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Abs t rac t .  This paper reviews past work done by our group in the 
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proaches are discussed, emphasizing their ability to verify formal spec- 
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formalism belonging to the class of high-le~,el Petri nets) and TRIO (a 
real-time temporal logic language). 
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1 I n t r o d u c t i o n  

Real-time computer systems are increasingly used in the practical world. More- 
over, they often constitute the kernel part of critical applications - -  such as 
aircra.ft avionics, nuclear power plant control, and patient m o n i t o r i n g - -  where 
the effect of fa.ilures can have serious effects or even unacceptable costs. These 
systems are generally characterized by complex interactions with the environ- 
ment in which they operate and strict timing constraints to be met. They are 
real-time, since their behavior and their correctness depend on time: the effect 
of producing certain results too early or too late, with respect to the expected 
response time, may result in an error. 

Existing semi-formal methods supporting specification, design, verification 
and validation of real-time systems ([16, 30, 15]) provide very limited support  
to high-quality software in the above domains. First, they often address only 
one or a limited set of the phases of the application development. Second, their 
semantics is informally defined, and therefore they provide no or partial support  
to analysis and execution. Most existing formal methods, on the other hand, are 
difficult to use, often lack facilities for handling real-time and for structuring 
large specifications, and provide limited tool snpport. 

In the past, our group has been working in the area of formal specifications 
for reactive, real-time systems, with the goal of: 

* This material is based upon work supported by the Esprit project IPTES, and by 
the Progetto Fina]izzato Sistemi Informatici e Calcolo Pa.rallelo (CNR). 
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- U n d e r s t a n d i n g  d i f fe ren t  spec i f i ca t ion  p a r a d i g m s .  Our belief is that  
"the" correct approach to the problem does not exist. Rather, we will even- 
tually need to integrate different approaches in a specification support envi- 
ronment. In our work, we pursued research in two complementary directions: 
specifications based on an operational approach (namely, Petri nets) and 
specifications based on a descriptive approach (namely, real-time temporal 
logic). 

- S u p p o r t i n g  ver i f i ca t ion  o f  f o r m a l  spec i f ica t ion .  Requirements capture 
for a new application is a highly critical activity, which can have a far- 
reaching impact on the qnality of the product. Requirements errors are often 
discovered very late, when the system has been delivered to the final user 
and is operational in the target environment. At this point, however, not 
only the cost of (part of) the development effort would be  wasted, but also 
the cost of failures would bear on the cost of the application. Our goal has 
therefore been to ensure that  specifications are verified before proceeding 
to implementation, so that  errors are not inadvertently transferred from 
requirement specification down through the whole development cycle. In this 
paper, we use the term "verification" as an umbrella concept that  captures 
all forms of assessment of a specification 2. In particular, we will discuss 
two complementary forms of verification: static verification (which includes 
a whole range of possibilities, from static semantic checking to all forms 
of naathematical proofs) and dynamic verification (i.e., testing). We also 
discuss symbolic execution, which is somehow in the middle between the 
two approaches. 

- S u p p o r t i n g  the  spec i f ica t ion  a c t i v i t y  t h r o u g h  an  i n t e g r a t e d  set  o f  
tools .  Formal methods are intrinsically more supportive of mechanical ma- 
nipulation than informal methods. Tools may in fact be based on both the 
syntax (e.g., syntax-directed editing tools) and the semantics (e.g., semantic 
checkers) of the formalism. Tool support is essential to promote the use of 
formal methods among users. 

- E n h a n c i n g  usab i l i t y  of  t h e  f o r m a l i s m .  Formal methods are very of- 
ten based on languages that  non-naathematicians find difficult to read and 
write. The syntax of the language is often awkward; no graphical descrip- 
tion facilities are provided; no modularization a.nd abstraction mechanisms 
are available to structure large specifications; and no application-specific 
concepts can be added to the language. Tool support is a first step towards 
improving usability, but more is needed. In the work done by our group, 
a, layered approach was followed. The start point is a concise, clean, and 
naathematically defined notation. Other linguistic layers were then defined 
on top of the kernel in order to provide more expressive, user-oriented no- 
tations. Structuring mechanisms were also provided to allow specifications 
to be modularized according to the principles of abstraction and informa- 
tion hiding. In the case of the Petri net approach, we also defined a way to 

2 Note that other authors distinguish between verification and validation. Others dis- 
tinguish between verification, intended as formal verification, and testing. 
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make the specification notation extensible, by providing a definitional de- 
vice (based on graph grammaxs) through which new graphical specification 
notations may be added. 

- S u p p o r t i n g  s u b s e q u e n t  d e v e l o p m e n t  s teps  (design,  i mp l emen t a -  
t ion,  t es t ing ,  etc.) .  There are approaches where the formal specification 
is transformed into an implementation through predefined and partially au- 
tomated transformation steps. In the work done by our group, this aspect 
has not been investigated so far. Work has been done in the derivation of 
test cases from the specification; such test cases can be used to verify an 
implementation. 

This paper provides a comprehensive view of the work done by our group in 
the two aforementioned research directions. The discussion is mainly based on a 
survey of previously published work; most notably, [10, 11, 12, 14] for the Petri 
net based approach, and [13, 7, 21, 24] for the real-time logic based approach. 

The paper is structured as follows. Section 2 surveys TB nets and their 
verification methods. TB nets are a class of high-level Petri nets. Their definition 
is provided in Section 2.1. Section 2.2 deals with CABERNET, an environment 
designed to support net-based specification and verification of re,l-time systems. 
Section 2.3 focuses on the verification facilities provided by CABERNET to 
support timing analysis, while Section 2.4 focuses on structuring mechanisms. 
Section 3 surveys the real-time logic language TRIO, its verification, and its 
support to in~plementation verification. In particular, the language is presented 
in Section 3.1. TRIO's formal semantics is discussed in Section 3.2. Section 3.3 
deals with different kinds of TRIO verification and shows how the specification 
can provide support for implementation verification. Section 3.4 discusses how 
TRIO can support formal verification. Finally, Section 4 draws some conclusions 
and outlines future work. Section 3.5 outlines the extensions proposed to include 
structuring mechanisms in a real-time logic. 

2 T B  N e t s :  a n  o p e r a t i o n a l  s p e c i f i c a t i o n  l a n g u a g e  

Time Basic nets (TB nets) ([11]) are an extension of Petri nets ([31]). WB nets 
have been introduced in [11]. In this pa.per, we introduce then] rather informally 
by using a slightly different notation than in [11]. 

2.1 The  language  

In TB nets, each token is associated with a. tirn.es~.amp, representing the time 
at which the token has been created by a firing. Each transition is associated 
with a r which describes the relation between the timestamps of 
the tokens removed by a firing and the timestamps of the tokens produced by 
the firing. 

Def in i t ion1 (TB nets) .  A TB net is a 6-tuple < P,T, 6);F, tf ,  mo > where 
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1. P,  T, and F are, respectively, the sets of places, transitions, and arcs of a 
net. Given a transition t, the preset of t, i.e., the set of places connected with 
t by an arc entering t, is denoted by '~; the postset o f t ,  i.e., the set of places 
connected with t by a.n arc exiting t, is denoted by t ~ 

2. 0 is a numeric set, whose elements are the t imestamps that  can be associated 
with the tokens. The t imestamp of a token represents the t ime at which it 
has been created. For instance, {9 can be the set of natural numbers, or the 
set of non-negative real numbers. In the following, we assume 6) = IR. + (the 
set of non-negative real numbers; i.e., t ime is assumed to be continuous). 

3. t f  is a fnnction that  associates a function t f ,  (called time-function) with 
each transition t. Let en denote a. tuple of tokens, one for each place in the 
preset of transition t. Function t.f, associates with each tuple en a set of 
vahms 6 (0 C_ 6)), such that  each va,lue in 0 is not less than the maximum of 
the t imestamps associated with the tokens belonging to tuple en. 0 = t f , (en)  
represents the set of possible times at which transition t can fire, if enabled 
by tuple en. When transition t fires, the firing time of t under tuple en is 
arbitraryly chosen among the set of va.lues B. The chosen firing time is the 
va.lue of the t imestamps of all the produced tokens. 

4. m0, the ini~,ial marking, is a function associating a (finite) multiset of tokens 
with each place. In general, we use function m to denote a generic marking 
of nets, i.e., re(p) denotes the multiset of tokens associated with place p by 
marking m. 

The set T is parti t ioned into two sets S T  and W T ,  the set of Strong Transi- 
tions and Weak Transitions, respectively. If a transition belongs to ST,  then, if it 
is enabled, it must fire within its n~aximum firing time, as defined by function t f ,  
unless it is disabled by some other firing. Instead, if a transition in W T  fires, it 
fires if it is enabled and before its maximun~ firing time has expired (i.e., a weak 
transition can fire, but it is not forced to fire). Actually the initial marking m0 
of a TB net must ensure that  there exists no enabling < en, t  >, with t E TS ,  
such that the maxinlum firing time of t  under tuple en is less than the maximum 
of the t imestamps associated with the tokens in m0. 

In [11] a deeper discussion is presdnted where the two kinds of transitions 
lead to the definition of different semantics for the TB nets. The first class is 
there referred to as Strong Time Semantics while the other is referred to as Weak 
Time Semantics. In [11] it is shown how Weak Time Semantics is closer to the 
original semantics of Petri nets, while the other is closer to the intuitive notion 
of time evolution. 

In order to define the rule by which new markings of the net may be gen- 
era.ted, starting from the initial marking too, we need to define the concepts of 
enabling tuple, enabling, firing tim~:, and enabling time. 

Def in i t ion2  (Enab l ing  tuple ,  enabl ing,  f ir ing t ime,  enab l ing  t ime) .  Given 
a transition t and a marking m, let en be a tuple of tokens, one for each input 
place of transition t, the tra.nsition t can fire at a time instant r under tuple en 
if and only if : 
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1.. r E t~f , (en);  
2. r is greater than or equal to tile t ime associated with ally other token in tile 

marking; 
3. v is not greater than the maximumfi r ing  t ime of every other strong transit ion 

enabled in the marking 

If t f r  is empty, there exists no t ime instant at which transition t can 
fire under tuple en; i.e., transition t is not enabled tinder tuple en. If  t f~(en)  
is not empty, en is said to be a.n enabliT~g ~uple for transition t and the pair 
x = <  en,~. > is said to be an enabling. The triple y = <  en, t ,  7- > where < en , t  > 
is an enabling, 7- E t f~(en),  and t can fire at instant r tinder tuple en is said 
to be a firing, r is said to be the firing r We refer to the max imum among 
the t imes tamps  associated with tuple en as the enabling ~irn.e of the enabling 
< en, l >. 

The dynamic evolution of the net (its semantics) is defined by means of firing 
occurrences, which ult imately produce firing sequences. 

D e f i n i t i o n 3  ( O c c u r r e n c e  o f  a f i r i ng  in a m a r k i n g ) .  Given a marking m 
and a firing y = <  en, t, r > such that  en is contained in m, and t can fire at 
instant 7- under tuple en, the firing occurrence of y in m produces a new marking 
m ~, that  can be obtained fl'om m by removing the tokens of the enabling tuple 
en from the places of ' t ,  and producing a new token with t imes tamp v in each 
of the places of t ' .  If  x is a firing that  produces marking n)/ from m we write 

Figure 1 shows a fl'a.gn~ent of a TB net. Places P2  and P3  are marked with 
a token whose t imestamp is 0. The t imes tamp associated to the token in place 
P1 is 1. Transitions T2 and T3 are strong; transition T1 is weak. 

Function t fT1 states that  transition T1 can fire at a t ime between the max-  
imum t ime of the t i lnestamps of the tokens in the place P1 and P2,  and 5 t ime 
units after the value of the timestanap of token in P2.  Transition T1 is weak 
and so it is possible that  it does not fire also if the transition is enabled. In the 
example,  this transition is enabled and the possible firing t ime is any value in 
[1,5]. 

Function tfT'_, states that  transition T2 can fire at a tinle between 8 t ime 
units after the max inmm time of the tinaestamps of the tokens in the place P1 
and P2,  and 10 time units after the value of the t imes tamp of token in P2.  In 
the example,  this transition is enabled and the possible firing t ime is any value 
ill [9,10]. 

Function ~'fT3 states tha.t transition T3 can fire at a t ime between 3 and 15 
t ime units after the value of the t imes tamp of token in P3. In the example,  this 
transition is enabled and the possible firing t ime is any va.lue in [3,10]. In fact, 
it cannot fire at a t ime greater than 10 unless transition T2 fires before (within 
10). 
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~fTI(P1, P2)= {r [ m a x ( P 1 , P 2 ) < r < P 2 + 5 }  
tfT2(P1, P2)= {r [ max(P1,P2)+ 8 < r < P2-t- lO} 
~ . f ~ ( P 3 )  = {~ t P 3 + 3  < ~ < P 3 + 1 5 }  
r e (P1)  = {1}; r e (P2)  = {0}; re (P3)  = {0} 

Fig. 1. A Simple TB net. 
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2.2 A n  i n t r o d u c t i o n  to  t h e  C A B E R N E T  e n v i r o n m e n t  

C A B E R N E T  ([29]) is an environment designed to support  specification and ver- 
ification of real-t ime systems based on high-level Petri nets 3. 

C A B E R N E T  provides editing facilities to describe nets and execution facili- 
ties to animate  them. By executing the net, it is possible to test a specification 
to detect specification errors. C A B E R N E T  provides different facilities to control 
execution, such as: 

E x e c u t i o n  m o d e :  It  is possible to execute a net with respect to the temporal  
constraints or as a pure net; i.e., ignoring t iming information at tached to 
both tokens and tra.nsitions. 

S t e p  m o d e :  The user can direct the interpreter to proceed in single step mode, 
i.e., the interpreter waits for a. command  after each firing or each phase of a 
firing (e.g., identification and choice of the enabling, evaluation of the action, 
etc.). 

E n a b l i n g  choice :  If required the user can select the enabling to fire. In the 
other case this is chosen nondeterlninistically. 

F i r i n g  t i m e  choice :  Once an enabling is chosen for firing, the firing t ime can 
be chosen according to different options: 

3 The acronym stands for Computer-Aided software engineering environment Based 
on ER NETs. ER nets are the kernel formalism of the environment. ER nets are Petri 
nets augmented with features to describe data, functionMity, and control ([11]). TB 
nets are a timed formalism which is defined on top of ER nets. 
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R a n d o m :  The firing time is chosen randomly in the set of possible firing 
times of the enabling. 

L o w e s t / H i g h e s t :  The lowest (respectively, highest) firing time for the en- 
abling is chosen. 

Use r  choice: The user is prompted to choose one among the possible firing 
times. 

CABERNET provides facilities for analyzing nets. In particular, it supports 
certain kind of verification of timing requirements, as we will show in Section 2.3. 
Finally, one of the goals of CABERNET is to support customization of the 
specification notation by means of a tool, called Meta-editor. The Meta-editor 
allows new graphical notations to be added to the environment, by defining 
not only their syntax, but also their semantics in terms of translation to the 
underlying kernel notation (ER nets). 

hi this way, the specification environment is open and extensible. User- 
oriented and application-oriented interfaces can be formally defined, and spec- 
ifications written in the newly defined notations can be formally manipulated. 
We developed examples of this approach, such as the definition of Statecharts 
in terms of EP~ nets. The definition of the mapping between the external graph- 
ical language and the kernel notation is forlnally specified by means of graph 
grammars ([27]). 

2.3 Verif icat ion of  TB ne ts  

The importance of executing formal specifications to validate requirements has 
been advocated, among others, by [19]. By executing formal specifications and 
observing the behavior of the specified system, one can check whether specifi- 
cations capture the intended functional requirements or not. In other words, by 
executing requirements, we perform testing in the early phase of the develop- 
ment process. Although testing cannot prove the absence of errors, it is especially 
valuable as a mechanism for validating functional requirements. 

The previous description of CABERNET shows how the available execution 
facilities provide some basic support to specification testing. In this section, we 
discuss two other forms of verification provided by CABERNET, which support 
verification of timing properties. 

Symbol i c  execut ion.  Symbolic execution is a well-known technique for ana- 
lyzing sequential programs. It can be applied with different goals, such as ver- 
ifying correctness of a particular path for a.ll the input data which cause the 
execution of a pa.rticular path, synthesizing test data for a path. 

In [4], symbolic execution is extended to deal with concurrent programs. 
In [12] symbolic execution is proposed as a method for analyzing a subset of 
TB nets, while [23] applies this proposal for validation of concurrent ADA T M  

programs. Let us now briefly introduce the mechanism for symbolically execute 
a TB net. 
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Let us suppose that the tokens of the initial marking contain symbolic values 
for the timestamps. Let C (Consirainl) be a boolean expression initialized by 
the user to describe the initial constraint on the timestamps. C is used to record 
the assumptions made on the timestamps and therefore plays the role of the 
Path Condition in the seqnential case. Let E S  (Execution Sequence) be a data  
structure recording a firing sequence. The pair < C, E S  > fully characterizes 
a symbolic execution. Below we describe a symbolic execution algorithm using 
< C, E S  >. 

At each transition firing, the symbolic interpreter incrementally update C, 
E S  and the current symbolic marking m. The whole execution is based on the 
symbolic initial marking; that is, every symbolic value of the token t imestamp is 
an expression derived from a sequence of elaborations starting from the symbolic 
values of the initial marking. The symbolic execution algorithm is decomposed 
in six steps. The a.lgorithm is described below with reference to the example of 
Figure 1: 

S t e p  0 : In i t i a l i za t i on  
The initial marking m0 is defined by providing symbolic values for the times- 
talnps of the tokens initially stored in the places, and by providing an initial 
constraint (C) on such timestamps. ES is initialized to NIL. 
In the example, we can assume a symbolic marking in which places P2 and 
P3 contain a token whose associated timestamp r0 can assume any value 
between 0 and 10, and place P1 contains a token whose associated t imestamp 
rl can assunle any value greater than r0 and less than 7-0 + 15. Thus, the 
initial constraint is: 
C0=0_<T0_<10 A ~-1 >_ r0 A rl < r 0 + 1 5  

S t e p  1 : I den t i f i c a t i on  o f  t he  set  o f  e n a b l e d  t r a n s i t i o n s  in t h e  c u r r e n t  
m a r k i n g  
For each transition t potentially enabled by a tuple en (i.e., there is at least 
a token in each place of its preset), evaluate if there is some time value 
v,.ew E t f t (en) that satisfies C and r,.e~,, is greater than or equal to the last 
symbolic firing time and is less than the maxin:nm firing time of any other 
enabled strong transition. 
In the example the three transitions are all enabled. For instance, T3 is en- 
abled because the expression that results by the conjunction of the following 
inequalities is satisfiable : 

- Co (i.e., the previous constraint) 
- r0 + 3 < 7,,ew <_ ro + 15 (i.e., r,.~w E t.fT'.,(en)) 
- r,.,,, >_ rl (i.e., there is no other t imestamp in the net that  is greater 

than r,~eu,) 
- r , . e , , ,< r0+10  V 7"0+10< rl V r : + 8 > r 0 + 1 0  (i.e., either the firing 

is less than the n~axilnum firing time of the other strong transition, or 
the other strong transition is not enabled.) 

S tep  2 : Select:ion of  t he  e n a b l i n g  to fire 
An e~abling < t, enab > of those found at the step 1 can be selected nonde- 
terlninistically or a.ccording to the user's interaction. 
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Step 3 : U p d a t e  of  C 
C is updated with the (possibly simplified) constraint built in the step 1 for 
the chosen enabling. If there is only one possible symbolic value of r,~ew that  
satisfies the constraint, it is possible to substitute the variable r,~w with the 
symbolic expression. In most of cases, it is necessary to build a new symbolic 
value for the new variable. 
In the example, if transition T3 is chosen, the new C will be: 
0_<ro_<10 A r o _ < r l _ < r o + 1 5  A r o + 3 < ~ _ < r o + 1 5 A  
v2_>rl A (v~_<r0+10 V v 0 + 2 < r ~ )  

S t e p  4 : T r a n s i t i o n  f i r ing  a n d  m a r k i n g  u p d a t e  
Transition t of the ena.bling selected at step 2 is fired, i.e., the enabling 
tuple enab is removed from the places of ' t  and new tokens are inserted 
into places of t ~ bound to a symbolic expression that represents the possible 
firing times, or to a new symbolic value, as shown above. 
In the example, the new marking will consists of a token (r0) in the place 
P1, a token (rl) in the place P2 and a t.oken (r~) in the place P6. 

S t e p  5 : U p d a t e  of  ES 
Finally, ES should also be updated: 
ES',~ew : :  appe.nd( < t, enab >, ES~,ht) 

T i m i n g  ana lys i s .  Reachability analysis is traditionally understood as finite 
enumeration of reachable states of some finite state model ([33]). It has been 
extended, however, to cope with infinite state models. This is the case of conven- 
tional Petri nets that  can have an unbounded number of tokens in some places. In 
the case of infinite state models, ana.lysis procedures have been derived, where 
states are grouped in (possibly infinite) sets and reachability analysis is then 
applied to such sets. 

The techniques used for reachability analysis of (unbounded) Petri nets can- 
not be applied to the analysis of TB nets, since they group together the markings 
that  differ only in the number of tokens in the marked places. In the case of TB 
nets, markings differ also in the timestanaps associated with the tokens. For ex- 
ample, the number of states (markings) reachable in the TB net of Figure 1 by 
the firing of transition T3 is infinite, because the timestalnp associated to the 
token in place P6 can be any real value in the interval [3, 10]. 

[14] presents a technique for reachability analysis of TB nets, where each 
reachable state is symbolic, and represents a (possiMy infinite) set of states of 
the TB net. That  is, the technique is based on the symbolic execution presented 
in Section 2.3. In the general case, the analysis produces an infinite tree. How- 
ever, [14] shows that the number of tree nodes to be examined for proving an 
interesting set of temporal properties is finite. Such properties may be classified 
in two sets: bounded invariance and bounded response. 

A bounded invariance (or limed safely) property states an invariant property 
that  must hold until a certain lower bound for time is reached. A bounded re- 
sponse (or timed liveness) property specifies that  a certain property eventually 
holds, before an upper bound for time is reached. 
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The technique builds a symbolic time teachability tree (TRT). A node of the 
tree represents a symbolic state. A symbolic state is composed by the constraint 
C (specified as before) and a symbolic marking. A symbolic marking is a function 
p. from places to multisets of symbolic va.lues. The symbolic values represent sets 
of mimetic values for the timestamps associated with tokens in the marked places. 
An arc of the tree represents the symbolic firing of a. transition. Starting from 
the root of the tree, which represents the initial symbolic marking, the tree is 
built by using rules similar to those of symbolic execution. 

The TRT of the net in Figure 1 is shown in Figure 2. Nodes are graphically 
represented by two symbols: circles and squares. A circle indicates that it is 
possible that no transition is enabled in that  symbolic state. For example, if 
the va.lue of the token in P I  is greater than r0 + 10 in the state $3 there is no 
transition enabled. The arcs are labeled with the name of the respective firing 
transition. Any set of values satisfying the constraint C associated to a node 
represents a. feasible firing time schedule of the net up to the transition leading 
to such a. node. 

In the CABERNET environment, the procedure sketched above is imple- 
mented by a tool for specification analysis called A,IElZLOT ([1]). MEI~LOT 
allows the user to prove bounded response a.nd bounded invariance properties of 
the specified system. More specifically, the tool allows one to prove the following 
properties: 

O c c u r r e n c e  of  even t s  (f i r ings)  or  of  special  s t a t e s  ( m a r k i n g s ) .  Properties 
can assert either that there exists at least one execution of the system where 
some states or events are reached or tha.t all possible executions reach these 
events or states within a given t ime limit. Example states in the example 
are those characterized by a token in the place P1 and a token in the place 
P5. 

Sequence  of  even t s  a n d  s ta tes .  Properties can assert some precedence con- 
straints between different states and events. For example, that  the firing of 
T3 is followed by a firing of T1. 

T i m e  of  o c c u r r e n c e  of  even ts .  Properties can assert some constraints on the 
firing time. For example that  the firing time of the transition T3 is greater 
of the firing time of T2 plus a consta.nt. 

Any logical colnbination of the previous properties can also be expressed as 
a property to be proved. 

2.4 A b s t r a c t i o n s  a n d  h i e ra rch ie s  

Net-based specifications stiffer froln tile la.ck of adequate structuring mecha- 
nisms. In practice, specifications may become hard to read and understand, and 
verification procedures may become very inefficient, as the size of the net reaches 
certain bounds. In particular, reachability analysis suffers from the state explo- 
sion problem. 



21 

% 

SO 

S6;/ 
SO: Co:= ro > 0 h ?'0--<10 h rl _> 

Marking:= p.(P3)= {To}; p,(P2) 
Sl: CI:= C0 A 7"2_<7"0-'1-5 A 7"2>_ 

Marking:= # ( P 4 ) =  {7-2}; #(P3) 
82: C2:= C0 A 7"3 _> rl q-8  A r3 -< 

Marking:---- #(F5) = {7-3}; #(P3) 
S3:  C3:=Co A 7-4 -< 7"o+15 A n >_ 

Marking:= p.(P6) = {7"4}; #*(P2) 
S4:C4:=C1 A 7-5 > T0-']-3 A rS< 

Marking:= #(P6) = {rs}; l~.(P4) 
S5:Cs:=C'2 A T~ >__ 7-0 § 3 A T~ <_ 

Marking:= p,(P6) = 17-6}; /,(P5) 
S 6 : C 6 : = C 3  A r T - <  To+5 A 7-7>_ 

Marking:= #(P6) = {7-4}; /~.(P4) 
S7:C7:=C3 A 7 8 > r 1 §  A rs-< 

Maxking:= p.(P6) = {r4}; #(PS) 

TO A rl _<ro+15 
= {T0}; #(P1)  = {7-1} 
TO A T2 ~_ T I 

={To} 

T0 + 10 
= { T o }  
7-~ A r ~ _ r o + 3  h ( r ~ > r o + 2  Vr4<7-o+10)  
= {To}; # ( e a ) =  {7-~} 
7"0+15 A T5 > 7-2 
={T~} 
7-o+15 A r6_  7-3 
= {7-~} 
7-4 
= {~-~} 

7-o+10 A rs>_r4 
={TS} 

Fig. 2. The TRT of the TB net. of Figure 1. 

We addressed these issues by allowing nets to be defined in a hierarchical, 
top-down manner,  where one specification level implements a more abstract  level. 
We defined what  it means tha.t a. TB net I is a correct implementa.tion of a. TB 
net S. Intuitively, I is an implementat ion of S if I adds details (i.e., transitions, 
arcs, and places) and possibly restricts the set of behaviors tha t  are possible at 
the S level. If  I is a. correct implementation,  then if cer ta in  properties have been 
proved to hold for the specification, they also hold for the implementat ion.  This 
result is impor tan t  since it allows properties to be proved for a net of l imited 
size, a.nd then extended to a. net of larger size, tinder certa.in assumptions on 
the relationship between the two nets. Furthermore, a number  of constructive 
rules ha.ve been defined through which a specification may be refined into a 
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correct implementation. If these rules are followed, it is not necessary to prove 
the correctness of the implementation relation a-posteriori, since it is guaranteed 
to hold a-priori. These results are formally presented in [5]. 

As we mentioned, large net-based specifications are quite difficult to under- 
stand. Hierarchical definition helps, but does not solve the problem. Although 
nets are a graphical formMism, specifications are written according to mathemat-  
ical abstractions, not using user and application-oriented concepts. Moreover, the 
specification language is defined once for all; it is not tailorable or adaptable to 
the needs of the specifier. On the other hand, it would be useful to provide a 
specification forma.lisn~ that  can be customized to match the specific needs'of a 
specifier. It would also be useful to provide a notation that  uses graphical con- 
cepts that are familiar to the user, so that requirements verification can be done 
more effectively. For example, in a control system for a hydraulic plant, user- 
oriented graphical abstractions l]]ay inclnde valves that  can be open or close, 
pipes, etc. This issue has considered by CABERNET, which allows a Meta-user 
to formally define new la.nguage layers on top of the underlying kernel formalism, 
using the Meta-editor mentioned in Section 2.2. 

3 TRIO: a descriptive specification language 

TRIO is a first-order telnporal logic language for executable specification of real- 
time systems. The language deals with time in a. quantitative way by providing a 
metric to indicate distance in time between events and length of t ime intervals. 

A major goa.l of TRIO is e.r.ecu~abilil.y ofspr ions. This means that  TRIO 
formulas can be automatically checked for satisfiability or validity ([7]). When a 
formula speci~ing a given property of a system is interpreted, a model thereof 
is generated. Of course, since TRIO contains first-order theories, executability 
is undecidable in the general case. However, an analysis procedure on finite 
domains can be performed Mgorithmically by using the Tableaux Method ([32]), 
which provides an abstract interpreter of the language. The tableaux method is a 
widely used technique in temporal logic to constructively verify the satisfiability 
of a formula and to derive in~plementations from models of specification formulas 
([22]). Although TRIO specifications are often stated by assuming an underlying 
infinite structure, such analysis rnay increase the confidence in the correctness 
of the specifications in much the same way as testing a program may increase 
the confidence in its reliability. That  is, by examining the system behavior on 
finite domains, the user may infer the behavior on infinite domains. Such a 
generalization, however, cannot be proven, and can only be performed under the 
user's responsibility. 

3.1 T h e  T R I O  l a n g u a g e  

The purpose of the following brief presentation of the TRIO language is to make 
the paper self-contained, no~ to provide a. complete discussion of its features and 
its practical use. A con~plete description can be found in [25], [13], and [24]. 
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TRIO is a first-order logic language, augmented with temporal  operators that  
allow the specifier to express properties whose truth value may change over time. 
The meaning of a TRIO formula is not absolute, but  is given with respect to a 
current t ime instant which is left implicit in the formula, in much the same way 
as in temporal  logic. 

Syntax: t h e  t e m p o r a l  o p e r a t o r s .  The alphabet of the TRIO language in- 
cludes sets of names for variables, functions, and predicates, and a fixed set of 
basic operator  symbols. Variables are divided into 1imc dependent (TD) vari- 
ables, whose value may change with time, and lime independenl, (TI) variables, 
whose value is intended to be invariant with time. Every variable name z has an 
associated t.ype or domain, which is the set of values the variM.)le may assume. A 
distinguished domain, required to be numeric, is called the Temporal Domain.. 
Every function name has an associated arity n'____0 (when n=0 the function is 
called a conslan~), and the indication of a type for every component of the do- 
main and for the range. Similarly, every predicate name is associated with the 
number and type of its arguments. Like Variables, predicates are divided into 
t ime dependent and time independent ones: time independent predicates always 
represent the same relation, while a time dependent predicates correspond to a 
possibly distinct relation at every time instant 4. The predicates <, <, =; and 
all other usual predicates on numbers, are assumed to be time independent, so 
that  the associated relational opera.tions are applicable the Temporal Domain. 
Also, a.ddition and subtraction are assumed to be total functions, with the usual 
properties, applicable to elements of the temporal doma.in. Symbols are divided 
into propositional symbols (A and -~), the quantifier V, and a temporal operator 
symbol Dis~. 

The syntax of TRIO defines terms in the usual inductive way: every variable 
is a term, and every n-ary function applied to n terms is a. term itself. A formula 
is inductively defined by the following clauses: 

1. Every n-ary predica.te applied to n terms of the appropriate types is a formula 
(atomic formula). 

2. If A and B are formulas, -~A and A A B are formulas. 
3. If A is a formula and .,; is a time independent variable, VxA is a formula. 
4. If A is a. formula and t is a term of the temporal type, t, hen Disl(A, t) is a 

forlnula 5. 

The fornmla Dist(A,t) intuitively means that  A holds at an instant laying t 
t ime units in the future (if t > 0) or in the past (if t < 0) with respect to the 
current tilne value, which is left implicit in the formula. 

Abbreviations for the propositiona.1 operators V, --~:, true, false, ~--+, and 
for the derived existentia.1 quantifier 3 are defined a.s usua.1. A large number of 

4 In principle, functions ma.y also be divided into time independent and time depen- 
dent, but this fea:ture is not essentia.1 and for simplicity it. is not introduced here. 

s We are intl'odueing minor modifications with respect to the original TRIO definition 
in [13]. 
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derived temporal operators may be defined by means of quantification over TI  
variables in the temporal  argument of Dist. These derived operators include all 
the operators of classical linear temporal logic. We mention, among others, the 
following ones 

Futr(A, 1) ~f  t > 0 A Dist(A, 1) 
Past(A, t) d,__, t > 0 A Dist(A, - t )  

AhvF(A) d~ Vt(t > 0 -  Futr(A, 1)) 
def  AhvP(A) = Vt(t > 0 - ,  Past(A, t)). 

Always(A) d~ AhvP(A) A A A AhvF(A) 
SomF(A) d~f -,AlwF('~A) 

SomP(A) ~f -~Ah,,P(-,A) 
Sometimes(A) ~ SomP(A) V A V SomF(A) 
Lasts(A, t) de=~ Vt'(O < t' < t ---. Futr(A, t')) 

Lasted(A, t) ~f Vt'(0 < t' < t --~ Past(A, t')) 
Since(A1, A2) d=~f 3t(t > 0 A Past(A2,1) A Lasted(A1, t)) 

Since,~(A~, A~_) d~ AlwP(A~) V Since(A~, A2) 

Futr(A,t) means that  A will be true in the future, t units from now (Past(A,t) 
has the same meaning but respect to the past); AhvF(A) means that  A will hold 
in all future time instants, while AlwP has the same meaning with respect to 
the past; Always(A) means that  A holds in every t ime instant of the temporal 
domain; SomF(A) means that A will take pla.ce sometimes in the future, and 
SomP has the same meaning in the past; Sometimes(A) means that  A takes 
place sometimes in the past, now or in the fllture; Lasts(A, 3) means that  A will 
be true in the next t time units; Lasted(A, t) means that  A was true in the last 
t t ime units; Since(A1,A.,) means that A., took place sometimes in the past, 
and A1 held since then; Sin.ce,~, (A1,A2) defines the weak version of Since, which 
does not require A-., to actually take place. 

A TRIO specification is a closed TRIO formula.. Only closed TRIO formulas 
are considered, since it is well known that in formulas expressing some kind of 
system property all variables are quantified, although sometimes implicitly. 

E x a m p l e  1. A tra.nsmission line receives messages at one end and trans- 
mits them unchanged to the other end with a fixed delay. The time-dependent 
predicate in(m) means that a message m enters the line at the current time (left 
implicit); the predicate out(m) means that  the same message m exits from the 
other end. The TRIO formula 

Ahvays( in(m) --+ Futr(out(m),  5)) 

means that  everytime a message m arrives a given time, then 5 time units later 
the same message m is emitted, i.e., the message does not get lost. The formula 

Always(Vm(out(m) --+ Past( in(m),  5))) 

means that no spurious messa.ges are generated. 
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E x a m p l e  2. Let higherLevel and safetyLevel be two significa.nt temperature 
values for the security of a chemical plant. Let temp be a t ime dependent variable 
representing the present system temperature.  If  lightSignaland soundAlarm are 
two different alarms in the control system, the formulas 

Always(lightSignal(on) ~ temp >_ higherLevel) 

Always( soundAlarm( on ) ~ temp >_ sa f etyLeve) 

mean that  the light alarm must be on if and only if the temperature reaches 
higherLevel, and the sound alarm must be activated if and only if the temperature 
reaches the safe~yLevel. The fact that a security action must be taken whenever 
the pressure value exceeds a fixed threshold is expressed by the following formula 

Always(pressure > valveTolerance ---+ 
Futr( nasts( openGauge, k t .pFes's~tFe), k 2 / temp)) 

This formula specifies the gauge remains open for a duration that  is pro- 
portional to the pressure, while the activation nmst be delayed by a.n interval 
inversely proportional to the current temperature.  

3.2 T R I O ' s  s e m a n t i c s  

The concepts of satisfiability and validity of a TRIO formula with respect to 
suita.ble interpretations can be defined in much the same way as in classical 
first-order logic. A model-theoretic semantics for TRIO is based on the concept 
of temporal structure ([25]), from which one can derive the notion of evaluation 
function, that assigns to every T R I 0  formula a truth value for every time instant 
in the time domain. 

A interpretation structure S assigns eva.luation domains to variables, and 
values of the appropriate type to variable, function and predicate names occur- 
ring in formulas of the language. In particular, it associates a temporal domain, 
denoted by T, to temporal terms. 

Traditional definitions of model-theoretic semantics introduce a meaning 
function S,: that assigns a value of appropriate type to terms and a t ruth value 
to formulas for every instant i of the time domain. A specification formula F 
is said to be temporally saZi.~fiable for a. given interpretation structure if there 
exists a time instant i E T for which Si (F)  = true. F is said to be tempo- 
rally valid in the given interpretation iff Si(F) = true for every i E T; it is 
valid if it is temporally valid in every syntactically adequate interpretation. An 
interpretation such that F is temporally satisfiable for it is called a model of F.  

The definition of function Si is however more complex when formulas are 
evaluated in a finite (time) domain. [24] introdnces a model-parametric semantics 
that imposes restrictions on the evaluability of a formula at a time instant with 
reference to a given structure. A formula is considered not evMuable with respect 
to a given time instant if its eva.luation a.t that  t ime cannot be done without 
referencing a time point outside the time domain. In a.ddition, the set of values 
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that  can be assigned to the quantified variables of a formula must be adequately 
restricted to subsets of their types in order to prevent from exiting the time 
domain when evMua.t, ing the formula. 

3.3 Ver i f i ca t ion  of  T R I O  spec i f ica t ions  

A TRIO specification can be used to model a reactive, real-time system because 
the physical and structural components of the modeled system have a logical 
counterpart in the constituents of the temporal structure. Physical components 
of the systems and immutable relations among them are represented by individ- 
ual constants a,nd time independent predicates; temporary relations and events 
are represented by time dependent predicates; yahms and measures of physical 
quantities that are subject to change are represented by time dependent vari- 
ables. Functions ca.]] be used to describe some predefined and fixed operations 
of the specifed system, and time independent variables are used as placeholders 
to express, through the use of quantifiers, existential and universa,1 properties 
of the specified system. Thus, one model of a TRIO specification intuitively 
corresponds to one possible evolution (history) of the specified system, that  sat- 
isfies the requirements expressed by the specifica.tion formula. A history can be 
specified as follows: 

D e f i n i t i o n 4  (E ven t ,  h i s t o r y ) .  An event is a pair < L, i >,  where 

- L is a literal 
- i is a time instant, belonging to the tilne domain. 

A history is a set of events that temporally satisfies a TRIO specification. 

For instance, referring to Example l in Section :3.1, the pair < in, 1 > de- 
scribes the event of receiving a message at time 1; the pair < -,out, 1 > describes 
that, no message is sent at time 1. Figure 3 illustrates 3 histories for that  example. 

I (  ~ill ill ~iz| ill ~i, in ~in ~in -in Mn ~in 
~OUI ~OU| ~OUt -~tll ~OUl  ~OUl OU| ~OU{ OUt ~ O U |  ~OU[ 

: * " "  I I I I 1 I I I I I I 
0 1 2 3 4 5 6 7 8 9 10 

I C  ~ilt il| 
2 . . .  I I 

0 l 

~in in 
~out ~ou| 

"3 . . .  I I 
0 1 

~in in ~ia ~in ~in -in ~in -in -,in 
~ou| -xJu| ~ou| ~oul out ~ou| out ~ou[ ~out 

I I I I I I I I 1 
2 3 4 5 6 7 8 9 10 

~i .  ~in ~in ~ i .  ~in ~in ~in ~in ~in 
~oul -~ou |  ~oul ~oul oul ~ou| ~ou| ~out ~out 

I I I I I I I I I 
2 3 4 ~ 6 7 8 9 10 

Fig. 3. Three executions for the lille of example 1 in Section 3.1 

:) 

.,.) 
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R e q u i r e m e n t s  val idat ion.  In order to validate requirements expressed as a 
TRIO specification, one may try to prove the satisfiability of the formula by 
constructing a model for it. In this view, some parts of the temporal structure 
to be constructed are assumed to be known, namely the temporal domain T, the 
domains for variables, and the interpretation of time independent predicates, 
which describe the static configuration of the specified system. Given a system 
specification as a TRIO formul~ and the static part of a structure adequate to its 
eva.luation, the construction of the remaining parts of the structure determines 
the dynamic evolution of the modelled system: the events that take place and 
the values assumed by the releva.nt quantities. 

If the interpretation domains for variables and the temporal domain T are all 
finite, the satisfiability of a TRIO formula is a decidable problem and effective 
algorithms to solve it can be defined. [7] presents a.n algorithm which, under the 
hypothesis of finite doma.ins, determines the satisfiability of a. TRIO specification 
(i.e., a closed TRIO fornmla) using a constructive method. 

The main steps of the algorithm for veri~,ing satisfiability are schematically 
shown in Figure 4. The specification formula is associated with a time value t 
that indicates the instant where it is assulned to hold; then a decomposition 
process is performed which transforms a. formula into a set of simpler formulas, 
associated with possibly different instants, whose conjunction is equivalent to 
it. The decomposition uses well known (and intuitive) properties of the propo- 
sitional operators, and treats universal (respectively existential) quantifications 
as generalized conjunctions (respectively disjunctions); it ends when each set 
of the subforlamlas, called a tableau, contains only literals. Every tableau that 
does not contain any contradiction (i.e., a literal and its negation) provides a 
compact representation of a model for the original romania, and thus constitutes 
a constructive proof of its satisfiability. Since each leaf tableau generated by 
the a.lgorithna for verifying satisfiability corresponds to a history of the spec- 
ified system, i.e., a t, emporal evolution of the system, this algorithm is called 
history generator (i.e., an interpreter that receives as input a TRIO formula and 
produces as result a set of histories that are compatible with such a formula). 

Fig. 4. Pictorial description of the decomposition of formulas by the tableaux algo- 
rithm. 

Figure 5 shows part of the tableaux tree generated by a history generator 
for the formula Ahva.ys(pressure _> valveTolerance --+ Futr (Lasts (openGauge, 
kl.pressure), k=, / temp)). It is shown for a generic time value i ranging from the 
minimuna value of the time domain to the maximum. Since both leaves do not 
include contradictions, both represent models of the formula. Please notice that, 
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((Always(prssr >_ vlvTIrnc -> Futr!Lasts!opnGg,kl.prssr),k2/tmm)),i) ) 

�9 I 

t~mpora' doma'n~(Fut'r(Lasts(opnGg,k 1.prssr).k2/tm P)),i)~ ~(prssr _> vlvTlrnc),,)) t~mp Oral dOm'--'-~n~ 
I ~Las!s(opnGg,kl .prssr),i+k2/tmp)) 
I 

(Futr(opnGg,kl .prssr-1 ),i+k2/tmp).~ 
I 

Fig. 5. The tableaux genera.ted by the histories genera.tor for the formula: Always(prssr 
> vlvTlrnc ---- Futr (L~sts(opn(;g,kj .prssr), k~ / trap)). 

The study of the complexity of the above algorithm, discussed in [7], shows 
tha.t it is exponentia.1 in the number of existentiM qua.ntifications, with the cardi- 
nality of the domains of the quant.ified TI variables appearing as the base of the 
exponential, while it is hyperexponential with respect to the number of univer- 
sal quantifications, with the ca.rdinality of the domain of the quantified variables 
a.ppea.ring as the exponent. 

Spec i f i ca t ion  t es t ing .  Executability of TRIO formulas is a.lso provided at lower 
levels of generality: the tableaux a.lgorithm caa be a.dapted to verify that  a given 
tempora.1 evohltion of the system (a history) is compatible with the specifica- 
tion. This opera.tion is called h.isiory checking, since it is analogous to what is 
called model checking, in the literature regarding branching-time temporal logic 
([2]). Model checking refers to the operation of verifying whether a given state 
graph, or sta.te automaton implementing a. system, is a model of the specifica- 
tion formula. Hence it is equiva.lent to proving that every possible execution of 
the automaton satisfies the formula. Instea.d, in a linear time logic like TRIO, 
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history checking refers to only one possible evolution of the system. That is, a 
history checker is an interpreter that receives as input a. TRIO formula and a 
history and states whether the history is compa.tible with the given formula. As 
we already said, history checking is implemented through a specialization of the 
tableaux algorithm, whose main steps are shown in Figure 6. Now each tableau 
includes only one formnla associated with a time insta.nt at which it must be 
evaluated. An and/or tree is built and the literals obtained in the leaf nodes are 
checked against the history. 

Fig. 6. Pictorial description of the decomposition of formulas by the history checker. 

Complexity of the history checking algorithm has been shown to be expo- 
nential with respect to the dimension of the formula ([7]), i.e., the number of its 
quantifications and binary operators. It should however be noticed that the car- 
dinality of the domains of the quantified variables appea.rs now as the base of the 
exponential, not as the exponent (like in the more general a.lgorithm for deciding 
satisfiability of formulas). In other words, for a given formula, the complexity 
of the history checking algorithm is a polynomial function of the cardinality 
of the evaluation domains. This result might be considered discouraging; how- 
ever we point out that the dimension of the formula is usually relatively small 
with respect to the cardinality of the evaluation domains, so that, in the total 
complexity of checking the specification formula, the exponential factor has a 
limited influence with respect to the polynomial one. This was confirmed by 
experimental use of the prototype in cases of practical interest ([3]). 

The history checking algorithm was the basis for the design and implemen- 
tation of a prototype tool for specification testing. A set of facts representing 
a possible system evolution is tested with reference to a formula describing all 
the desired system beha.viors. A history is represented by a. set of time depen- 
dent ground literals, by the time independent predicates and functions which 
constitute the frame, and by the vahles for the time dependent variables. 

The tool admits the possibility that the set of ground literals included in 
the history does not cover all possible instants of the temporal domain or all 
the argument va.lues. In that case the user may choose to evaluate the formula 
under the closed world assumption or not. If the closed world assumption holds 
then the history is complete by definition because all the events not reported in 
the history are implicitly considered as false. Thus, the tool checks whether a 
formula is evaluable and then if it is satisfied by the history. Instead, whenever 
the closed world assumption does not hold, the checker is also able to recognize 
whether the history does not provide sufficient informa.tion to assign a truth 
value to the formula. In this case the formula is evaluated with respect to a 
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Using specif icat ions to verify implementa t ions .  [21] proposes a method 
and a tool for the derivation of functional test cases for real-time systems, start- 
ing from a specification given in TRIO. [21] defines the notion of test cases ad- 
equate to performing fnnctional testing of real-time systems specified in TRIO, 
and shows how the history generator and history checker can be effectively used, 
both to generate test cases and to support the testing a.ctivity itself. 

A history (or a model) of a TRIO formula can be interpreted as a test case, 
since it represents an evolution trace of the modelled system and hence it can be 
compared with an actual execution of the system. In this view, the two mentioned 
interpreters (i.e. the algorithm for verifying satisfiability and the history checker) 
can become the core of a tool that a.llows to systematically generate test cases for 
the specified system and validate its responses to the provided stimuli. By this 
way, not only possible s~imuli (i.e., system inputs) are generated from system 
specifications to test the system nnder verification, but also system reactions 
(i.e., ontputs) are provided to check whether the system behavior really complies 
with the desired properties, thus solving the oracle problem ([18]) (i.e., given the 
inputs determine the expected outputs). 

The TRIO language, unfortunately does not distinguish input events (data 
or commands introdnced into the system) from ontput events (data or signals 
generated by the systeln). During the testing activity, however, it is essential to 
understand which events flow from the external environment to the system, and 
which flow from the system to the external environment. The solution adopted 
by the TRIO test case generator does not perform automatically such a clas- 
sification, but solves the problem through interaction with the user. The user 
partitions predicate names of the specification formula into input, output, and 
input/output predicates. 

Since each leaf tableau generated by the algorithm for verifying satisfiability 
corresponds to a history of the specified system, it is clear that the algorithm 
may generate, for some specification formulas, a very large number of histories, 
much more than those needed for performing an effective testing. [21] proposes 
some criteria to cope with such kind of complexity. When the complexity is high, 
the tool reqnires the user interaction to select the criteria it must follow or to 
use the history checker to check if the set of facts generated up to that moment 
satisfies the formula (i.e., it is a history). 

3.4 P r o p e r t y  proving 

This section surveys the axiomatic definition of TRIO presented in [6]. Follow- 
ing the axiomatization, one can prove properties of TRIO specifications. The 
proof cannot be performed in a purely mechanical fashion, but requires human 
interaction in the general case. 

Since TRIO allows almost any kind of interpretation domains to be used in 
specifications, any axiom system for it should include a first order theory for all 
three-value logic ([22]) which includes a third, "unknown" value. 
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of the used doma.ins (say, real numbers for temporal  domain, integers for some 
va.riables, booleans for others, etc.). Thus the final axiomatization depends on 
the selected domain.  Following the same approach as adopted in a variety of 
t empora l  logics ([28, 20, 17]), all the valid formula of the chosen domains are 
implicitly assmned to hold as additional axioms i~1 the T R I O ' s  axiomatizat ion.  

T R I O ' s  axionas are given below. For convenience they are part i t ioned into 
general axioms, which are shared with any first-order theory with equality, and 
~emporal axioms, which are peculiar of the language. A universal axiom schema 
is added at the end of both  class. 

Let a,,/3,w,. . ,  denote any TRIO formula; let s, v, u . . . deno te  any t e rm of 
a generic domain,  whereas t, t l ,  t2, . . .  denote any term of temporal  type; let x, 
y, . . .  denote any varia.ble and c any constant. 

G e n e r a l  a x i o m s  These, in turn, are split into first-order predicate axioms and 
into equality axioms as shown below. 
F i r s t  o r d e r  a x i o m s  

1. All instances of propositional calculus tautologies 
2. Vx o:---+ o ,vs where s is a, term substitutable. . for x in o, ~ ([22]) 
3.  Vx (a' ~ ~)  - -  (Vx o" --+ V,~: /3) 
4.  o' ---+ Vx o: if x is not fi'ee in a, 

F, q u a l i t y  a x i o m s  
5. s = s, for any term s 
6. u = s --+: (a, -+ o ,~) where u and s are terms, o: ~ is obtained f rom a by 
subst i tut ing zero or more occurrences of u in o, by s. 

T e m p o r a l  a x i o m s  
7. Dist(a:, O) ~ o' 
8. Dist(o:,t l  + t2) ~ Dist(Dis't(c,,,tl ),t2) 
9. Dist(o, ~ /3, t) ~ (Dist(o,,t) --+ Dist(/3, t)) 
10. Dist(--,a,,t) ,--+--~Dist(o,,t) 
11. a, ---+ Ahv(a,) if o' is t ime independent 

G e n e r a l i z a t i o n  For each formula w in the above list 1 through 11, all formulas 
of the kind Alw(w), and all their applications of universal quantifications 
(genera.liza.tions) a.re T R I O  a.xioms. 

There is a single rule of inference, namely Modus Ponens (MP). By using classical 
Hoa.re's nota.tion, it is denoted as 

Y~-/3 

Axioms 7 through 10 describe the essential properties of the basic tempora l  op- 
era.tor Dist: when in the fornmla. Dist(a,, t) the temporal  argument  t is 0 then 
the other argument,  a,, is asserted at the current instant; fllrthermore, nested 
applications of the operator  compose additively, according to the properties of 
the tempora l  domain, and the operator is transparent with respect to proposi- 
tional operators  of its non-temporal  argument.  Axiom 11 simply states the t ime 

As usua.1, a'~ denotes the result of substituting any free occurrence of x in a' by s. 
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invaria.nce of time independent formulas (those which do not contain any time 
dependent predicate or temporal operator): if the formula is true now then it is 
true at any time instant of the temporal domain (the converse is trivially true, 
and in fact the corresponding formula, Alw(rx) ~ a., is a theorem whose proof 
is immediate). 

TRIO's axiomatization provides also the counterpart of well-known metatheorems 7 
which hold for the most widely accepted axiomatizations of first-order logic, 
namely the Generalization theorem (GEN), the Deduction theorem (DED) and 
the Existential Instaatiation theorem (EI). Similarly, since TRIO's  axiomatiza- 
tion includes a. standard first-order part, all the derived inference rules usually 
employed for first-order logic ([22]) are also valid in TRIO.  Moreover, the ax- 
iomatization provides some useful temporal metatheorems: 

T e m p o r a l  T r a n s l a t i o n  T h e o r e m  ( T T )  
This metatheorem asserts that if a. formula a. can be proved under a given set 
of assumptions that hold at the present time instant and all these assump- 
tions hold at a different time instant, then it can be proved that  a, holds at 
that time instant too. The metatheorem is formalized as follows. 

i f /"  ~- cr t h e n  {Dist(7,  t)l')' E F} [- Dist(a, , t)  

T e m p o r a l  G e n e r a l i z a t i o n  T h e o r e m  ( T G )  
This meta.theorem is an extension t o  the preceding result. It states that  if 
the set of assumptions on which the proof of a property is based is true in 
every instant of the temporal domain, then the proven formula is also always 
true. Formally, 

i f /"  I- a" and every formula o f / "  is of the type Alw(7) or is t ime 
independent, then F t- Alw(o~). 

An important  corollary of TG is obtained by t ak ing / "  = 0. In this case TG  
reduces to: if t- a: then F- Alw(a,). This corresponds to the intuitive fact that  if 
property o~ is derived without making any assumption about  the current time 
instant, then r holds at every time instant. Another consequence of TG  is that  
any theorem r of first-order logic is not only inherited as such in TRIO,  but its 
temporal generalization, Alw(r)  is also n theorem. For instance, Alw(c~(t) --+ 3z 
c,(z)) holds by the fact that a,(Z) --+ 3z a~(z) is a theorem in any first-order logic. 

3.5 T o w a r d s  m o r e  u sab l e  r e a l - t i m e  logic  l a n g u a g e s  

TRIO is a quite terse language. It is an excellent notation for mathematical ly 
reasoning about specifications, but it is difficult to use in practice. Specifiers 
and readers have no ways of mast.ering the complexity of large specifications; 
no application-specific abstractions are provided to support  end-users in the 
verification of a specification. Following the spirit of what was done for net-based 

7 Metatheorems are properties of the axiomatization. Instead, theorems are derived 
from deductions using the axiomatization. 
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specifications, TRI0  is viewed as the semantic kernel notation of a specification 
environment, not as the notation used in practice. Other language layers have 
therefore been defined on top of TRIO. 

T R I O +  ([26]) is an object-oriented extension of TRIO. TRIO+ allows the par- 
tition of the universe of objects into classes, the inheritance of relations 
among classes, and provides mechanisms such as inheritance and genericity 
to snpport reuse of specification modules and their top-down, incremental 
development. Moreover, an expressive graphic representation of classes in 
terms of boxes, arrows, and connections is defined. Such a representation 
allows depiction of class instances and their components, information ex- 
changes, and logical equivalences among (parts of) objects. 

A S T R A L  ([8, 9]) is another linguistic layer defined on top of TRIO. ASTRAL 
views a. real-time system under specification as a collection of abstract ma- 
chines. Abstract. ma.chines ma.y communicate with one another via exported 
variables. They may also interact with the external enviromnent, which may 
ca.use state transitions to occur. ASTRAL is formally defined by means of a 
translation scheme into TRIO. The TRIO "code" generated by the transla- 
tion may then be manipulated by the available TRIO tools. In particular, it 
is possible to test a specification by history checking. 

4 T h e  D u a l  L a n g u a g e  A p p r o a c h  

An increasing interest is recently arising on the so-called dual-language approach, 
in order to support a complete formalization of specifications and the correspond- 
ing analysis [28]. In a dual language approach two entities are distinguished: a set 
of properties one wishes to yetiS" and the system (or system paxt) abont which 
these properties are to be verified. The dual language approach requires both en- 
tities to be formally described: the properties are described using an assertional 
(descriptive) language a.nd the system is described using a model-based (opera- 
tional) language. In this way properties are formally sta.ted and can be formally 
proved. [6] proposed a dual language method where properties are expressed in 
terms of TRIO and the systems are modeled by means of TB nets. One may 
view TRIO as the language in which abstract properties and requirements are 
formally stated, while TB nets are used to model a more concrete operational 
description of an abstract iluplementation. 

The basic idea. of the method proposed in [6] consists of an axiomatization 
of the behavior of timed Petri nets in terms of TRIO axioms and proof rules, in 
the same style as Hoare's rules are provided for Pascal-like programs. Then, net 
properties, such as marking and firing conditions, are expressed as TlZIO formu- 
la.s and their validity is proved using the a.xiomatization presented in Section 3.4. 
The method supports the verification of properties of any kind of nets, whereas 
existing n~echanica.1 methods only apply to restricted snbclasses and do not scale 
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classical benchmarks for the analysis of concurrent and real-time systems, such 
as an elevator system and a real-time version of the dining philosophers problem. 
For example, in the case of the elevator system, given some assumptions, it is 
possible to prove that  if a person calls the elevator in certain circumstances, it 
will arrive within the next A time units; or, if a person pushes a but ton to close 
the elevator's doors and a person tries to enter the elevator while its doors are 
closing, the doors reopen. 

5 C o n c l u s i o n s  

In this paper, we surveyed the work done by our group in the area of speci- 
fication and verification of reactive, real-time systems. Research is still active 
in the areas we reviewed here. For example, complete formal treatment of the 
graphical language extensions in CABERNET is still under scrutiny. In the case 
of TRIO, work is presently addressing further issues of higher-level language 
layers defined on top of the kernel (such as the cited TRIO+ and ASTRAL) and 
interlevel translation schemes, the problem of handling different time granulari- 
ties in a specification, and others. The dual language approach is under further 
investigation, and will probably lead to an integration of the present environ- 
meats supporting the two specification styles, nets and real-time logic in a single 
comprehensive environment. 
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