential design decisions: concepts,
focus, structure, and texture. Other conceptual frameworks for
software architecture concentrate mainly on the structure of
software and overlook or underplay the importance of the other
three categories. Let us explain what we mean with each category
and why this category of design decisions is expensive to revise
and thus should be considered architecturally significant.

2. CONCEPTS
From the perspective that considers software architecture to

be an approach to dealing with complexity, probably the most
important architectural decision is selection of concepts used to
design the system. A design of a telecommunication system
depends in many ways on whether "connection" is a primary
concept in the system or is a relationship that may be established
between system users. In the same way operating systems may or
may not use the concepts of tasks, processes, monitors, queues,
etc. Costs of revising these choices at a later stage of design or
development may well exceed the costs of developing a new
product. Therefore a major part of software architecture and its
description should be selection and representation of the concepts
used in system design.

3. FOCUS
Each system has a small set of properties that make it

different from all other systems, make it attractive to users,
feasible to construct, and competitive on the market. This is the
focus of the system. The focus may be described with the
essential use cases, important qualities of operation or
construction. A flight reservation system may be able to charge a
user for reserved flights, to provide a user with weather forecast,
currency conversion, time zone and other relevant information.
This however is not a focus of a flight reservation system. The
focus of a flight reservation system is first of all the capability to

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE 2001, Vienna, Austria
© ACM 2001 1-58113-390-1/01/09…$5.00

328

access and update the database of available flights on behalf of the
user. The focus may also be on accessibility of the system over
the web, security and privacy of user information, performance or
flexibility of queries understood by the system. The focus may
determine selected technologies as well as many other tradeoffs in
system design. The focus determines the major concerns that need
to be addressed by the proper software architecture. These
concerns are not necessarily evident from system requirement
documents or any other system descriptions. Identifying and
documenting architectural concerns and their owners, also called
stakeholders, is an important part of software architecture.
Architectural concerns should be refined into architecturally
significant requirements (ASR) that are specific in terms of desired
system properties and how achieving these properties influences
or constrains the architecture.

4. STRUCTURE
On each level of abstraction a system is decomposed into a

number of interdependent components. The interdependency
implies that if one of the components is removed or changed in an
essential way, or the functionality is repartitioned between the
components, or a new component needs to be introduced, such a
change may require extensive revision of all other components – as
a rule, a very costly task. Therefore definition of system structure
falls in the category of essential decisions and thus belongs to
software architecture. Notice that there are multiple structures
that partition software as a whole into different kinds of
components. Some of the most common are source or object code
components, executable components, executing components.
There are relationships, but there is no direct correspondence
between these different kinds of components.

5. TEXTURE
Certain design decisions that are only visible within relatively

fine-grained components are nevertheless very expensive to revise.
This happens when the implementation of the decision cannot be
localized, but must be replicated consistently creating recurring
uniform microstructure, or texture. The texture of software is
created by recurring uniform microstructure of its components.
Decisions that affect texture of software have significant impact
on the system and they are as hard to revise as decisions regarding
the structure. Consistency of the texture is very often a problem,
since the decisions appear to be local to a component. It is not
easy to identify the common concerns present in the
implementation of different components without concentrating on
the texture on the system level.

6. SEGMENTATION OF CONCERNS
In addition to abstraction, a common approach to dealing

with complexity is separation of concerns. A proper separation of
concerns must identify the concerns that can be addressed

independently from each other. We use separate segments of
software transformation cycle as guides for separable concerns.
Software always goes through a transformation cycle from source
code modules to object modules to executable units to threads and
objects. In each segment software consists of a different kind of
elements. During the design or development segment the software
is essentially source code. During the build segment the software
is essentially object files and library archives. During the start-up
segment the software is system state and groups of executable
entities with their dependency structure. During the operation
segment software is threads and objects. Each kind of components
forms its own component domain. The structure and texture of
software in each component domain address different concerns.
Performance requirements are addressed by partitioning software
into execution threads of varying priority, specifying thread
scheduling policies, regulating use of shared resources, etc. Change
and reuse requirements are addressed by partitioning software into
modules having well-defined boundaries, predictable interaction
with the environment, and minimal, well-specified dependencies
on other modules. Requirements for independent re-start are
addressed by partitioning the software into a set of separately
loadable and executable processes.

Architecturally significant requirements must be grouped so
that requirements in different groups may be satisfied
independently, while requirements within each group may interact
and even conflict. This can be achieved if we group the
requirements by the segment of software life cycle. For example
requirements that address software development and change can
be satisfied almost independently from requirements that address
run time behavior, or for example software upgrade.

7. WHAT IS SOFTWARE ARCHITECTURE
We define software architecture as a set of concepts and

design decisions about structure and texture of software that
must be made prior to concurrent engineering to enable
effective satisfaction of architecturally significant, explicit
functional and quality requirements, and implicit
requirements of the problem and the solution domains.

According to this model the purpose of architecture is to
enable satisfaction of architecturally significant requirements
(ASR). The content of architecture is a set of concepts and design
decisions about structure and texture of the software – the
architecturally significant decisions (ASD). ASD must be made
prior to concurrent engineering because they influence many
design decisions in every component.

8. REFERENCES
[1] Ran, A. “ARES Conceptual Framework for Software

Architecture” in M. Jazayeri, A. Ran, F. van der Linden
(eds.), “Software Architecture for Product Families
Principles and Practice”, Addison Wesley, 2000

329

