Real-Time Systems: A Survey of Approaches to
Formal Specification and Verification*

Carlo Ghezzi, Miguel Felder, Carlo Bellettini

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. da Vind 32, 20133 Milan, Italy

Abstract. This paper reviews past work done by our group in the
area of formal specification for reactive, real-time systems. Different ap-
proaches are discussed, emphasizing their ability to verify formal spec-
ifications and systematically derive test cases for the implementation.
The specification languages reviewed here are TB nets (a specification
formalism belonging to the class of high-level Petri nets) and TRIO (a
real-time temporal logic language).

Keywords and phrases Real-time systems, formal specification, re-
quirement capture, Petri nets, high-level Petri nets, real-time temporal
logic, analysis, testing, test-case generation.

1 Introduction

Real-time computer systems are increasingly used in the practical world. More-
over, they often constitute the kernel part of critical applications — such as
aircraft avionics, nuclear power plant control, and patient monitoring — where
the effect of failures can have serious effects or even unacceptable costs. These
systems are generally characterized by complex interactions with the environ-
ment in which they operate and strict timing constraints to be met. They are
real-time, since their behavior and their correctness depend on time: the effect
of producing certain results too early or too late, with respect to the expected
response time, may result in an error.

Existing semi-formal methods supporting specification, design, verification
and validation of real-time systems ({16, 30, 15]) provide very limited support
to high-quality software in the above domains. First, they often address only
one or a limited set of the phases of the application development. Second, their
semantics is informally defined, and therefore they provide no or partial support
to analysis and execution. Most existing formal methods, on the other hand, are
difficult to use, often lack facilities for handling real-time and for structuring
large specifications, and provide limited tool support.

In the past, our group has been working in the area of formal specifications
for reactive, real-time systems, with the goal of:

* This material is based upon work supported by the Esprit project IPTES, and by
the Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo (CNR).

12

—~ Understanding different specification paradigms. Our belief is that
“the” correct approach to the problem does not exist. Rather, we will even-
tually need to integrate different approaches in a specification support envi-
ronment. In our work, we pursued research in two complementary directions:
specifications based on an operational approach (namely, Petri nets) and
specifications based on a descriptive approach (namely, real-time temporal
logic).

— Supporting verification of formal specification. Requirements capture
for a new application is a highly critical activity, which can have a far-
reaching impact on the quality of the product. Requirements errors are often
discovered very late, when the system has been delivered to the final user
and is operational in the target environment. At this point, however, not
only the cost of (part of) the development effort would be wasted, but also
the cost of failures would bear on the cost of the application. Our goal has
therefore been to ensure that specifications are verified before proceeding
to implementation, so that errors are not inadvertently transferred from
requirement specification down through the whole development cycle. In this
paper, we use the term “verification” as an umbrella concept that captures
all forms of assessment of a specification®. In particular, we will discuss
two complementary forms of verification: static verification (which includes
a whole range of possibilities, from static semantic checking to all forms
of mathematical proofs) and dynamic verification (i.e., testing). We also
discuss symbolic execution, which is somehow in the middle between the
two approaches.

— Supporting the specification activity through an integrated set of
tools. Formal methods are intrinsically more supportive of mechanical ma-
nipulation than informal methods. Tools may in fact be based on both the
syntax (e.g., syntax-directed editing tools) and the semantics (e.g., semantic
checkers) of the formalism. Tool support is essential to promote the use of
formal methods among users.

~ Enhancing usability of the formalism. Formal methods are very of-
ten based on languages that non-mathematicians find difficult to read and
write. The syntax of the language is often awkward; no graphical descrip-
tion facilities are provided; no modularization and abstraction mechanisms
are available to structure large specifications; and no application-specific
concepts can be added to the language. Tool support is a first step towards
improving usability, but more is needed. In the work done by our group,
a layered approach was followed. The start point is a concise, clean, and
mathematically defined notation. Other linguistic layers were then defined
on top of the kernel in order to provide more expressive, user-oriented no-
tations. Structuring mechanisms were also provided to allow specifications
to be modularized according to the principles of abstraction and informa-
tion hiding. In the case of the Petri net approach, we also defined a way to

2 Note that other authors distingunish between verification and validation. Others dis-
tinguish between verification, intended as formal verification, and testing.

13

make the specification notation extensible, by providing a definitional de-
vice (based on graph grammars) through which new graphical specification
notations may be added.

— Supporting subsequent development steps (design, implementa-
tion, testing, etc.). There are approaches where the formal specification
is transformed into an implementation through predefined and partially au-
tomated transformation steps. In the work done by our group, this aspect
has not been investigated so far. Work has been done in the derivation of
test cases from the specification; such test cases can be used to verify an
implementation.

This paper provides a comprehensive view of the work done by our group in
the two aforementioned research directions. The discussion is mainly based on a
survey of previously published work; most notably, [10, 11, 12, 14] for the Petri
net based approach, and [13, 7, 21, 24] for the real-time logic based approach.

The paper is structured as follows. Section 2 surveys TB nets and their
verification methods. TB nets are a class of high-level Petri nets. Their definition
is provided in Section 2.1. Section 2.2 deals with CABERNET, an environment
designed to support net-based specification and verification of real-time systems.
Section 2.3 focuses on the verification facilities provided by CABERNET to
support timing analysis, while Section 2.4 focuses on structuring mechanisms.
Section 3 surveys the real-time logic language TRIO, its verification, and its
support to implementation verification. In particular, the language is presented
in Section 3.1. TRIO’s formal semantics is discussed in Section 3.2. Section 3.3
deals with different kinds of TRIO verification and shows how the specification
can provide support for implementation verification. Section 3.4 discusses how
TRIO can support formal verification. Finally, Section 4 draws some conclusions
and outlines future work. Section 3.5 outlines the extensions proposed to include
structuring mechanisms in a real-time logic.

2 TB Nets: an operational specification language

Time Basic nets (TB nets) ([11]) are an extension of Petri nets ([31]). TB nets
have been introduced in [11]. In this paper, we introduce them rather informally
by using a slightly different notation than in [11].

2.1 The language

In TB nets, each token is associated with a timestamp, representing the time
at which the token has been created by a firing. Each transition is associated
with a time-function, which describes the relation between the timestamps of
the tokens removed by a firing and the timestamps of the tokens produced by
the firing.

Definition1 (TB nets). A TB net is a 6-tuple < P, T, @; F,tf, mg > where

14

1. P, T, and F are, respectively, the sets of places, transitions, and arcs of a
net. Given a transition ¢, the preset of ¢, i.e., the set of places connected with
t by an arc entering ¢, is denoted by *¢; the postset of £, i.e., the set of places
connected with ¢ by an arc exiting ¢, is denoted by ¢°.

2. @ is a numeric set, whose elements are the timestamps that can be associated
with the tokens. The timestamp of a token represents the time at which it
has been created. For instance, ©® can be the set of natural numbers, or the
set of non-negative real numbers. In the following, we assume @ = IR* (the
set of non-negative real numbers; i.e., time is assumed to be continuous).

3. tf is a function that associates a function tf; (called time-function) with
each transition ¢. Let en denote a tuple of tokens, one for each place in the
preset of transition t. Function 1f; associates with each tuple en a set of
values @ (6 C @), such that each value in 8 is not less than the maximum of
the timestamps associated with the tokens belonging to tuple en. § = t f;(en)
represents the set of possible times at which transition ¢ can fire, if enabled
by tuple en. When transition ¢ fires, the firing time of ¢ under tuple en is
arbitraryly chosen among the set of values 8. The chosen firing time is the
value of the timestamps of «ll the produced tokens.

4. mg, the initiel marking, is a function associating a (finite) multiset of tokens
with each place. In general, we use function m to denote a generic marking
of nets, i.e., m(p) denotes the multiset of tokens associated with place p by
marking m.

The set T is partitioned into two sets ST and WT, the set of Strong Transi-
tions and Weak Transitions, respectively. If a transition belongs to ST, then, if it
is enabled, it must fire within its maximum firing time, as defined by function ¢ f,
unless it is disabled by some other firing. Instead, if a transition in WT fires, it
fires if it is enabled and before its maximum firing time has expired (i.e., a weak
transition can fire, but it is not forced to fire). Actually the initial marking mq
of a TB net must ensure that there exists no enabling < en,t >, witht € TS,
such that the maximum firing time of ¢ under tuple en is less than the maximum
of the timestamps associated with the tokens in myg.

In [11] a deeper discussion is presented where the two kinds of transitions
lead to the definition of different semantics for the TB nets. The first class is
there referred to as Strong Time Semantics while the other is referred to as Weak
Time Semantics. In [11] it is shown how Weak Time Semantics is closer to the
original semantics of Petri nets, while the other is closer to the intuitive notion
of time evolution.

In order to define the rule by which new markings of the net may be gen-
erated, starting from the initial marking mg, we need to define the concepts of
enabling tuple, enabling, firing time, and enabling time.

Definition2 (Enabling tuple, enabling, firing time, enabling time). Given
a transition ¢ and a marking m, let en be a tuple of tokens, one for each input
place of transition ¢, the transition ¢ can fire at a time instant = under tuple en
if and only if :

15

1. 7 €tfi(en);

2. T is greater than or equal to the time associated with any other token in the
marking;

3. 7isnot greater than the maximum firing time of every other strong transition
enabled in the marking

If tfi(en) is empty, there exists no time instant at which transition ¢ can
fire under tuple en; i.e., transition ¢ is not enabled under tuple en. If tf;(en)
is not empty, en is said to be an enabling {uple for transition ¢ and the pair
z =< en,t > is said to be an enabling. The triple y =< en,t, 7 > where < en,t >
is an enabling, 7 € tfi(en), and t can fire at instant 7 under tuple en is said
to be a firing. 7 is said to be the firing time. We refer to the maximum among
the timestamps associated with tuple en as the enabling time of the enabling
<en,t>. '

The dynamic evolution of the net (its semantics) is defined by means of firing
occurrences, which ultimately produce firing sequences.

Definition 3 {Occurrence of a firing in a marking). Given a marking m
and a firing y =< en,t,7 > such that en is contained in m, and t can fire at
instant 7 under tuple en, the firing occurrence of y in m produces a new marking
m/, that can be obtained from m by removing the tokens of the enabling tuple
en from the places of *¢, and producing a new token with timestamp 7 in each
of the places of t*. If z is a firing that produces marking m’ from m we write
mlz > m'.

Figure 1 shows a fragment of a TB net. Places P2 and P3 are marked with
a token whose timestamp is 0. The timestamp associated to the token in place
P1lis 1. Transitions T2 and 73 are strong; transition T'1 is weak.

Function t f7; states that transition 71 can fire at a time between the max-
imum time of the timestamps of the tokens in the place P1 and P2, and 5 time
units after the value of the timestamp of token in P2. Transition T'1 is weak
and so it is possible that it does not fire also if the transition is enabled. In the
example, this transition is enabled and the possible firing time is any value in
[1,5].

Function tf7s states that transition T2 can fire at a time between 8 time
units after the maximum time of the timestamps of the tokens in the place P1
and P2, and 10 time units after the value of the timestamp of token in P2. In
the example, this transition is enabled and the possible firing time is any value
in [9,10].

Function t fps states that transition T3 can fire at a time between 3 and 15
time units after the value of the timestamp of token in P3. In the example, this
transition is enabled and the possible firing time is any value in [3,10]. In fact,
it cannot fire at a time greater than 10 unless transition T2 fires before (within
10).

16

P1 P2 P3

O

T3

=
3
N

P4 P5é P8 é

tfri(P1, P2) = {r | maz(P1,P2) <7< P2+35}
tfro(P1, P2) = {r | maz(P1,P2)+8 <7< P2+10}
ifra{P3)={r | P3+3< 1< P3+15}

m{P1) = {1}; m{P2) = {0}; m(P3) = {0}

Fig.1. A Simple TB net.

2.2 An introduction to the CABERNET environment

CABERNET ([29]) is an environment designed to support specification and ver-
ification of real-time systems based on high-level Petri nets®.

CABERNET provides editing facilities to describe nets and execution facili-
ties to animate them. By executing the net, it is possible to test a specification
to detect specification errors. CABERNET provides different facilities to control
execution, such as:

Execution mode: It is possible to execute a net with respect to the temporal
constraints or as a pure net; i.e., ignoring timing information attached to
both tokens and transitions.

Step mode: The user can direct the interpreter to proceed in single step mode,
i.e., the interpreter waits for a command after each firing or each phase of a
firing (e.g., identification and choice of the enabling, evaluation of the action,
ete.).

Enabling choice: If required the user can select the enabling to fire. In the
other case this is chosen nondeterministically.

Firing time choice: Once an enabling is chosen for firing, the firing time can
be chosen according to different options:

% The acronym stands for Computer-Aided software engineering environment Based
on ER NETs. ER nets are the kernel formalism of the environment. ER nets are Petri
nets augmented with features to describe data, functionality, and control ([11]). TB
nets are a timed formalism which is defined on top of ER nets.

17

Random: The firing time is chosen randomly in the set of possible firing
times of the enabling.

Lowest/Highest: The lowest (respectively, highest) firing time for the en-
abling is chosen.

User choice: The user is prompted to choose one among the possible firing
times.

CABERNET provides facilities for analyzing nets. In particular, it supports
certain kind of verification of timing requirements, as we will show in Section 2.3.
Finally, one of the goals of CABERNET is to support customization of the
specification notation by means of a tool, called Meta-editor. The Meta-editor
allows new graphical notations to be added to the environment, by defining
not only their syntax, but also their semantics in terms of translation to the
underlying kernel notation (ER nets).

Ii this way, the specification environment is open and extensible. User-
oriented and application-oriented interfaces can be formally defined, and spec-
ifications written in the newly defined notations can be formally manipulated.
We developed examples of this approach, such as the definition of Statecharts
in terms of ER nets. The definition of the mapping between the external graph-
ical language and the kernel notation is formally specified by means of graph
grammars ([27]).

2.3 Verification of TB nets

The importance of executing formal specifications to validate requirements has
been advocated, among others, by [19]. By executing formal specifications and
observing the behavior of the specified system, one can check whether specifi-
cations capture the intended functional requirements or not. In other words, by
executing requirements, we perform testing in the early phase of the develop-
ment process. Although testing cannot prove the absence of errors, it is especially
valuable as a mechanism for validating functional requirements.

The previous description of CABERNET shows how the available execution
facilities provide some basic support to specification testing. In this section, we
discuss two other forms of verification provided by CABERNET, which support
verification of timing properties.

Symbolic execution. Symbolic execution is a well-known technique for ana-
lyzing sequential programs. It can be applied with different goals, such as ver-
ifying correctness of a particular path for all the input data which cause the
execution of a particular path, synthesizing test data for a path.

In [4], symbolic execution is extended to deal with concurrent programs.
In [12] symbolic execution is proposed as a method for analyzing a subset of
TB nets, while [23] applies this proposal for validation of concurrent ADATM
programs. Let us now briefly introduce the mechanism for symbolically execute
a TB net.

18

Let us suppose that the tokens of the initial marking contain symbolic values
for the timestamps. Let C' (Consiraint) be a boolean expression initialized by
the user to describe the initial constraint on the timestamps. C is used to record
the assumptions made on the timestamps and therefore plays the role of the
Path Condition in the sequential case. Let ES (Ereculion Sequence) be a data
structure recording a firing sequence. The pair < C,ES > fully characterizes
a symbolic execution. Below we describe a symbolic execution algorithm using
<C,ES>.

At each transition firing, the symbolic interpreter incrementally update C,
ES and the current symbolic marking m. The whole execution is based on the
symbolic initial marking; that is, every symbolic value of the token timestamp is
an expression derived from a sequence of elaborations starting from the symbolic
values of the initial marking. The symbolic execution algorithm is decomposed
in six steps. The algorithm is described below with reference to the example of
Figure 1: ‘

Step 0 : Initialization
The initial marking myg is defined by providing symbolic values for the times-
tamps of the tokens initially stored in the places, and by providing an initial
constraint (C) on such timestamps. ES is initialized to NIL.
In the example, we can assume a symbolic marking in which places P2 and
P3 contain a token whose associated timestamp 7 can assume any value
between 0 and 10, and place P1 contains a token whose associated timestamp
77 can assume any value greater than 7o and less than 7 + 15. Thus, the
initial constraint is:
Co=0<n<I0AT2>2 A <To+15
Step 1 : Identification of the set of enabled transitions in the current
marking
For each transition ¢ potentially enabled by a tuple en (i.e., there is at least
a token in each place of its preset), evaluate if there is some time value
Tnew € tfi(en) that satisfies C' and 7.y 1s greater than or equal to the last
symbolic firing time and is less than the maximum firing time of any other
enabled strong transition.
In the example the three transitions are all enabled. For instance, T3 is en-
abled because the expression that results by the conjunction of the following
inequalities is satisfiable :
— Cp (i.e., the previous constraint)
- 7043 L Thew S0+ 15 (i.e., Tnew € t.fTﬁ(en))
— Tnew > 71 (i.e., there is no other timestamp in the net that is greater
than mey)
= Tnew <T0+10V 7o +10< 7 V 11 +8> 71+ 10 (i.e., either the firing
is less than the maximum firing time of the other strong transition, or
the other strong transition is not enabled.)
Step 2 : Selection of the enabling to fire
An enabling < t,enab > of those found at the step 1 can be selected nonde-
terministically or according to the user’s interaction.

19

Step 3 : Update of C
C is updated with the (possibly simplified) constraint built in the step 1 for
the chosen enabling. If there is only one possible symbolic value of 7,y that
satisfies the constraint, it is possible to substitute the variable 7, .,, with the
symbolic expression. In most of cases, it is neces:.aly to build a new symbolic
value for the new variable.
In the example, if transition T3 is chosen, the new C will be:
0T SI0A RS+l A +3<n<<p+16A
> A(re<t+10V ne+2<mn)

Step 4 : Transition firing and marking update
Transition t of the enabling selected at step 2 is fired, i.e., the enabling
tuple enab is removed from the places of *t and new tokens are inserted
into places of *, bound to a symbolic expression that represents the possible
firing times, or to a new symbolic value, as shown above.
In the example, the new marking will consists of a token (7g) in the place
P1, a token (71) in the place P2 and a token (7=) in the place P6.

Step 5 : Update of ES
Finally, ES should also be updated:
ESyew = append(< t,enab >, ES,14)

Timing analysis. Reachability analysis is traditionally understood as finite
enumeration of reachable states of some finite state model ([33]). It has been
extended, however, to cope with infinite state models. This is the case of conven-
tional Petri nets that can have an unbounded number of tokens in some places. In
the case of infinite state models, analysis procedures have been derived, where
states are grouped in (possibly infinite) sets and reachability analysis is then
applied to such sets.

The techniques used for reachability analysis of (unbounded) Petri nets can-
not be applied to the analysis of TB nets, since they group together the markings
that differ only in the number of tokens in the marked places. In the case of TB
nets, markings differ also in the timestamps associated with the tokens. For ex-
ample, the number of states (markings) reachable in the TB net of Figure 1 by
the firing of transition T'3 is infinite, because the timestamp associated to the
token in place P6 can be any real value in the interval [3, 10].

[14] presents a technique for reachability analysis of TB nets, where each
reachable state is symbolic, and represents a (possibly infinite) set of states of
the TB net. That is, the technique is based on the symbolic execution presented
in Section 2.3. In the general case, the analysis produces an infinite tree. How-
ever, [14] shows that the number of tree nodes to be examined for proving an
interesting set of temporal properties is finite. Such properties may be classified
in two sets: bounded invariance and bounded response.

A bounded invariance (or timed safety) property states an invariant property
that must hold until a certain lower bound for time is reached. A bounded re-
sponse (or timed liveness) property specifies that a certain property eventually
holds, before an upper bound for time is reached.

20

The technique builds a symbolic time reachability iree (TRT). A node of the
tree represents a symbolic state. A symbolic state is composed by the constraint
C (specified as before) and a symbolic marking. A symbolic marking is a function
u from places to multisets of symbolic values. The symbolic values represent sets
of numeric values for the timestamps associated with tokens in the marked places.
An arc of the tree represents the symbolic firing of a transition. Starting from
the root of the tree, which represents the initial symbolic marking, the tree is
built by using rules similar to those of symbolic execution.

The TRT of the net in Figure 1 is shown in Figure 2. Nodes are graphically
represented by two symbols: circles and squares. A circle indicates that it is
possible that no transition is enabled in that symbolic state. For example, if
the value of the token in P1 is greater than 7o + 10 in the state S3 there is no
transition enabled. The arcs are labeled with the name of the respective firing
transition. Any set of values satisfying the constraint C associated to a node
represents a feasible firing time schedule of the net up to the transition leading
to such a node.

In the CABERNET environment, the procedure sketched above is imple-
mented by a tool for specification analysis called MERLOT ([1}). MERLOT
allows the user to prove hounded response and hounded invariance properties of
the specified system. More specifically, the tool allows one to prove the following
properties:

Occurrence of events (firings) or of special states (markings). Properties
can assert either that there exists at least one execution of the system where
some states or events are reached or that all possible executions reach these
events or states within a given time limit. Example states in the example
are those characterized by a token in the place P1 and a token in the place
P5.

Sequence of events and states. Properties can assert some precedence con-
straints between different states and events. For example, that the firing of
T3 is followed by a firing of T'1.

Time of occurrence of events. Properties can assert some constraints on the
firing time. For example that the firing time of the transition T'3 is greater
of the firing time of T2 plus a constant. :

Any logical combination of the previous properties can also be expressed as
a property to be proved.

2.4 Abstractions and hierarchies

Net-based specifications suffer from the lack of adequate structuring mecha-
nisms. In practice, specifications may become hard to read and understand, and
verification procedures may hecome very inefficient, as the size of the net reaches
certain bounds. In particular, reachability analysis suffers from the state explo-
sion problem.

21

So

T1 2 13
S1 82 S3

T
T3 T3 T1 T2
S4 S5 S6 s7

S0: Coo=r 20N <I0AN"2>2H A <7T+15
Marking:= p(P3) = {r0}; p(P2) = {r}; #(P1) = {n}

S1: Ci:=Cy A n<+5 A2 AnR>n
Marking:= u(P4) = {r2}; w(P3) = {mo}

S2: Cor=Co A >n+8 A m<710+10
Marking:= u(P5) = {r}; u(P3) = {rn}

S3: Ca:=Co A 1y K+l Am2n Ang 2 +3 A (T1 >T0+2 Ve S To+10)
Marking:= p(P6) = {ms}; u(P2) = {ro}; u(P1) = {1}

S4: Cy:=Cy A T 2T+3 A<+l An>n
Marking:= u(P6) = {75 }; u(P4) = {r:}

S5: Co:=Cr N 76 >Tn+3 A Ts ST(_)+15 N Te2 T
Marking:= u(P6) = {7e}; p(P5) = {73}

S6: Ce:=C3 AN m<7m+5 Am2>n
Marking:= u(P6) = {rs}; p(P4) = {rr}

ST: C:=Co Am2>2n+8 A n<rnt+l0 Ar>mn
Marking:= u{(P6) = {ra}; u(P5) = {ms}

Fig.2. The TRT of the TB net of Figure 1.

We addressed these issues by allowing nets to be defined in a hierarchical,
top-down manner, where one specification level implements a more abstract level.
We defined what it means that a TB net [is a correct implementation of a TB
net S. Intuitively, I is an implementation of S if I adds details (i.e., transitions,
arcs, and places) and possibly restricts the set of behaviors that are possible at
the S level. If I is a correct implementation, then if certain properties have been
proved to hold for the specification, they also hold for the implementation. This
result is important since it allows properties to be proved for a net of limited
size, and then extended to a net of larger size, under certain assumptions on
the relationship between the two nets. Furthermore, a number of constructive
rules have been defined through which a specification may be refined into a

22

correct implementation. If these rules are followed, it is not necessary to prove
the correctness of the implementation relation a-posteriori, since it is guaranteed
to hold a-priori. These results are formally presented in [5].

As we mentioned, large net-based specifications are quite difficult to under-
stand. Hierarchical definition helps, but does not solve the problem. Although
nets are a graphical formalism, specifications are written according to mathemat-
ical abstractions, not using user and application-oriented concepts. Moreover, the
specification language is defined once for all; it is not tailorable or adaptable to
the needs of the specifier. On the other hand, it would be useful to provide a
specification formalism that can be customized to match the specific needs of a
specifier. It would also be useful to provide a notation that uses graphical con-
cepts that are familiar to the user, so that requirements verification can be done
more effectively. For example, in a control system for a hydraulic plant, user-
oriented graphical abstractions may include valves that can be open or close,
pipes, etc. This issue has considered by CABERNET, which allows a Meta-user
to formally define new language layers on top of the underlying kernel formalism,
using the Meta-editor mentioned in Section 2.2.

3 TRIO: a descriptive specification language

TRIO is a first-order temporal logic language for executable specification of real-
time systems. The language deals with time in a quantitative way by providing a
metric to indicate distance in time between events and length of time intervals.

A major goal of TRIO is executability of specifications. This means that TRIO
formulas can be automatically checked for satisfiability or validity ([7]). When a
formula specifying a given property of a system is interpreted, a model thereof
is generated. Of course, since TRIO contains first-order theories, executability
is undecidable in the general case. However, an analysis procedure on finite
domains can be performed algorithmically by using the Tableaux Method ([32]),
which provides an abstract interpreter of the language. The tableaux method is a
widely used technique in temporal logic to constructively verify the satisfiability
of a formula and to derive implementations from models of specification formulas
([22]). Although TRIO specifications are often stated by assuming an underlying
infinite structure, such analysis may increase the confidence in the correctness
of the specifications in much the same way as testing a program may increase
the confidence in its reliability. That is, by examining the system behavior on
finite domains, the user may infer the behavior on infinite domains. Such a
generalization, however, cannot be proven, and can only be performed under the
user’s responsibility.

3.1 The TRIO language

The purpose of the following brief presentation of the TRIO language is to make
the paper self-contained, not to provide a complete discussion of its features and
its practical use. A complete description can be found in {25], [13], and [24].

23

TRIO is a first-order logic language, augmented with temporal operators that
allow the specifier to express properties whose truth value may change over time.
The meaning of a TRIO formula is not absolute, but is given with respect to a
current time instant which is left implicit in the formula, in much the same way
as in temporal logic.

Syntax: the temporal operators. The alphabet of the TRIO language in-
cludes sets of names for variables, functions, and predicates, and a fixed set of
basic operator symbols. Variables are divided into time dependent (TD) vari-
ables, whose value may change with time, and time independent (TI) variables,
whose value is intended to be invariant with time. Every variable name z has an
associated ype or domain, which is the set of values the variable may assume. A
distinguished domain, required to be numeric, is called the Temporal Domain.
Every function name has an associated arity »>0 (when n=0 the function is
called a constant), and the indication of a type for every component of the do-
main and for the range. Similarly, every predicate name is associated with the
number and type of its arguments. Like variables, predicates are divided into
time dependent and time independent ones: time independent predicates always
represent the same relation, while a time dependent predicates correspond to a
possibly distinct relation at every time instant?. The predicates <, <, =, and
all other usual predicates on numbers, are assumed to be time independent, so
that the associated relational operations are applicable the Temporal Domain.
Also, addition and subtraction are assumed to be total functions, with the usual
properties, applicable to elements of the temporal domain. Symbols are divided
into propositional symbols (A and —), the quantifier V, and a temporal operator
symbol Dist.

The syntax of TRIO defines terms in the usual inductive way: every variable
is a term, and every n-ary function applied to n terms is a term itself. A formula
is inductively defined by the following clauses:

1. Every n-ary predicate applied to n terms of the appropriate types is a formula
(atomic formula).

2. If A and B are formulas, -4 and A A B are formulas.

3. If Aisaformulaand 2 is a time independent variable, Vz A4 is a formula.

4. If A 1s a formula and t is a term of the temporal type, then Dist(A, t) is a
formuia®.

The formula Dist(A,t) intuitively means that 4 holds at an instant laying ¢
time units in the future (if £ > 0) or in the past (if ¢ < 0) with respect to the
current time value, which is left implicit in the formula.

Abbreviations for the propositional operators V, —, true, false, <, and
for the derived existential quantifier 3 are defined as usual. A large number of

* In principle, functions may also be divided into time independent and time depen-
dent, but this feature is not essential and for simplicity it is not introduced here.

® We are introducing minor modifications with respect to the original TRIO definition
in [13].

24

derived temporal operators may be defined by means of quantification over TI
variables in the temporal argument of Dist. These derived operators include all
the operators of classical linear temporal logic. We mention, among others, the
following ones

Futr(A,1) L 1> 04 Dist(A,1)
Past(A,1) 1> 0A Dist(A, —1)
AlwF(A) f Vit > 0 — Futr(A,1))
AlwP(A) E V(1 > 0 — Past(A,1)).
Always(A) «f AlwP(A)A AN AlwF(A)
SomF(A) & —AlwF(—A)

SomP(A) & —~AlwP(-A)

Sometimes(A) def SomP(A)V AV SomF(A)

Lasts(A,t) S v'(0 <t <1— Futr(A,1'))
Lasted(A,1) V(0 <t <t — Past(A,t'))
Since(A1, A2) % 3n(t > 0 A Past(Az,1) A Lasted(A,, 1))
Sincew(Ar, A2) T AlwP(A)) V Since(Ar, As2)

Futr(A,1) means that A will be true in the future, t units from now (Past(A,1)
has the same meaning but respect to the past); AlwF(A) means that A will hold
in all future time instants, while AlwP has the same meaning with respect to
the past; Always{A) means that A holds in every time instant of the temporal
domain; SomF(A) means that A will take place sometimes in the future, and
SomP has the same meaning in the past; Sometimes(A) means that A takes
place sometimes in the past, now or in the future; Lasts(A, t) means that A will
be true in the next ¢ time units; Lasted(A, t) means that A was true in the last
i time units; Since(A;,As) means that A, took place sometimes in the past,
and A; held since then; Since,, (A1,A2) defines the weak version of Since, which
does not require As to actually take place.

A TRIO specification is a closed TRIO formula. Only closed TRIO formulas
are considered, since it is well known that in formulas expressing some kind of
system property all variables are quantified, although sometimes implicitly.

Example 1. A transmission line receives messages at one end and trans-
mits them unchanged to the other end with a fixed delay. The time-dependent
predicate in(m) means that a message m enters the line at the current time (left
implicit); the predicate sut(m) means that the same message m exits from the
other end. The TRIO formula

Always(in{m) — Fuir{out(m), b))

means that everytime a message m arrives a given time, then 5 time units later
the same message m is emitted, i.e., the message does not get lost. The formula

Always(Ymlout(m) — Past(in(m),5)))

means that no spurious messages are generated.

25

Example 2. Let higherLevel and safelyLevel be two significant temperature
values for the security of a chemical plant. Let femp be a time dependent variable
representing the present system temperature. If lightSignal and soundAlarm are
two different alarms in the control system, the formulas

Always(lightSignal(on) «— temp > higher Level)

Always(sound Alarm(on) « temp > safetyLeve)

mean that the light alarm must be on if and only if the temperature reaches
higherLevel, and the sound alarm must be activated if and only if the temperature
reaches the safetyLevel The fact that a security action must be taken whenever
the pressure value exceeds a fixed threshold is expressed by the following formula
Always(pressure > valveTolerance —
Futr(Lasts(openGauge, ky.pressure), ka [/ temp))

This formula specifies the gauge remains open for a duration that is pro-
portional to the pressure, while the activation must be delayed by an interval
inversely proportional to the current temperature.

3.2 TRIO’s semantics

The concepts of satisfiability and validity of a TRIO formula with respect to
suitable interpretations can be defined in much the same way as in classical
first-order logic. A model-theoretic semantics for TRIO is based on the concept
of temporal structure ([25]), from which one can derive the notion of evaluation
function, that assigns to every TRIO formula a truth value for every time instant
in the time domain.

A nderpretation struclure S assigns evaluation domains to variables, and
values of the appropriate type to variable, function and predicate names occur-
ring in formulas of the language. In particular, it associates a temporal domain,
denoted by T, to temporal terms.

Traditional definitions of model-theoretic semantics introduce a meaning
function S; that assigns a value of appropriate type to terms and a truth value
to formulas for every instant 7 of the time domain. A specification formula F
is said to be femporally satisfiable for a given interpretation structure if there
exists a time instant ¢ € T for which S;(F) = true. F is said to be tempo-
rally valid in the given interpretation iff S;(F) = true for every i € T it is
valid if it is temporally valid in every syntactically adequate interpretation. An
interpretation such that F is temporally satisfiable for it is called a model of F.

The definition of function S; is however more complex when formulas are
evaluated in a finite (time) domain. [24] introduces a model-parametric semantics
that imposes restrictions on the evaluability of a formula at a time instant with
reference to a given structure. A formula is considered not evaluable with respect
to a given time instant if its evaluation at that time cannot be done without
referencing a time point outside the time domain. In addition, the set of values

26

that can be assigned to the quantified variables of a formula must be adequately
restricted to subsets of their types in order to prevent from exiting the time
domain when evaluating the formula.

3.3 Vertfication of TRIO specifications

A TRIO specification can be used to model a reactive, real-time system because
the physical and structural components of the modeled system have a logical
counterpart in the constituents of the temporal structure. Physical components
of the systems and immutable relations among them are represented by individ-
ual constants and time independent predicates; temporary relations and events
are represented by time dependent predicates; values and measures of physical
quantities that are subject to change are represented by time dependent vari-
ables. Functions can be used to describe some predefined and fixed operations
of the specified system, and time independent variables are used as placeholders
to express, through the use of quantifiers, existential and universal properties
of the specified system. Thus, one model of a TRIO specification intuitively
corresponds to one possible evolution (Aistory) of the specified system, that sat-
isfies the requirements expressed by the specification formula. A history can be
specified as follows:

Definition4 (Event, history). An event is a pair < L,7 >, where

— L is a literal
— 7 1s a time instant, belonging to the time domain.

A history is a set of events that temporally satisfies a TRIO specification.

For instance, referring to Example 1 in Section 3.1, the pair < in,1 > de-
scribes the event of receiving a message at time 1; the pair < —out, 1 > describes
that no message is sent at time 1. Figure 3 illustrates 3 histories for that example.

(~in in ~in in =in in ~in =in ~in ~in =in \
—out ~out —out -oul ~eul -—oul oul =out out -out —out
Cl eee { 1 ! 1) 1 y] | 1 1 ..
- 1 1 1 1] i 1 i]] *
_ 0 1 2 3 4 5 6 7 8 9 10 /
(=in in -in in ~in -in ~in =in ~in =in —in \
-out =out =out -out -out -out out -out out -out =out
[o T 1] 1 1 1 1 | I 1 1
t T T 1 T T 1 T T T T T A
k 0 1 2 3 4 5 6 7 8 9 10)
f =in in =in =-in -in -in -in =in -in =in ~in N
—out —out —out —out ~oul —oul oul =out —out ~out —~out
@ e ———t—t—
0 1 2 3 4 § 6 7 8 9 10)

Fig. 3. Three executions for the line of example 1 in Section 3.1

27

Requirements validation. In order to validate requirements expressed as a
TRIO specification, one may try to prove the satisfiability of the formula by
constructing a model for it. In this view, some parts of the temporal structure
to be constructed are assumed to be known, namely the temporal domain T, the
domains for variables, and the interpretation of time independent predicates,
which describe the static configuration of the specified system. Given a system
specification as a TRIO formula and the static part of a structure adequate to its
evaluation, the construction of the remaining parts of the structure determines
the dynamic evolution of the modelled system: the events that take place and
the values assumed by the relevant quantities.

If the interpretation domains for variables and the temporal domain T are all
finite, the satisfiability of a TRIO formula is a decidable problem and effective
algorithms to solve it can be defined. [7] presents an algorithm which, under the
hypothesis of finite domains, determines the satisfiability of a TRIQO specification
(i.e., a closed TRIO formula) using a constructive method.

The main steps of the algorithm for verifying satisfiability are schematically
shown in Figure 4. The specification formula is associated with a time value ¢
that indicates the instant where it is assumed to hold; then a decomposition
process is performed which transforms a formula into a set of simpler formulas,
associated with possibly different instants, whose conjunction is equivalent to
it. The decomposition uses well known (and intuitive) properties of the propo-
sitional operators, and treats universal (respectively existential) quantifications
as generalized conjunctions (respectively disjunctions); it ends when each set
of the subformulas, called a fableau, contains only literals. Every tableau that
does not contain any contradiction (i.e., a literal and its negation) provides a
compact representation of a model for the original formula, and thus constitutes
a constructive proof of its satisfiability. Since each leaf tableau generated by
the algorithm for verifying satisfiability corresponds to a history of the spec-
ified system, i.e., a temporal evolution of the system, this algorithm is called
history generatlor (i.e., an interpreter that receives as input a TRIO formula and
produces as result a set of histories that are compatible with such a formula).

C(u)n) GA(xl)) ((—-A(xn),t))((A, t+v))

Fig.4. Pictorial description of the decomposition of formulas by the tableaux algo-
rithm.

Figure 5 shows part of the tableaux tree generated by a history generator

for the formula Always(pressure > valveTolerance — Futr (Lasts (openGauge,
ky.pressure), ky / temp)). It is shown for a generic time value i ranging from the
minimum value of the time domain to the maximum. Since both leaves do not

include contradictions, both represent models of the formula. Please notice that,
fOI' El'a.[)]"li(', reasons we omit. the cancanante in the nredicata and variahla namoee

28

GAIways(prssr 2 vivTlrne -> Futr{Lasts(opnGg,k1.prssr),k2Amp))),i))

(prssr 2 vivTime ->
Futr(Lasts(opnGg k1.prssr),k2itmp}), |)

{(Wt (1>0 ->Past(prssr = vivTirnc -> {(V't (1>0 ->Fute(prssr 2 vivTIrne ->
Futr(Lasts(opnGg,k1. prssr) k2Amp)))).iy Futr(Lasts(opnGg ki.prssr),k2Amp))).1).0)

temporal domain G’-’utr(Lasts(opnGg k1.prssr),k2tmp)) D C (p,ss,>v|vﬂmc)',)) temporal domain

GLasis(opnGg,m .prssr).i+k2/xmpD

(Futr(opnGg.1).i+k2Amp)

(Futr{opnGg,k1.prssr-1),i+k2/tmp)

(opnGg.i+k2Amp+1)

(opnGg.i+k2Amp+k1.prsse-1)

Fig. 5. The tableanx generated by the histories generator for the formula: Always(prssr
> vlvTImc — Futr (Lasts(opnGg,k;.prssr), ko / tmp)).

The study of the complexity of the above algorithm, discussed in [7], shows
that it is exponential in the number of existential quantifications, with the cardi-
nality of the domains of the quantified TI variables appearing as the base of the
exponential, while it is hyperexponential with respect to the number of univer-
sal quantifications, with the cardinality of the domain of the quantified variables
appearing as the exponent.

Specification testing. Executability of TRIO formulasis also provided at lower
levels of generality: the tableaux algorithm can be adapted to verify that a given
temporal evolution of the system (a history) is compatible with the specifica-
tion. This operation is called history checking, since it is analogous to what is
called model checking, in the literature regarding branching-time temporal logic
([2]). Model checking refers to the operation of verifying whether a given state
graph, or state automaton implementing a system, is a model of the specifica-
tion formula. Hence it is equivalent to proving that every possible execution of
the automaton satisfies the formula. Instead, in a linear time logic like TRIO,

29

history checking refers to only one possible evolution of the system. That is, a
history checker is an interpreter that receives as input a TRIO formula and a
history and states whether the history is compatible with the given formula. As
we already said, history checking is implemented through a specialization of the
tableaux algorithm, whose main steps are shown in Figure 6. Now each tableau
includes only one formula associated with a time instant at which it must be
evaluated. An and/or tree is built and the literals obtained in the leaf nodes are
checked against the history.

Fig. 6. Pictorial description of the decomposition of formulas by the history checker.

Complexity of the history checking algorithm has been shown to be expo-
nential with respect to the dimension of the formula ([7]), i.e., the number of its
quantifications and binary operators. It should however be noticed that the car-
dinality of the domains of the quantified variables appears now as the base of the
exponential, not as the exponent (like in the more general algorithm for deciding
satisfiability of formulas). In other words, for a given formula, the complexity
of the history checking algorithm is a polynomial function of the cardinality
of the evaluation domains. This result might be considered discouraging; how-
ever we point out that the dimension of the formula is usually relatively small
with respect to the cardinality of the evaluation domains, so that, in the total
complexity of checking the specification formula, the exponential factor has a
limited influence with respect to the polynomial one. This was confirmed by
experimental use of the prototype in cases of practical interest ([3]).

The history checking algorithm was the basis for the design and implemen-
tation of a prototype tool for specification testing. A set of facts representing
a possible system evolution is tested with reference to a formula describing all
the desired system behaviors. A history is represented by a set of time depen-
dent ground literals, by the time independent predicates and functions which
constitute the frame, and by the values for the time dependent variables.

The tool admits the possibility that the set of ground literals included in
the history does not cover all possible instants of the temporal domain or all
the argument values. In that case the user may choose to evaluate the formula
under the closed world assumption or not. If the closed world assumption holds
then the history is complete by definition because all the events not reported in
the history are implicitly considered as false. Thus, the tool checks whether a
formula is evaluable and then if it is satisfied by the history. Instead, whenever
the closed world assumption does not hold, the checker is also able to recognize
whether the history does not provide sufficient information to assign a truth
value to the formula. In this case the formula is evaluated with respect to a

30

Using specifications to verify implementations. [21] proposes a method
and a tool for the derivation of functional test cases for real-time systems, start-
ing from a specification given in TRIO. [21] defines the notion of test cases ad-
equate to performing functional testing of real-time systems specified in TRIO,
and shows how the history generator and history checker can be effectively used,
both to generate test cases and to support the testing activity itself.

A history (or a model) of a TRIO formula can be interpreted as a test case,
since it represents an evolution trace of the modelled system and hence it can be
compared with an actual execution of the system. In this view, the two mentioned
interpreters (i.e. the algorithm for verifying satisfiability and the history checker)
can become the core of a tool that allows to systematically generate test cases for
the specified system and validate its responses to the provided stimuli. By this
way, not only possible stimuli (i.e., system inputs) are generated from system
specifications to test the system under verification, but also system reactions
(i.e., outputs) are provided to check whether the system behavior really complies
with the desired properties, thus solving the oracle problem ([18]) (i.e., given the
inputs determine the expected outputs).

The TRIO language, unfortunately does not distinguish input events (data
or commands introduced into the system) from output events (data or signals
generated by the system). During the testing activity, however, it is essential to
understand which events flow from the external environment to the system, and
which flow from the system to the external environment. The solution adopted
by the TRIO test case generator does not perform automatically such a clas-
sification, but solves the problem through interaction with the user. The user
partitions predicate names of the specification formula into input, output, and
input/output predicates.

Since each leaf tableau generated by the algorithm for verifying satisfiability
corresponds to a history of the specified system, it is clear that the algorithm
may generate, for some specification formulas, a very large number of histories,
much more than those needed for performing an effective testing. [21] proposes
soime criteria to cope with such kind of complexity. When the complexity is high,
the tool requires the user interaction to select the criteria it must follow or to
use the history checker to check if the set of facts generated up to that moment
satisfies the formula (i.e., it is a history).

3.4 Property proving

This section surveys the axiomatic definition of TRIO presented in [6]. Follow-
ing the axiomatization, one can prove properties of TRIO specifications. The
proof cannot be performed in a purely mechanical fashion, but requires human
interaction in the general case.

Since TRIO allows almost any kind of interpretation domains to be used in
specifications, any axiom system for it should include a first order theory for all
three-value logic ([22]) which includes a third, “unknown” value.

31

of the used domains (say, real numbers for temporal domain, integers for some
variables, booleans for others, etc.). Thus the final axiomatization depends on
the selected domain. Following the same approach as adopted in a variety of
temporal logics ([28, 20, 17]), all the valid formula of the chosen domains are
implicitly assumed to hold as additional axioms in the TRIO’s axiomatization.

TRIO’s axioms are given below. For convenience they are partitioned into
general azioms, which are shared with any first-order theory with equality, and
temporal azioms, which are peculiar of the language. A universal axiom schema
is added at the end of both class.

Let o, 3,w,... denote any TRIO formula; let s, v, u ...denote any term of
a generic domain, whereas t, t1, t2, ...denote any term of temporal type; let z,
Y, . ..denote any variable and ¢ any constant.

General axioms These, in turn, are split into first-order predicate axioms and
into equality axioms as shown below.
First order axioms
1. All instances of propositional calculus tautologies
2. V& o — of where s is a term substitutable for x in o ¢ ([22))
Ve (o — 3) = (Ve o — Ve B3)
4. o — Yz «a if x is not free in o
Equality axioms
5. s = s, for any term s
6. u =5 — (o — «') where v and s are terms, o’ is obtained from o by
substituting zero or more occurrences of u in o by s.
Temporal axioms
7. Dist(c,0) =~ «
8. Dist(cr,tl +t2) «+ Dist(Dist(e,t1),12)
9. Dist(a — f,1) « (Dist(o,t) — Dist(j3,1))
10. Dist(—a,t) — —Dist{a,t)
11. o — Alw(e) if o is time independent
Generalization For each formula w in the above list 1 through 11, all formulas
of the kind Alw(w), and all their applications of universal quantifications
(generalizations) are TRIO axioms.

w

There is a single rule of inference, namely Modus Ponens (MP). By using classical
Hoare’s notation, it is denoted as
I'Fa, l'ta—3
rea

Axioms 7 through 10 describe the essential properties of the basic temporal op-
erator Dist: when in the formula Dist(«,t) the temporal argument ¢ is 0 then
the other argument, «, is asserted at the current instant; furthermore, nested
applications of the operator compose additively, according to the properties of
the temporal domain, and the operator is transparent with respect to proposi-
tional operators of its non-temporal argument. Axiom 11 simply states the time

6 P s :
As usual, af denotes the result of substituting any free occurrence of z in a by s.

32

invariance of time independent formulas (those which do not contain any time
dependent predicate or temporal operator): if the formula is true now then it is
true at any time instant of the temporal domain (the converse is trivially true,
and in fact the corresponding formula, Alw(e) — a, is a theorem whose proof
is immediate).

TRIO’s axiomatization provides also the counterpart of well-known metatheorems”
which hold for the most widely accepted axiomatizations of first-order logic,
namely the Generalization theorem (GEN), the Deduction theorem (DED) and
the Existential Instantiation theorem (EI). Similarly, since TRIO’s axiomatiza-
tion includes a standard first-order part, all the derived inference rules usually
employed for first-order logic ([22]) are also valid in TRIO. Moreover, the ax-
lomatization provides some useful temporal metatheorems:

Temporal Translation Theorem (TT)
This metatheorem asserts that if a formula & can be proved under a given set
of assumptions that hold at the present time instant and all these assump-
tions hold at a different time instant, then it can be proved that « holds at
that time instant too. The metatheorem is formalized as follows.

if I' F o then {Dist(vy,t)]y € I'} b Dist(a,t)

Temporal Generalization Theorem (TG)
This metatheorem is an extension to the preceding result. It states that if
the set of assumptions on which the proof of a property is based is true in
every instant of the temporal domain, then the proven formulais also always
true. Formally,

if I' b o and every formula of I' is of the type Alw(y) or is time
independent, then I F Alw(ea).

An important corollary of TG is obtained by taking I" = 0. In this case TG
reduces to: if - o then F Alw(«). This corresponds to the intuitive fact that if
property a is derived without making any assumption about the current time
instant, then « holds at every time instant. Another consequence of TG is that
any theorem 7 of first-order logic is not only inherited as such in TRIO, but its
temporal generalization, Alw(r) is also a theorem. For instance, Alw(a(t) — 3z
«(z)) holds by the fact that «(¢) — 3z «a(z) is a theorem in any first-order logic.

3.5 Towards more usable real-time logic languages

TRIO is a quite terse language. It is an excellent notation for mathematically
reasoning about specifications, but it is difficult to use in practice. Specifiers
and readers have no ways of mastering the complexity of large specifications;
no application-specific abstractions are provided to support end-users in the
verification of a specification. Following the spirit of what was done for net-based

* Metatheorems are properties of the axiomatization. Instead, theorems are derived
from deductions using the axiomatization.

33

specifications, TRIO is viewed as the semantic kernel notation of a specification
environment, not as the notation used in practice. Other language layers have
therefore been defined on top of TRIO.

TRIO+ ([26]) is an object-oriented extension of TRIO. TRIO+ allows the par-
tition of the universe of objects into classes, the inheritance of relations
among classes, and provides mechanisms such as inheritance and genericity
to support reuse of specification modules and their top-down, incremental
development. Moreover, an expressive graphic representation of classes in
terms of boxes, arrows, and connections is defined. Such a representation
allows depiction of class instances and their components, information ex-
changes, and logical equivalences among (parts of) objects. _

ASTRAL ([8, 9)) is another linguistic layer defined on top of TRIO. ASTRAL
views a real-time system under specification as a collection of abstract ma-
chines. Abstract machines may communicate with one another via exported
variables. They may also interact with the external environment, which may
cause state transitions to occur. ASTRAL is formally defined by means of a
translation scheme into TRIO. The TRIO “code” generated by the transla-
tion may then be manipulated by the available TRIO tools. In particular, it
is possible to test a specification by history checking.

4 The Dual Language Approach

An increasing interest is recently arising on the so-called dual-language approach,
in order to support a complete formalization of specifications and the correspond-
ing analysis [28]. In a dual language approach two entities are distinguished: a set
of properties one wishes to verify and the system (or system part) about which
these properties are to be verified. The dual language approach requires both en-
tities to be formally described: the properties are described using an assertional
(descriptive) language and the system is described using a model-based (opera-
tional) language. In this-way properties are formally stated and can be formally
proved. [6] proposed a dual language method where properties are expressed in
terms of TRIO and the systems are modeled by means of TB nets. One may
view TRIO as the language in which abstract properties and requirements are
formally stated, while TB nets are used to model a more concrete operational
description of an abstract implementation.

The basic idea of the method proposed in [6] consists of an axiomatization
of the behavior of timed Petri nets in terms of TRIO axioms and proof rules, in
the same style as Hoare’s rules are provided for Pascal-like programs. Then, net
properties, such as marking and firing conditions, are expressed as TRIO formu-
las and their validity is proved using the axiomatization presented in Section 3.4.
The method supports the verification of properties of any kind of nets, whereas
existing mechanical methods only apply to restricted subclasses and do not scale

34

classical benchmarks for the analysis of concurrent and real-time systems, such
as an elevator system and a real-time version of the dlnlng philosophers problem.
For example, in the case of the elevator system, given some assumptions, it is
possible to prove that if a person calls the elevator in certain circumstances, it
will arrive within the next A time units; or, if a person pushes a button to close
the elevator’s doors and a person tries to enter the elevator while its doors are
closing, the doors reopen.

5 Conclusions

In this paper, we surveyed the work done by our group in the area of speci-
fication and verification of reactive, real-time systems. Research is still active
in the areas we reviewed here. For example, complete formal treatment of the
graphical language extensions in CABERNET is still under scrutiny. In the case
of TRIO, work is presently addressing further issues of higher-level language
layers defined on top of the kernel (such as the cited TRIO+ and ASTRAL) and
interlevel translation schemes, the problem of handling different time granulari-
ties in a specification, and others. The dual language approach is under further
investigation, and will probably lead to an integration of the present environ-
ments supporting the two specification styles, nets and real-time logic in a single
comprehensive environment.

Acknowledgements

The work we survey in this paper is the result of the work of many individuals
over the past five years. The results we present could have never been achieved
without their insights and enthusiasm. In particular, we wish to thank Dino
Mandrioli, for his contributions to the whole research field, Mauro Pezzé for his
contributions to CABERNET, Angelo Morzenti for his contributions to TRIO,
Dick Kemmerer and Alberto Coen for their contributions to ASTRAL, Sandro
Morasca for his contributions to CABERNET and test case generation from
TRIO specifications, Pierluigi San Pietro for his contributions to TRIO+. Sev-
eral generations of students contributed to the design of the current prototype
environments.

References

1. Bellettini, C., Felder, M., Pezzé, M.: MERLOT: A tool for analysis of real-time
specifications. Proceedings of the 7th International Workshop on Software Specifi-
cations and Design, Los Angeles, California, 1993. (to appear)

. Clarke, C., Emerson, E., Sistla, $.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM-Transactions on Programming
Languages and Systems, Vol. 8, No. 2, April 1986.

3]

9.

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

35

Coen, A., Morzenti, A., Sciuto, D.: Specification and verification of hardware sys-
tems using the temporal logic language TRIO. In Computer hardware descrip-
tion languages and their application, Borrione, D. and Waxman, R., IFIP, North-
Holland, Marseille, France, April 1991, pp.43-62.

Dillon, L.K., Avrunin, G.S., Wileden, J.C.: Constrained expressions: Toward
broad applicability of analysis methods for distributed software systems. ACM-
Transactions on Programming Languages and Systems, Vol. 10, No. 3, pp. 374-402,
July 1988.

Felder, M., Ghezzi, C., Pezzé M.: Analyzing refinements of state based specifica-
tions: the case of TB nets. Proceedings of International Symposium on Software
Testing and Analysis 1993, Cambridge, Massachusetts. (to appear)

Felder, M., Mandrioli, D., Morzenti, A.: Proving properties of real-time systems
through logical Specifications and Petri Nets Models. IEEE-Transactions on Soft-
ware Engineering (to appear). Also in Tech-Report 91-072, Dip. di Elettronica-
Politecnico di Milano, December 1991.

Felder, M., Morzenti, A.: Specification testing for real-time systems by history
checking in TRIO. Proceedings of the 14th International Conference on Software
Engineering, Melbourne, Australia, May 1992.

. Ghezzi, C., Kemmerer, R.A.: ASTRAL: An assertion language for specifying real-

time systems. Proceedings of the 3rd European Software Engineering Conference,
Milano, Italy, October 1991.

Ghezzi, C., Kemmerer, R.A.: Executing formal specifications: the ASTRAL to
TRIO translation approach. TAV’91, Symposium on Testing, Analysis and Verifi-
cation, Victoria, Canada, October 1991.

Ghezzi, C., Mandrioli, D., Morasca, S., Pezzé, M.: A general way to put time in
Petri nets. Proceedings of the 4th International Workshop on Software Specifica-
tions and Design, Monterey, California, April 3-4, 1987.

Ghezzi, C., Mandrioli, D., Morasca, S., Pezzé, M.: A unified high-level Petri net
formalism for time-critical systems. IEEE Transactions on Software Engineering,
Vol. 17, No. 2, February 1991.

. Ghezzi, C., Mandrioli, D., Morasca, S., Pezzé, M.: Symbolic execution of concurrent

programs using Petri nets. Computer Languages, April 1989.

Ghezzi, C., Mandrioli, D., Morzenti, A.: TRIO: A logic language for executable
specifications of real-time systems. Journal of Systems and Software, June 1990.
Ghezzi, C., Morasca, S., Pezzé, M.: Timing analysis of time basic nets”. submitted
for publication

Gomaa, H.: Software development of real-time systems. Communications of the
ACM, Vol. 29, No. 7, July 1986. ‘

Hatley, D.J., Pirbai, LA.: Strategies for Real-Time System Specification. Dorset
House, 1988.

Henzinger, T., Manna, Z., Pnueli, A.: Temporal proof methodologies for real time
systems. Proceedings of the 18th ACM Symposium on Principles of Programming
Languages, pp. 353-366, 1991.

Howden, W.E.; Functional Program Testing & Analysis. Mc Graw Hill, 1987.
Kemmerer, R.A.: Testing software specifications to detect design errors. IEEE
Transactions on Software Engineering, Vol. 11, No. 1, January 1985.

Koymans, R.: Specifying Message Passing and Time-Critical Systems with Tem-
poral Logic. PhD Thesis, Eindhoven University of Technology, 1989.

T 21,

30.

31.
32.
33.

36

Mandrioli, D., Morzenti, A. and Morasca, S.: Functional test case generation for
real-time sytems. Proceedings of 3rd International Working Conference on Depend-
able Computing for Critical Applications, IFIP, 1992 pp.13-26.

. Mendelson, E.: Introduction to mathematical logic. Van Nostrand Reinold Com-

pany, New York, 1963.

. Morasca, S. and Pezzé, M.: Validation of concurrent Ada programs using sym-

bolic execution. Proceedings of the 2nd European Software Engineering Confer-
ence, LNCS 387, pages 469-486. Springer- Verlag, 1989,

Morzenti, A., Mandrioli, D., Ghezzi, C.: A model parametric real-time logic. ACM
Transactions on Programming Languages and Systems, Vol. 14, No. 4, pp. 521-573,
October, 1982.

. Morzenti, A.: The Specification of Real-Time Systems: Proposal of a Logic For-

malism. PhD Thesis, Dipartimento di Elettronica, Politecnico di Milano, 1989.
Morzenti, A., San Pietro, P.: An object oriented logic language for modular sys-
tem specification. Proceedings of the European Conference on Object Oriented
Programming 91, LNCS 512, Springer Verlag, July 1991.

Nagl, M.: A tutorial and bibliography survey on graph grammars. LNCS 166,
Springer Verlag, 1985. ‘

. Ostrof, 1.: Temporal Logic For Real-Time Systems. Research Studies Press LTD.,

Advanced Software Development Series, Taunton, Somerset, England, 1989.
Pezzé, M. and Ghezzi, C.: Cabernet: a customizable environment for the specifica-
tion and analysis of realtime systems. submitted for publication, 1993.

Quirk, W.J1.: Verification and Validation of Real-Time Software. Springer Verlag,
Berlin, 1985.

Reisig, W.: Petri Nets: an Introduction. Springer Verlag, 1985.

Smullian, R.M.: First Order Logic. Springer Verlag, Berlin, 1968.

Taylor, R.: A general-purpose algorithm for analyzing concurrent programs. Com-
munications of the ACM, Vol. 26, No.5, pp. 362-376, May 1983.

