
Efficiency of Projectional Editing:
A Controlled Experiment

Thorsten Berger
Chalmers | University

of Gothenburg, Sweden

Markus Völter
independent / itemis
Stuttgart, Germany

Hans Peter Jensen,
Taweesap Dangprasert

IT University of Copenhagen,
Denmark

Janet Siegmund
University of Passau,

Germany

ABSTRACT
Projectional editors are editors where a user’s editing actions
directly change the abstract syntax tree without using a
parser. They promise essentially unrestricted language com-
position as well as flexible notations, which supports aligning
languages with their respective domain and constitutes an es-
sential ingredient of model-driven development. Such editors
have existed since the 1980s and gained widespread attention
with the Intentional Programming paradigm, which used
projectional editing at its core. However, despite the bene-
fits, programming still mainly relies on editing textual code,
where projectional editors imply a very different—typically
perceived as worse—editing experience, often seen as the
main challenge prohibiting their widespread adoption. We
present an experiment of code-editing activities in a projec-
tional editor, conducted with 19 graduate computer-science
students and industrial developers. We investigate the effects
of projectional editing on editing efficiency, editing strate-
gies, and error rates—each of which we also compare to
conventional, parser-based editing. We observe that editing
is efficient for basic-editing tasks, but that editing strate-
gies and typical errors differ. More complex tasks require
substantial experience and a better understanding of the
abstract-syntax-tree structure—then, projectional editing
is also efficient. We also witness a tradeoff between fewer
typing mistakes and an increased complexity of code editing.

CCS Concepts
•Software and its engineering → Integrated and vi-
sual development environments;

Keywords
projectional editing, language workbench, experiment

1. INTRODUCTION
Projectional editor describes a type of editor where users work
on a projection of a program’s abstract syntax tree (AST)

and directly change the AST with their editing gestures. This
concept is different from parser-based editing, where users
change the concrete syntax (characters in a text buffer), and a
parser then matches the syntax against a grammar definition
to construct the AST. Projectional editing, also known as
structured editing or syntax-directed editing, is not a new
idea; early references go back to the 1980s and include the
Incremental Programming Environment [32], GANDALF [35],
and the Synthesizer Generator [39]. Work on projectional
editors continues today: Intentional Programming [44, 18, 45,
14] is its most well-known incarnation. Other contemporary
tools [20] are the WholePlatform [9], Más [3], Onion, and
MPS [4]. The latter is the instrument of this work. Most of
these projectional editors are used in language workbenches—
tools for developing and composing languages [20, 21].

Projectional editors have two main advantages, both result-
ing from the absence of parsing. First, they support notations
that cannot easily be parsed, such as tables, diagrams or
mathematical formulas—each of which can be mixed with
the others and with textual notations [45, 51]. Second, they
support various ways of language composition [19], typically
including modular language extension as well as embedding
of unrelated languages into a host language [44, 50]. Projec-
tional editors can deal with mixed-language code while retain-
ing awareness of the code structure (syntactic ambiguities are
avoided), which is much harder to achieve with parser-based
tools. This is crucial for supporting analysis, transformation,
and meaningful IDE support in the workbenches.
These two advantages are the essential ingredients for

realizing domain-specific languages or to add domain-specific
abstractions to existing, general-purpose languages. Domain
specificity, in turn, is a major contributor to model-driven
development as well as productivity in software engineering
in general, as reported for domains as diverse as language
and compiler implementation [22, 25], embedded software [13,
27, 29, 30, 56], and web applications [48]. In fact, developers
commonly appreciate the ability for language composition
and notational flexibility [24, 41, 55].
These benefits come at a cost. Even though projectional

editors support a wide range of non-textual notations, a
significant share of any program, such as expressions and
statements, will be expressed textually. Thus, it is crucial
that projectional editors do not negatively impact editing
efficiency for textual notations. This is their weak spot: for
textual notations, projectional editors behave differently from
what developers know from traditional text editors in terms
of the granularity and restrictions of code edits and code
selections. These differences are perceived as a problem [37].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2950315

763



Early projectional editors from the 1980s did very little to
address this issue, ultimately limiting their adoption. Con-
temporary tools, such as MPS, have significantly improved
usability, but inherited the bad reputation. However, no
empirical data on their use is available.

In this paper, we address this gap by studying how develop-
ers perform common code-editing activities in a projectional
editor. We analyze the effects of projectional editing on edit-
ing efficiency, strategies, and types and frequencies of errors
made. We also determine how the use of projectional edit-
ing differs from conventional, parser-based program editing,
whether experience helps, and whether projectional editing
successfully abstracts from its underlying technicalities (e.g.,
AST structure) or whether a deeper understanding is indis-
pensable. By identifying hotspots that are problematic for
adoption and efficient editing, we support tool vendors and
researchers to provide better projectional editors.
Our study comprises an experiment with 19 participants,

designed based on the qualitative results of a survey we con-
ducted before with professional developers who are familiar
with projectional editing [55]. Our experiment comprised two
phases: a controlled experiment with 14 computer-science
(CS) students and a quasi experiment with five industrial de-
velopers experienced with projectional editing. All performed
the same set of code-editing activities. Our instrument was
JetBrains MPS, since (i) it is the most widely used projec-
tional editor today, (ii) it improved significantly over the
tools from the 1980s, warranting a new look at editing ef-
ficiency, and (iii) it is open-source software, which fosters
replicability of our results.

In summary, we contribute: (i) qualitative and quantitative
results about the use of projectional editing from an exper-
iment conducted with student and industrial participants,
and (ii) a replication package in an online appendix [8].

2. BACKGROUND
Projectional Editing and MPS. Projectional editors avoid
parsing the concrete syntax to build a program’s AST. In-
stead, editing activities by a user directly change the AST.
The user sees and interacts with a representation of the pro-
gram rendered by projection rules that reflect the AST as it
changes. This approach is fundamentally similar to graphical
editors (e.g., UML tools), but projectional editors generalize
the approach to arbitrary notations, including textual ones.
Code completion plays a critical role: As the user picks

something from the code-completion menu, the selected lan-
guage concept is instantiated and added to the AST. Text
strings called aliases are used to pick language constructs
from the menu, and the menu contents are driven by the
language definition. Parsing is avoided, because every single
next string is recognized as it is entered, no token structure
has to be recognized in a token stream. Disambiguation is
performed by the user at the time of picking a concept from
the code-completion menu and not by a parser (based on
a potentially complex structure). After a user has picked
a language construct and it has been instantiated in the
AST, a program is never ambiguous: every node points to its
defining concept. This is important, because independently
developed languages can be composed in a single program
and never lead to structural or syntactic problems, irrespec-
tive of the concrete syntax of the participating languages.
For instance, two languages could have overlapping keywords,
which parser-based tools could not easily disambiguate (with-

Figure 1: MPS IDE with mbeddr languages. Top:
textual notation for software components. Bottom: tabular
notation for state machines (a graphical one also exists [6])
mixed with textual code and with requirements trace labels.

out the need for writing dedicated disambiguation code for
the combination of the two languages).
Every AST node has a unique ID. References between

nodes (e.g., variable use and variable definition) are references
between node IDs—created by selecting the reference target
from the code-completion menu. This is in contrast to parser-
based editors, where references are strings that capture the
(qualified) name of the target node, and a subsequent phase
performs name matching and reference resolution. Programs
are typically persisted by serializing the AST (e.g., using
XML) to avoid re-parsing when a program is loaded again.

The JetBrains Meta Programming System (MPS) [4] is an
open-source language workbench [20], that is, a system for
defining, composing, and using languages and their IDEs.
It relies on a projectional editor and supports concrete and
abstract syntax, type systems, and transformations, as well
as IDE aspects, such as syntax highlighting, code completion,
find-usages, diff/merge, refactoring, and debugging. MPS’
projectional editor enables the aforementioned flexible nota-
tions and language composition.
Adoption in Industry and mbeddr. Although being re-
searched since the 1980s, projectional editors have not been
widely adopted in industry, including those we discuss in
Sec. 7. They are niche tools, mainly due to their usability
problems. However, given their potential and their powerful
facilities, the motivation for our work is to leverage exist-
ing research results by studying and eventually improving
their code-editing efficiency. Despite the low adoption in
general, the use of MPS in particular has been growing sig-
nificantly over the last years; it is used in production for
various applications, such as JetBrains YouTrack, computa-
tional biology [43], web applications (Code Orchestra IDE [2]),
requirements engineering [54], insurance DSLs, security as-
sessments, satellite control software, cloud-based business
applications as well as health and medicine applications. A
migration of an existing legacy language infrastructure for
the banking domain into MPS is also reported [31].
The biggest application of MPS is mbeddr, a set of inte-

grated languages for embedded software engineering [5, 52],
developed with MPS. Its core is an extensible version of the
C programming language (C99) plus extensions for interfaces
and components, state machines, and physical units, among
others. mbeddr provides multi-paradigm programming for
C [17], in which different abstractions and notations can be
used in the same program, as shown in Fig. 1, which illus-

764



trates the facilities for language composition and flexible
notations. The language extensions are not mere libraries or
frameworks; they are first-class language constructs with full
support from the compiler, type system, and IDE. mbeddr
also supports languages for cross-cutting concerns, such as
documentation, requirements management, and traceability,
as well as product-line engineering. Several formal verifi-
cation techniques are also directly integrated with the lan-
guages [34, 38]. mbeddr comprises 70 languages, 35 of them
are C extensions: it is one of the largest systems built on top
of a language workbench. mbeddr is open-source software
and used in several commercial embedded-software projects
(e.g., the smart meter [57]).
Preparatory Survey. Previously, we surveyed 21 industrial
developers using projectional editing mainly in the embedded
and automotive domain. We presented the survey before [55],
with a focus on a quantitative analysis of the questionnaire’s
closed, Likert-scale questions, which elicited the participants’
perceptions of projectional editing. To prepare our experi-
ment, we additionally analyzed the questionnaire’s remain-
ing open questions, which elicited qualitative experiences
from the participants. Using open coding [46], we identified
editing-related aspects in four categories: basic editing, er-
rors, AST conformance, and refactoring. Our results show
that basic editing was not considered as a problem, except
for some over-deletions and issues with editing structures
that crosscut the AST (e.g., parentheses). Still, participants
indicated that some common editing behaviors they are used
to were not applicable. We also observe a tendency towards
fewer errors; for instance, some respondents conjectured less
syntactic errors due to the permanently enforced AST con-
formance. Yet, AST conformance in general was perceived
negatively—developers wanted more freedom. They were es-
pecially negative about editing expressions (e.g., a+b*(c+f))
and the fact that references can only be established once the
reference target is available. Finally, participants expressed
that refactorings work like in regular IDEs, except the re-
name refactoring, which works automatically and everywhere,
because of a projectional editor’s reliance on unique IDs (and
not names). These results guided our experiment design.

3. EXPERIMENT DESIGN
We conducted the experiment in two phases, one with gradu-
ate CS students (controlled experiment) and one with indus-
trial participants experienced with MPS (quasi experiment).
We now discuss our research questions, the detailed experi-
ment objective, the tasks, and our materials. We also describe
participants, experiment execution, and the analysis method.
We discuss confounding parameters when relevant.

3.1 Research Questions
Our first research question aimed at quantitatively comparing
editing efficiencies of projectional and parser-based editors. It
investigated whether one is faster, for what editing tasks, and
what the effects of using projectional editing are on beginners.

RQ1 How does editing efficiency differ between pro-
jectional and parser-based editors? We investigated
this question in the first phase with a controlled experiment
and students who were inexperienced with projectional edit-
ing. We randomly grouped them into a projectional-editor
and a parser group, and then analyzed their efficiencies.
To enhance the external validity of our results, and to

Table 1: Experiment design. Top: first phase with stu-
dents. Bottom: second phase with experienced MPS users.

editor experience with MPS group # of part.

projectional beginner Proj 8
parser – Par 6

projectional expert ProjE 5

obtain insights into whether substantial experience has an
effect on the use of projectional editing, we conducted the
experiment again three weeks later with industrial partici-
pants experienced with MPS, who were not available for the
first phase. We quantitatively investigated:

RQ2 What is the editing efficiency of experienced
projectional-editing developers? This second phase also
allowed us investigating whether and how projectional editing
can outperform parser-based editing. Since these participants
were not randomly split into a projectional and a parser group,
this second phase is a quasi experiment [42]. Although we
could assume that our CS-student and industrial participants
are equally proficient with textual editing (i.e., using the
keyboard), we separate RQ2, which aimed at cross-phase
quantitative results, from the discussion of RQ1 and RQ3.
Our third research question was more exploratory. After

the two phases, we wanted to understand the detailed usage
of how editing differs among all the groups in more detail:

RQ3 What are commonalities and differences in the
use of projectional and parser-based editors? We in-
vestigated this research question by conducting a fine-grained
analysis of the code-editing tasks across both phases. We com-
pared all groups by determining editing operations and effects
(e.g., errors), identifying and comparing editing strategies,
and eliciting our participants’ perceptions and experiences.

Note the different validities of quantitatively investigating
the editing efficiency in the controlled experiment (RQ1) and
in the quasi experiment (RQ2). The validity of the latter is
slightly lower, since we could not control for any differences
in textual-editing proficiency of the industrial developers, as
opposed to the students. Thus, we added RQ3 to complement
the quantitative analysis (hypothesis testing) and provide
important empirical data on the detailed use of projectional
editing by the different groups of participants.

3.2 Objective: Variables and Hypotheses
We defined the following variables of interest and formulated
the following hypotheses about their relation.

3.2.1 Variables
For the first phase we have one independent variable, editor,
which has two levels, projectional and parser-based. The
second phase introduces another, quasi-independent variable
experience with projectional editing with the two lev-
els expert (professional experience with projectional editing)
and beginner (no prior use of projectional editing). Note
that programming experience is neither an independent vari-
able nor a confounding factor, since the tasks did only require
basic programming skills (discussed in Sec. 3.3 and Sec. 6).

The two student groups we formed each correspond to one
of the two levels of the independent variable editor. With
respect to the second independent variable experience with
projectional editing they are beginner. In the second
phase, the industrial participants form one group, which
corresponds to the level projectional of the independent
variable editor, and the level expert of the independent

765



variable experience with projectional editing.
Table 1 shows the resulting experiment design with the

three groups. In the remainder, for brevity, we will use the
abbreviations Proj (for projectional-beginner), Par (for
parser), and ProjE (for projectional-expert). We used a
fractional experiment design, because we could assume that
all participants have comparable skills in text editing and
it was difficult to find more experts to create an additional
control group. A few students also did not show up. We
compensated the slightly different group sizes by using robust
statistical significance tests in our quantitative analysis.
The dependent variable is efficiency, measured quan-

titatively using the metric completion time of the tasks
(defined in Sec. 3.5). The other dependent variables are
use of operations, editing errors, and editing stra-
tegies, analyzed mostly qualitatively from the experiment
recordings. A post-experiment questionnaire and debriefing
interviews complemented all these data sources.

3.2.2 Hypotheses
We defined hypotheses using the results of our preparatory
survey, our experiences, and common claims about projec-
tional editors in the literature. Specifically, the survey al-
lowed us to state one-tailed hypotheses to increase the sta-
tistical power, which is important for our small sample size.
RQ1. For the first research question, we ran the controlled
experiment with the student participants, hypothesizing:

H1. Par is more efficient than Proj.

Our suspicion was that the different editing experience slows
down beginners, even though we provide a 45-minute MPS
tutorial (explained shortly in Sec. 3.4) before the experiment.
RQ2. For this question, we ran the quasi experiment and
analyzed the editing performance across all the groups using
the following two comparisons and hypotheses. We first
compared ProjE with Proj, which would show us whether
experience can affect projectional editing. We hypothesized:

H2. ProjE is more efficient than Proj.

Thereafter, we compared ProjE with Par, hypothesizing that:

H3. ProjE is more efficient than Par.

This hypothesis conjectured that developers can become
more efficient with a projectional editor than those with a
parser-based editor. It would mean that the benefits provided
by projectional editors are not hindered by reduced editing
efficiency after training is provided.
RQ3. This question is more exploratory, comparing pro-
jectional and parser-based editing in detail. So we did not
formulate a hypothesis, but conjectured differences how the
editing tasks are solved and what kinds of editing patterns
and effects (e.g., mistakes) arise. Recall the results of our pre-
ceding survey, that many behaviors known from parser-based
editing are not applicable in projectional editing, which we
conjectured leads to different editing strategies.

3.3 Material and Tasks
Tools. For group Par, we used Eclipse CDT as a common
parser-based editor. For Proj and ProjE, we used a stan-
dard installation of MPS and provided tasks in the mbeddr
language. For screen recordings, we used CamStudio [1]. Ev-
ery participant received a startup package (fully configured
project with imported models/code, build infrastructure, and
test cases) with code templates for the required tasks. We
also provided a cheat sheet with common keyboard shortcuts.

Questionnaire and Debriefing Interviews. After each
phase, we used a questionnaire to elicit the participants’
perceptions. Closed questions had a five-point Likert scale
(e.g.,“I would solve this problem differently in my favorite
‘conventional’ editor.”) with options ranging from strongly
disagree to strongly agree. Open questions asked about
qualitative experiences (e.g.,“Was there anything you found
particularly difficult with refactorings?”) or were inspired
by our survey (e.g.,“When working with the editor, I often
deleted more than I expected.”). We also designed debriefing
interviews with three main questions: “What were the biggest
problems?”, “How did you solve them?”, and “What do you
think in general about MPS and the editing approach?”
Tasks. The tasks reflected common code-editing activities
and covered aspects identified in the survey. All tasks were
based on C. Since mbeddr implements C99 with very few
changes [53], the code was fully identical for all groups. We
designed the tasks to cover both basic (e.g., insertion, dele-
tion) and advanced (e.g., move, refactoring) editing facilities,
structured according to the four categories from the survey
(basic editing, errors, AST conformance, and refactoring):
Task 1) Edit expressions that represent logical laws (double
negation law, commutative law, associative law, De Morgan’s
law, absorption law): It investigated fine-grained editing and
the ability to perform cross-tree changes (adding nodes consis-
tently at different tree locations; e.g., inserting parentheses).
Task 2) Implement a bubble-sort algorithm: This task
analyzed the use and composition of common program ele-
ments, such as if and for statements, as well as function
and variable declarations in a typical programming activity.
Task 3) Implement function signatures (headers): This
task investigated how users deal with the always enforced cor-
rect AST—more precisely, how they handle cross references
where the target is not yet defined. Recall that projectional
editors establish reference targets at editing time.
Task 4) Perform refactorings: This task investigated strate-
gies used to modify and refactor code, and to what extent
IDE-supported refactoring methods (e.g., rename, extract
method, inline variable, extract constant) are used in addition
to basic-editing operations (e.g., CopyPaste).

To avoid bias originating from varying programming abili-
ties, we gave the solution to the participants. This is valid
since we evaluated editing efficiency, not programming.

For the first task, we provided the laws in the editor, but
introduced an error. Participants were asked to enter the
correct solution. For instance, negations in the De Morgan’s
law were missing, and the correct solution was to insert them:

boolean deMorgansLaw = p && q == p || q; /* Incorrect */
boolean deMorgansLaw = !(p && q) == !p || !q; /* Correct */

This case required cross-tree editing operations not supported
in the used MPS version. For the second task, we provided a
solution and instructed participants to enter it in the editor.
In the third task, five method signatures representing the API
of a book library (including functions, such as searchBook()
and reserveBook()) had to be created. Participants also
had to create the respective parameter and return types,
where the task description explained that empty structs
can be used, so writing struct NAME {} sufficed, which is
also proposed by MPS’ code-completion when typing struct.
In the fourth task, participants had to solve three complex
code modification and refactoring tasks. In each, we provided
the implementation of a function that handles the order pro-
cess of an online shop. Participants had to conceive strategies

766



and apply one or more simple refactoring operations (either
IDE-provided ones or CopyPaste, CutPaste, and so on) to
achieve a complex refactoring, comprising method extraction,
flattening of deeply nested if statements, or inlining of vari-
ables. The subtasks were in fact very complex (cf. the task
descriptions [8]) and none could be solved by only applying
a single IDE-provided refactoring.

3.4 Participants and Experiment Execution
For the first phase, we recruited 14 graduate CS students
through flyers and mailing lists and randomly assigned them
to the Proj and Par group. For the second phase, we re-
cruited five developers from an industrial partner, where they
regularly used projectional editing. Although not directly
relevant for the experiment (only basic programming skills
required), the students had been programming for 1 to 2
years, the professionals for 5 to 10 years. Most of the latter
had used projectional editors for at least one year (one even
more than three years), two had been using it for less than a
year. For compensation, the students could enter a raffle for
vouchers (for an electronics store, cinema, or coffee shop).

We conducted the first phase on two appointments for Proj
and Par. In each, we introduced our study and explained
projectional editing. For Proj, we also provided a 45-minutes
hands-on tutorial on MPS/mbeddr. For Par, we recapitulated
Eclipse CDT. We showed them how to run the test cases
(provided for every task)—once these passed, participants
should proceed to the next task. Thereafter, participants
solved the tasks with instructions provided on paper. Finally,
they completed the questionnaire and volunteers participated
in the debriefing interviews. The second phase was conducted
with ProjE three weeks later and followed exactly the same
procedure, except that we could skip the MPS tutorial.

3.5 Analysis
We measured the completion time by identifying the first and
last edit a user performed on a task from the screen recordings.
So completion time excludes reading the task description, test-
ing, and building the project. For all participants and tasks,
we verified that the task was completed, making a subjective
assessment whether the solution was structurally correct with
only few mistakes, which we analyzed separately. The metric
allowed us to test our hypotheses using the statistical tests
ANOVA and Kruskal-Wallis [10].

We then analyzed the screen recordings in-depth. For
the basic-editing tasks, we identified editing operations and
editing effects (mistakes, errors, unexpected editing results)
and measured their frequency. To count editing operations,
inspired by the lexer phase in compilers, our measurement
unit was a program token, such as a variable name, paren-
thesis, keyword (e.g., void, for, if), or semicolon. For the
advanced-editing tasks, we were more interested in the strate-
gies used. We found those by first identifying atomic editing

●

● ●

●

●

●
●

●

●

● ●

●

expressions bubble sort signatures refactorings

100

200

300

400

500

100

150

200

250

300

350

250

500

750

1000

1000

1500

2000

2500

Proj Par ProjE Proj Par ProjE Proj Par ProjE Proj Par ProjE
group

tim
e 

in
 s

ec
on

ds

Figure 2: Task completion times in seconds (violin plots)

activities and then observing their combined usage.
For all research questions, we triangulated data from the

screen recordings, questionnaire, and debriefing interviews.
We analyzed the questionnaire using violin plots (Likert
questions) and by inspecting the open-text responses. The
debriefing interviews were transcribed and inspected.

4. EXPERIMENT RESULTS
In total, we recorded more than 28 hours of screen recordings;
collected questionnaire responses from all 19 participants;
and 15 participants agreed to participate in the debriefing
interviews, which amounts to 51 minutes of audio recording.

We now report our analysis results. In each subsection, we
first present results for all groups together and then get back
to the respective research question. Because the second phase
was only a quasi experiment, we separate the discussion of
the quantitative editing efficiency for RQ1 and RQ2.

4.1 Editing Efficiency
Fig. 2 shows the distributions, and Table 2 (left half) shows
the average completion times for all tasks. By observing the
differences between the groups, we obtained a first impres-
sion on which of our hypotheses might hold. To evaluate
whether the differences are real or just occurred by chance,
we conducted an ANOVA or, if its preconditions were vi-
olated, a non-parametric Kruskal-Wallis test for each task.
If there was a statistically significant difference, we made
post-hoc comparisons with adjusted p values (according to
the false-discovery rate [11], to avoid alpha-level inflation due
to multiple testing) to determine between which groups the
significant difference exists. This generally leads to lower p
values to reject a null hypothesis, depending on the number
of rejected null hypotheses. Table 2 (right half) shows the
details about the tests, together with the effect sizes (Cliff’s
delta [16], 95% confidence interval).
For Task 1, the ANOVA shows a significant difference

between the groups, but it vanishes in the post-hoc compar-
isons. For Task 2, there is no significant difference. Thus,
we reject all three hypotheses for these basic-editing tasks.
Yet, the effect sizes show differences, indicating that expe-
rience might even help with basic editing, which demands
a valuable, future investigation, since these differences are
not statistically significant. Specifically, the effect sizes again
emphasize the particular difficulty when editing expressions.

Table 2: Completion times, significance tests, effect sizes

task Proj1 Par1 ProjE1 significance tests&post-hoc comparison

1 322 162 162 ANOVA: F=4.15, df=2/13, p=.040
Adjusted p value: .017
Proj vs. Par: t=2.34, df=7.56, p=.049
Proj vs. ProjE: t=2.34, df=7.56, p=.049
ProjE vs. Par: t=0.02, df=7.99, p=.987
Cliff’s delta: Proj vs. Par: 0.67;
Proj vs. ProjE: 0.67; ProjE vs. Par: 0.04

2 228 224 142 ANOVA:F=2.35, df=2/13, p=.134
—
Cliff’s delta: Proj vs. Par: 0.13;
Proj vs. ProjE: 0.73; ProjE vs. Par: -0.6

3 438 430 142 Kruskal-Wallis:χ2=8.78, df=2, p=.012
Adjusted p value: .033
Proj vs. Par: U=23, p=.950
Proj vs. ProjE:U=40, p=.002
ProjE vs. Par: U=3, p=.030
Cliff’s delta: Proj vs. Par: -0.04;
Proj vs. ProjE: 1; ProjE vs. Par: -0.8

4 1700 1567 887 Kruskal-Wallis:χ2=7.21, df=2, p=.027
Adjusted p value: .033
Proj vs. Par: U=24, p=1.000
Proj vs. ProjE:U=36, p=.019
ProjE vs. Par: U=2, p=.017
Cliff’s delta: Proj vs. Par: 0;
Proj vs. ProjE: 0.8; ProjE vs. Par: -0.87

1 average time in seconds

767



For the other two tasks, there is a significant difference.
The post-hoc comparison shows that, for both, the difference
exists between ProjE and Proj, as well as ProjE and Par,
indicating that the experts are always faster than both stu-
dent groups. Thus, we accept hypotheses H2 and H3, which
is supported by all effect sizes.

Let us now get back to our research questions that involve
the quantitative analysis of the editing efficiency.
RQ1. In the first phase, for all tasks, we observe no signifi-
cant difference in the completion times between projectional
and parser-based editing when comparing Proj and Par:

Editing efficiency was quickly achievable with a projec-
tional editor. A short 45-minute training sufficed to
achieve an efficiency comparable to parser-based editors.

RQ1 (controlled experiment)

RQ2. Comparing results from both phases shows a signifi-
cant difference in completion times between the basic (Tasks
1 and 2) and the advanced (Tasks 3 and 4) editing tasks.
While there is no significant difference for basic editing, which
strongly indicates that all groups had similar editing perfor-
mances, ProjE outperformed Proj and even Par in advanced
editing (see a discussion of the validity of this comparison
in Sec. 6). Thus, experience appeared to have a substantial
effect on how the advanced-editing tasks were solved.

The average projectional-editing experience of around one
year that ProjE had allowed them to solve Task 3 three
times (3.08) and Task 4 two times (1.92) faster than Proj.
ProjE outperformed Par three times (3.03) in Task 3 and
almost two times (1.77) in Task 4. This observation and our
qualitative results (presented shortly in Sec. 4.2–4.3) suggest:

In basic editing, more experience with projectional editing
did not lead to significantly better results. In advanced
editing, more experience with projectional editing led
to significantly better results compared to projectional-
editing beginners and even participants using the parser-
based editor.

RQ2 (quasi experiment)

4.2 Basic Editing
To address RQ3 for the first two tasks, we conducted a
fine-grained analysis of editing operations and errors.

4.2.1 Editing Operations
Definitions. We considered the following four operations:
Insertion is an attempt to add a program token, regardless
of success or failure. It can lead to several tokens being
added (e.g., a closing parenthesis for an opening one), which
is just counted as one Insertion. Deletion is its inverse—the
removal of a token. It may also trigger the removal of several
tokens, which is also just counted once. Selection refers to
highlighting one or more tokens for follow-up operations (e.g.,
Deletion). Several methods exist, such as double clicks or key-
board shortcuts, which we did not distinguish. Incremental
selection (e.g., along the tree) was counted as one selection.
Furthermore, if the user aborted a selection and tried it
again, the retry was counted separately. Cloning refers to
the duplication of one or more program tokens, achieved
using CopyPaste, CutPaste or MPS’ Duplicate operation.
Use of Operations. Fig. 3a and 3b show the operation use
(mean per participant) in Task 1 and 2. Fig. 4 shows the re-
spective perceptions from the post-experiment questionnaire.
Insertion is dominant. Its ratio to the other operations

0.6

18.62

57.75

1.88
0.5

11.67

44.17

0.67
0

9.4

45

5.8

Proj Par ProjE

0

30
60
90

operation
cloning

deletion

insertion

selection

0.25

8.5

80.25

0.75 0.33

11

90.33

0.67
0.2

4.2

75.2

0.2

Proj Par ProjE

0

50
100
150

(a) Task 1

expressions

(b) Task 2

bubble sort

Figure 3: Average use of basic-editing operations
per participant. Y-axis in log(y+1) scale.

is similar among the groups. All participants considered
Insertion as accurate and quick: The distribution (Fig. 4)
shows almost no difference between Proj and Par; ProjE was
only slightly more positive. To perform Insertions, many
participants (six in the questionnaire, three in interviews)
stated that using code completion is easier than writing
code character by character. The perceived need for more
extensive use of code completion could lead to additional
attention investment [12] of beginners—however, we notice
that it did not negatively impact efficiency. In fact, writing
code character by character without code completion may
lead to invalid code (when tokens are not bound as typed).
We observe that Deletion was a bit more problematic.

While the first task required more Deletions than the second
one, ProjE was more efficient and required slightly fewer
Deletions, given the experts’ proficiency. Deletion was per-
ceived as less accurate (Fig. 4) by both projectional-editor
groups (Proj, ProjE), while all agreed that Deletion is quick.
Even our beginners Proj figured out that exploiting the AST
structure can be used for quick Deletions of whole sub-trees,
such as an if statement together with its body: “I used the
possibility to clear the code just by going to the if statement.”
The accuracy issue originated from two problems. First,
the cursor placement was sometimes unpredictable: “Cursor
placement was highly influential on what got deleted, which
was not always what the user expects.” Second, participants
had problems with Over-Deletions (discussed in Sec. 4.2.2).

The use of Selection is a differentiator between Proj, who
primarily expressed a neutral opinion about accuracy and
quickness of Selections (confirmed by interviews), and ProjE,
who were very positive and strongly agreed to both aspects.
ProjE used Selection more often, at least in Task 1, which re-
quired changing existing code. Par generally found Selection

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Insertion is accurate. Insertion is quick.

Deletion is accurate. Deletion is quick.

Selection is accurate. Selection is quick.

Used Cloning more than usual. Cloning did not work as expected.

ProjE

Par

Proj

ProjE

Par

Proj

ProjE

Par

Proj

ProjE

Par

Proj

1 2 3 4 5 1 2 3 4 5
Likert−scale response

gr
ou

p

1: strongly agree, 2: agree, 3: neutral, 4: disagree, 5: strongly disagree

Figure 4: Opinions about basic editing

768



being accurate and quick.
Four projectional beginners (Proj) specifically expressed

problems with selecting visually adjacent nodes that are not
direct neighbors (only siblings) in the AST, which is not
possible: “Got some unexpected selections (they were right,
just it selected not what I wanted), like in case 1+2+3, putting
[the] cursor at 2, the 2+3 got selected, while wanted to select
1+2, which was not possible due to AST tree structure.”

Finally, Cloning was very rarely used in the first two
tasks. In general, most participants found that it worked as
expected. We discuss Cloning further in Sec. 4.3.2.
RQ3. In summary, the use of basic-editing operations did
not differ much between the groups:

Writing code was not negatively impacted by projectional
editing, but relied on increased use of code completion.
Selecting code required more experience and attention.

RQ3 (controlled and quasi experiment)

4.2.2 Editing Errors
Definitions. From the screen recordings, we identified the
following errors made repeatedly. Invalid Insertion is an in-
sertion flagged as invalid (marked red) by the editor. Reasons
include, for instance, the lack of an alias corresponding to the
input at the current location, or an incorrect instantiation of
a node. Here is an example, where a participant tried to add
an invalid closing parenthesis (MPS automatically inserted
the closing parenthesis after typing the opening one; adding
another one between the existing parentheses is invalid):
void bubbleSort()) { ... }

We only count Invalid Insertions when the participant pro-
ceeded with another edit and left the previously inserted
code invalid. Transitively invalid (not yet valid) code was
not counted. For instance, entering int is initially not valid
in mbeddr; if a user disambiguates to int8, it is a valid
insertion (continuing with a variable name would be invalid).
Invalid Trailing Insertion is a failed insertion that directly fol-
lows an Invalid Insertion. It cannot exist without an Invalid
Insertion before (due to the absence of parsing, every single
node has to be inserted step-by-step). Here is an example,
where the root cause is the Invalid Insertion shown above:

void bubbleSort()int8[] list, int8 n) { ... }

We distinguished these cases from Invalid Insertions to obtain
more insight into edits that could potentially be correct, but
were invalid, because an earlier token was not bound correctly.
Valid Wrong Insertion is a syntactically valid insertion that is
semantically wrong: an insertion was performed successfully,
but the result is not what the participant expected. We
count such cases irrespective of their recognition by the
participant. The next code snippet gives an example, where
the participant tried to negate the expression p && q, but
entering an exclamation mark yields an incorrect result. Each
line shows her steps towards the incorrect result (last line):
boolean deMorgansLaw = !p && q == p || q;

boolean deMorgansLaw = (!p && q == p || q;

boolean deMorgansLaw = (!p && q) == p || q;

Mistake is an erroneous attempt (typo) to enter one or several
characters. Finally, Over-Deletion is a deletion that removes
too many tokens. Whenever a participant deleted code and
immediately reentered it, we count this as an Over-Deletion.
We made a subjective assessment in unclear cases.
Occurrence of Errors. Fig. 5a and 5b show the occurrence
of errors (mean per participant) in Task 1 and 2. Fig. 6 shows
the results from the post-experiment questionnaire.

2.38 2.62

1.5

3.75
2.5

0 0 0

6.5

0.17

1

0.2
0.6

1.4 1.6

Proj Par ProjE

0

2

4
6
8

error
over deletion

invalid insertion

invalid trailing insertion

mistake

valid wrong insertion

0.75

3.25 2.62
4

0.12 0.17 0 0

7

0.83

0

2.8

1
1.6

0

Proj Par ProjE

0

3

6
9

(a) Task 1

expressions

(b) Task 2

bubble sort

Figure 5: Average occurrence of errors per partici-
pant. Y-axis in log(y+1) scale.

Both Proj and ProjE made all of the identified errors—yet,
the latter at a much smaller rate. The Invalid Insertions
mainly occurred among Proj, rarely among ProjE, and never
among Par. That is, in case the latter made some poten-
tially invalid insertions—which can only be typos—they fixed
them immediately. The higher ratio for Proj can then only
be explained by missing awareness of the fact that nodes
need to be bound immediately. We observe the same ratios
for Invalid Trailing Insertions, which shows that developers
lose time by unbound nodes. Valid Wrong Insertions were
a significant problem for the projectional-editor groups in
the expression-editing task (much less in the bubble-sort
task, which required less intricate edits). Par had almost
no such problems. This again confirms that editing of com-
plex constructs (expressions) is more difficult than creating
program statements (Task 2). Mistakes were done by all
groups, but significantly more by Par. We do not observe a
difference between the two tasks. This indicates that most
of the typing mistakes are actually prevented by projectional
editing. Finally, Over-Deletions appeared frequently for the
projectional-editor groups. In the first task, which required
many Deletions, they were hard to avoid and occurred for
every subtask. The questionnaire (Fig. 6) and the debriefing
interviews confirm Over-Deletions. The underlying problem
was again the cursor-positioning issue. For instance, par-
ticipants mentioned that a Deletion sometimes deleted the
entire expression, or that tabbing through a parameter list,
trying to delete parameters, often deleted the wrong nodes:
“Sometimes if you delete something in a parameter list, the
cursor jumps to an unexpected position and you delete other
stuff. Then you go back with Ctrl-Z.”
RQ3. Frequency and kinds of errors varied significantly
among the groups. The differences show a tendency that
Proj and ProjE performed more incorrect editings not arising
from mistakes (e.g., typos), but from a wrong understanding
of the technicalities of projectional editing. The higher ratios
of Valid Wrong Insertions, Invalid Insertions, and Invalid

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Editor created awareness of invalid code. Editor allowed to reduce errors.

Editor fostered recovering from errors Needed many attempts to pass the tests.

Often deleted more than expected.

ProjE

Par

Proj

ProjE

Par

Proj

ProjE

Par

Proj

1 2 3 4 5
Likert−scale response

gr
ou

p

1: strongly agree, 2: agree,

3: neutral, 4: disagree,

5: strongly disagree

Figure 6: Opinions about errors

769



Trailing Insertions indicate a discrepancy between the ex-
pected editing effect and the actual result, which is especially
tricky for editing expressions. In other words, participants of-
ten performed edits they assumed to be correct, but resulted
in structurally incorrect code. This suggests that:

Projectional editing showed a tradeoff between fewer Mis-
takes (e.g., typos) and an increased complexity of per-
forming editing operations. Yet, experience reduced such
problems, leading to fewer errors altogether.

RQ3 (controlled and quasi experiment)

4.3 Advanced Editing
For Tasks 3 and 4, we analyzed the strategies how participants
solved more advanced code-editing tasks.

4.3.1 AST Conformance
In this task, participants had to create method signatures,
which also required creating the respective parameter types.
This lack of predeclared structs led some participants in
all groups trying to find the structs in the IDE by using
Ctrl-Space and looking around in other files; eventually,
all created the structs. Some parser-based participants did
not know how to create a valid struct type; some used
Google to find out (see our discussion of construct validity
in Sec. 6). In both projectional-editor groups, the editor-
enforced syntax for structs guided the users to the correct
notation for struct definitions.
All students started by entering the method signatures

(as opposed to first creating the structs). For Par, this
worked well: They typed the characters and then got type-
system errors that reported the missing types. While some
users still struggled, all except one (he used strings for all
types) eventually created the structs. Proj struggled with
the enforced AST conformance to various degrees. Since
it is impossible to refer to structs that have not yet been
declared, the function signatures could not be entered before
adding the structs. This was perceived as problematic,
but all participants found this out eventually. Yet, one
struggled particularly hard. He tried to enter the signature
nonetheless, typing Book searchBook( string title )—
all of this unbound and therefore invalid. ProjE did not try
to enter the signatures before the types. All of them either
created the structs upfront or as needed; no one tried to
enter signatures while the structs were missing.

AST conformance was often mentioned in the post-experi-
ment questionnaire and the debriefing interviews. We observe
a sense of “restriction” among the participants. Program
constructs need to be entered correctly the first time; a
trial-and-error strategy was more challenging. Some typical
programming activities felt more rigid to Proj when com-
pared to their experience with parser-based editors. The
importance of code completion was also mentioned often.
While participants were positive about its effectiveness, some
had ambivalent opinions and felt restricted by it. For in-

Table 3: Usage rates of modification operations

modification operation Proj1 Par1 ProjE1

Move 35% 6% 60%
CopyPaste 25% 78% 20%
CutPaste 75% 56% 53%
RefactoringAction 30% 11% 53%
ManualInsertion 45% 56% 33%

1 percentage of users in a group using the operation

●

●

●

●

●

●

●

●

●

Simple refactorings worked as expected. Complex refactorings worked as expected.

Complex refactorings required a specific order.

ProjE

Par

Proj

ProjE

Par

Proj

1 2 3 4 5
Likert−scale response

gr
ou

p

1: strongly agree, 2: agree,

3: neutral, 4: disagree,

5: strongly disagree

Figure 7: Opinions about refactoring operations

stance, some felt they had to always use code completion to
avoid invalid input: “I do not want to use control-space all
the time. I want to write my own variable and do not want
to need to auto complete all the time.” In fact, while code
completion tends to be used more than in text editors, many
things can “just be typed” as in a text editor; yet, exceptions
(e.g., when using ambiguous keywords belonging to separate
languages) led to this perception.

4.3.2 Code Modification and Refactoring
To understand code modification and refactoring strategies,
we identified operations and analyzed their use in Task 4.
Definitions. The following operations were used. Move is
the succeeded or failed transfer of one or more selected tokens
to a different location using dedicated commands (e.g., Ctrl-
Shift-Up/Down). CopyPaste and CutPaste are the common
cloning activities. Some participants refactored by rewriting
code from scratch using ManualInsertion. RefactoringAction
refers to an IDE-provided refactoring invoked via the context
menu or using a keyboard shortcut.
Use of Operations. For each group and each of the three
subtasks, we count how many participants have used a spe-
cific operation. Table 3 shows these usage rates relative to
the group size. We now discuss them per operation.
Move was used most often by ProjE followed by Proj.

In Par we observe only one participant using Move in one
subtask. For CopyPaste we observe the opposite: almost all
of the members of Par used it, followed by Proj and ProjE.
RefactoringActions were used mostly by ProjE followed by
Proj. Only very few Par participants invoked Eclipse CDT’s
refactoring actions, which is again compensated by an in-
creased use of CopyPaste. ManualInsertion is used by the
majority in Par, followed by Proj, while only a third of
ProjE used ManualInsertion to refactor code. The latter
could effectively use Move most of the time.
Refactoring Strategies and Experiences. Based on the
screen recordings, we identified the following strategies. Fig. 7
shows the respective opinions from our questionnaire.
Group Proj started with CutPaste when possible. If un-

successful, they quickly switched to ManualInsertion. This
strategy was very successful and helped them to complete
all subtasks. Group Par used CopyPaste more often (at ev-
ery possible occasion), usually followed by ManualInsertion,
realizing a clone&own strategy. Group ProjE used Move
whenever possible. Although a few started with CutPaste,
they usually later switched to a Move-based strategy. All
groups agreed that refactorings worked as expected. Yet,
especially Proj felt that complex modifications had to be
applied in a certain order, which was difficult to determine.

Recall the increased use of Move by the projectional-editor
groups, for which we see two main reasons. First, experienced
users are more aware of the underlying AST structure and

770



move code fragments along the tree to the desired position.
Code can only be moved to valid locations, skipping invalid
ones. This makes it a strong feature, since Insertions can be
error-prone. Second, when using Move for nodes, references
from other nodes do not break. With CutPaste, references
break temporarily (and can be rebound by pressing F5).
Beginners may not realize these benefits of Move and use
CopyPaste and CutPaste instead. This is consistent with
comments made in the survey and the debriefing interviews,
where CopyPaste and CutPaste were perceived negatively.

Participants also commented on node references. Having to
rebind such references after manual changes (e.g., CopyPaste)
was surprising to Proj, with only some solving this issue
themselves (using F5): “When refactoring, I encountered
variable names that were not discovered correctly until updated
manually.” Others had to ask. This problem even led to
wrong references: “After moving code chunks into another
function, some of the variables were linking to wrong objects
[...]. They were not renamed all at the same time, [I] had
to manually rename each of them.” Relying solely on built-
in refactoring operations would have avoided this problem,
however. While an automated update of references to other
nodes (e.g., when renaming a variable, the variable usages
are also renamed) is an advantage of projectional editing,
our beginners Proj found this behavior counter-intuitive.
Finally, Proj also had problems selecting the right node

for performing modifications. Often, only one node could
be easily selected, but: “It was cumbersome to understand
which node to select for certain kinds of refactorings.”
RQ3. For the advanced-editing tasks, our analysis suggests:

Projectional editing fostered a shift from CopyPaste- and
CutPaste-based strategies towards operations that work
well on the AST (e.g., Move, Selection). This required an
increased understanding of the underlying AST.

RQ3 (controlled and quasi experiment)

The decreased freedom in a projectional editor was both an
advantage and a disadvantage. It guided developers when
solving a task, as we specifically observed in Task 3. Yet, it
enforced a specific order when performing the modifications
in Task 4. This again indicates increased demand to training,
practice, and understanding required for advanced editing.

5. LESSONS LEARNED
The results of our study suggest several implications for
practitioners (language and tool developers) and researchers.
Quick Prototyping and Well-Designed Code. Depend-
ing on the development methodology, code evolves over time,
with more and more structure added over several iterations.
To sustain projectional editing in such a scenario, our re-
sults show that better code-modification facilities are needed.
While programmers can become very efficient with a projec-
tional editor when code is written from scratch, modifying ex-
isting code required more practice and understanding. More
emphasis should be put on supporting quicker and more in-
tuitive code-modification facilities, especially for expressions.
Improving Expression Editing. Editing expressions with
their fine-grained tree structure is one of the major challenges
in a projectional editor. The inability to insert and remove
parentheses in arbitrary places (and then refactor the tree
structure according to the precedence expressed by the paren-
theses) is an example. We suggest that future research should
focus on making expression editing more efficient. Hybrid

editors are one possible approach to address this challenge:
they rely on on-demand linearization of (expression) tree
structures. Complex-structured nodes inside expressions
(e.g., tables) retain their structure and editor. After editing
the linear structure, it is reparsed to reassemble the tree.
The MPS team has experimented with this approach, but it
is not yet clear what the trade-offs are regarding language
composability, notational freedom, and editing efficiency.
References. References are based on pointers to the target
node’s ID. Despite some advantages (e.g., robust refactorings)
of this approach, we observe problems with the tradeoff that
the reference target has to exist at the time the reference is
created. A more robust and intuitive handling of references
is desirable. While some problems can be solved by language
developers (e.g., quick fixes to create reference targets), there
should be a better way to support references by the IDE
itself. Recall the variable-binding problem. Participants lost
time by unbound variables, which was reflected in Invalid
Trailing Insertions—many correct insertions that are wrong
(unbound) due to one invalid Insertion before.

6. THREATS TO VALIDITY
Internal Validity. The validity of RQ2’s results for hypoth-
esis H2 is limited, since the industrial participants were not
randomly split into a parser and projectional-editor group.
However, our experience shows that they are equally pro-
ficient with textual editing (i.e., experts in using a keyboard)
as the graduate CS students. Furthermore, only basic pro-
gramming skills (knowledge of program structure) were re-
quired, not creating algorithms or reasoning about logical
laws. This mitigated any potential differences in program-
ming experience among the participants. Students are also
known to perform like industry participants in similar con-
ditions [23, 40], which is supported by the similar editing
efficiencies of Proj and Par in basic editing.

To assure the quality of our tasks and materials, we relied
on the experience of our second author (who led mbeddr’s de-
velopment) and two think-aloud pilots [47] done by two other
authors: writing a Hello-World program (from mbeddr’s user
guide [49]) and creating a calculator language (an MPS tuto-
rial [7]). The first pilot showed that new users can cope with
MPS, but providing a startup package is crucial. The second
pilot helped us create this package and the tasks. With these
improvements, we also pilot-tested the experiment with vol-
unteer students. To avoid distraction by IDE specifics, a
45-minute training session ensured a basic understanding of
the IDE, the startup package, navigating menus/files, and
running each task’s test case. Furthermore, the students had
used Eclipse during their studies, and Eclipse CDT is similar
(including menu locations of refactorings).
External Validity. The experiment tasks might not com-
pletely reflect practitioners’ everyday code-editing tasks. We
carefully designed them based on the survey, covering a wide
range of common code-editing activities, including writing
and modifying code at different granularity levels. Still, the
overall editing efficiency depends on the relative distribution
of the evaluated activities, so transferring our results to tasks
with different structures needs to be done with care.

A limitation is that our experiment is based on one pro-
jectional editor only. Yet, MPS is a substantial case, as it is
currently the most mature tool with the largest user base.
Finally, measuring the degree of understanding or the

771



mental overhead (attention investment [12]) was beyond the
scope of our study, but would be valuable future work.
Construct Validity. For RQ1, we measured efficiency using
completion time, which is a reliable, low-level metric. It is
also a valid metric, since we subtracted any distractions of
the participants (e.g., when using the browser or Skype),
which happened rarely (1 to 2 participants per group), and
we made sure that the tasks were finished and either had a
completely correct solution or one that only slightly deviated.
For RQ3 we triangulated various measurements. We

watched screen recordings to identify operations and their
frequency, cross-checking these results on random samples.
We also inspected the recordings for strategies and patterns.
To increase reliability of this analysis, we created short write-
ups of the strategy applied per participant and task. Finally,
we analyzed the questionnaire’s Likert questions using violin
plots—interpreting the Likert scale as a continuous scale,
which is justified given equal distances between the values.
Statistical Conclusions Validity. We mitigated different
group sizes using the robust tests ANOVA and Kruskal-Willis.

7. RELATED WORK
We discuss the editing efficiency of projectional editors, fol-
lowed by related general studies of programming efficiency.
Projectional Editors from the 1980s. GANDALF [35]
and the Incremental Programming Environment (IPE) [32] do
not attempt to make editing textual notations efficient; for ex-
ample, they lack support for linear editing of tree-structured
expressions. The Synthesizer Generator [39] avoids the use
of projectional editing at the fine-grained expression level,
where textual input and parsing is used. While this may im-
prove editing efficiency, it risks the advantages of projectional
editing, because language composition at the expression level
is limited. Another work that implements and uses a DSL
within the Synthesizer Generator [37] concludes: “Program
editing will be considerably slower than normal keyboard
entry, although actual time spent programming non-trivial
programs should be reduced due to reduced error rates.” Our
study confirms that certain kinds of errors can be reduced,
but finds that efficient editing is possible.
Contemporary Projectional Editors. For all of the fol-
lowing projectional editors, our results can be used to improve
their efficiency. The Intentional Domain Workbench (IDW)
is the most recent implementation of the Intentional Pro-
gramming paradigm [44, 18], supporting diverse notations [45,
14]. Since it is a commercial, closed-source project without
widespread adoption yet, we cannot easily study it or survey
its users. Clark describes a projectional editor [15] that uses
term rewriting to create the concrete from the abstract syn-
tax. It supports graphical and textual notations, but is in
an early stage and lacks support for efficient editing of text.

The language-workbench comparison by Erdweg et al. [20]
does not use editing efficiency as a comparison criterion. We
address this gap, so we can relate our results and MPS’ ca-
pabilities to the three analyzed projectional editors: Más,
Onion, and Whole Platform. Más, using the Concrete edi-
tor [3], supports a range of notations relying on HTML/CSS.
Yet, for editing textual notations efficiently, only side trans-
formations [55] are available. Onion does not use projection
for textual notations, so our results are not relevant. The
Whole Platform [9] emphasizes structured notations, but has
no further support for efficiently editing structured text.

Editing and Programming Efficiency. Ko et al. [26]
study how programmers edit Java code in an experiment
similar to ours, where programmers performed editing tasks.
They identify “a set of patterns that suggest that the full
flexibility of unstructured text is not required for most of the
modifications that programmers make to code.” They propose
these patterns as editing primitives in editors. Although their
list of patterns is richer, some are overlapping with what we
found. For instance, creating a method call by code comple-
tion was used very frequently. Their findings might explain
the efficiency of projectional editing we observed. Studying
editing patterns at an even finer granularity, aligning our
results with theirs, would be valuable future work.

Scratch is a visual environment for learning programming.
It uses a projectional editor, but does not focus on textual
editing. Still, Lewis’ experiment [28] comparing attitudinal
and learning outcomes of students programming in Scratch
compared to students using the text-based Logo shows that
enriching textual programming with visual information is
beneficial. This in fact also motivates projectional editing.

Miller et al. [33] propose, implement, and evaluate multiple
selections in a text editor. While the results on multiple
selection are not related to our work, their evaluation of the
efficiency of using multiple selections also relies on two groups
of students who performed editing tasks under supervision.
Poller et al. [36] compare a moded (vi) and modeless

(emacs) editor in an experiment designed similarly to ours.
The participants performed text-editing tasks, analyzed ac-
cording to task completion time and errors, complemented
by a questionnaire. As a result, the modeless editor allowed
editing more freely, but led to more errors and slightly re-
duced editing efficiency. The moded editor was better for
relatively fixed tasks. Compared to our experiment, it is
striking that less freedom, although of very different nature,
also led to higher efficiency. Yet, while the authors propose
combining moded and modeless editors, our results do not
suggest combining projectional and parser-based editors.

8. CONCLUSION
We presented an experiment that investigated the effects of
projectional editing on editing efficiency, editing strategies,
and types and frequencies of errors. The experiment was
conducted with 19 participants: graduate CS students and
industrial developers performing common code-editing tasks.
Our results show that efficiency with projectional edit-

ing can be quickly achieved for basic code-editing activities.
More experience does not lead to better results. In con-
trast, advanced editing (e.g., larger code modifications or
refactorings) requires significantly more experience and un-
derstanding of the underlying concepts (in particular, the
AST structure). The projectional editor fosters fewer errors
(mistakes) and different editing strategies (e.g., increased use
of operations that work well on ASTs). Optimizing towards
these strategies could further increase the efficiency.

We plan to work with the tool developers (in particular, the
MPS team) to categorize and address the hotspots discovered
in our study (including expression editing, reference bind-
ing, and AST-based selections), find generalized solutions,
and develop an improved editing framework for projectional
editors. Finally, our study is limited to editing efficiency.
Systematically measuring the impact of arbitrary language
composition (i.e., language embedding) and flexible notations
(graphical and textual) is valuable future work.

772



9. REFERENCES
[1] CamStudio Desktop Screen Recorder.

http://sourceforge.net/projects/camstudio.

[2] Code Orchestra IDE. http://codeorchestra.com/ide.

[3] Concrete. http://concrete-editor.org.

[4] Jetbrains MPS. http://www.jetbrains.com/mps.

[5] mbeddr. http://mbeddr.com.

[6] mbeddr Graphical State Machines.
http://mbeddr.com/2015/03/05/graphicalSM.html.

[7] MPS Tutorial.
http://www.jetbrains.com/mps/docs/tutorial.html.

[8] Online Appendix.
http://gsd.uwaterloo.ca/projectional-workbenches.

[9] Whole Platform. http://whole.sourceforge.net.

[10] T. W. Anderson and J. D. Finn. The New Statistical
Analysis of Data. Springer, 1996.

[11] Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: A practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society
Series B (Methodological), 57(1):289–300, 1995.

[12] A. F. Blackwell. First steps in programming: A
rationale for attention investment models. In Proc.
HCC, 2002.

[13] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz. What
is the Benefit of a Model-Based Design of Embedded
Software Systems in the Car Industry? In J. Rech and
C. Bunse, editors, Emerging Technologies for the
Evolution and Maintenance of Software Models. IGI
Global, 2011.

[14] M. Christerson and H. Kolk. Domain expert DSLs,
2009. talk at QCon London 2009, available at
http://www.infoq.com/presentations/
DSL-Magnus-Christerson-Henk-Kolk.

[15] T. Clark. A Declarative Approach to Heterogeneous
Multi-Mode Modelling Languages. In Proc. GEMOC,
2014.

[16] N. Cliff. Dominance statistics: Ordinal analyses to
answer ordinal questions. Psychological Bulletin,
114(3):494, 1993.

[17] J. O. Coplien. Multi-paradigm Design for C++.
Addison-Wesley, 1999.

[18] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[19] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language
Composition Untangled. In Proc. LDTA, 2012.

[20] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout,
S. Kelly, A. Loh, et al. The State of the Art in
Language Workbenches. In Proc. SLE, 2013.

[21] M. Fowler. Language Workbenches: The Killer-App for
Domain Specific Languages? http://www.martinfowler.
com/articles/languageWorkbench.html, 2005.

[22] J. Gray and G. Karsai. An Examination of DSLs for
Concisely Representing Model Traversals and
Transformations. In Proc. HICSS, 2003.

[23] M. Höst, B. Regnell, and C. Wohlin. Using Students As
Subjects—A Comparative Study of Students and
Professionals in Lead-Time Impact Assessment.
Empirical Softw. Engg., 5(3):201–214, Nov. 2000.

[24] J. Hutchinson, J. Whittle, M. Rouncefield, and

S. Kristoffersen. Empirical Assessment of MDE in
Industry. In Proc. ICSE, 2011.

[25] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook,
A. Kotov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith,
and L. Walton. A Software Engineering Experiment in
Software Component Generation. In Proc. ICSE, 1996.

[26] A. J. Ko, H. H. Aung, and B. A. Myers. Design
Requirements for More Flexible Structured Editors
from a Study of Programmers’ Text Editing. In Proc.
CHI EA, 2005.

[27] A. Kuhn, G. C. Murphy, and C. A. Thompson. An
Exploratory Study of Forces and Frictions Affecting
Large-Scale Model-Driven Development. In Proc.
MODELS. 2012.

[28] C. M. Lewis. How programming environment shapes
perception, learning and goals: Logo vs. scratch. In
Proc. SIGCSE, 2010.

[29] G. Liebel, N. Marko, M. Tichy, A. Leitner, and
J. Hansson. Assessing the state-of-practice of
model-based engineering in the embedded systems
domain. In Proc. MODELS, 2014.

[30] P. Liggesmeyer and M. Trapp. Trends in Embedded
Software Engineering. IEEE Softw., 26(3):19–25, May
2009.

[31] M. Lillack, T. Berger, and R. Hebig. Experiences from
reengineering and modularizing a legacy software
generator with a projectional language workbench. In
Proc. SPLC. 2016.

[32] R. Medina-Mora and P. H. Feiler. An Incremental
Programming Environment. IEEE Trans. Softw. Eng.,
7(5):472–482, Sept. 1981.

[33] R. C. Miller and B. A. Myers. Multiple Selections in
Smart Text Editing. In Proc. IUI, 2002.

[34] Z. Molotnikov, M. Völter, and D. Ratiu. Automated
domain-specific C verification with mbeddr. In Proc.
ASE, 2014.

[35] D. Notkin. The GANDALF Project. J. Syst. Softw.,
5(2):91–105, May 1985.

[36] M. F. Poller and S. K. Garter. A Comparative Study of
Moded and Modeless Text Editing by Experienced
Editor Users. In Proc. CHI, 1983.

[37] S. W. Porter. Design of a Syntax Directed Editor for
PSDL (Prototype Systems Design Language). Master’s
thesis, Naval Postgraduate School, Monterey, CA, USA,
1988.

[38] D. Ratiu, B. Schaetz, M. Voelter, and B. Kolb.
Language engineering as an enabler for incrementally
defined formal analyses. In Proc. FormSERA, 2012.

[39] T. W. Reps and T. Teitelbaum. The Synthesizer
Generator. In Proc. SDE, 1984.

[40] P. Runeson. Using Students as Experiment
Subjects—An Analysis on Graduate and Freshmen
Student Data. In Proc. EASE, 2003.

[41] B. Selic. The Pragmatics of Model-Driven Development.
IEEE Softw., 20(5):19–25, Sept. 2003.

[42] W. Shadish, T. Cook, and D. Campbell. Experimental
and Quasi-Experimental Designs for Generalized
Causal Inference. Houghton Mifflin Company, 2002.

[43] M. Simi and F. Campagne. Composable Languages for
Bioinformatics: The NYoSh Experiment. PeerJ, 2:e241,
2014.

773



[44] C. Simonyi. The death of computer languages, the
birth of intentional programming. In Proc. NATO
Science Committee Conference, 1995.

[45] C. Simonyi, M. Christerson, and S. Clifford. Intentional
Software. In Proc. OOPSLA, 2006.

[46] A. Strauss and J. Corbin. Open Coding. Basics of
Qualitative Research: Grounded Theory Procedures and
Techniques, 2:101–121, 1990.

[47] M. W. Van Someren, Y. F. Barnard, J. A. Sandberg,
et al. The Think Aloud Method: A Practical Guide to
Modelling Cognitive Processes. Academic Press London,
1994.

[48] E. Visser. WebDSL: A Case Study in Domain-Specific
Language Engineering. In R. Lämmel, J. Visser, and
J. a. Saraiva, editors, Generative and Transformational
Techniques in Software Engineering II, pages 291–373.
Springer, 2008.

[49] M. Voelter. mbeddr C User Guide. Itemis AG.
http://mbeddr.com/userguide/UserGuideExport.html.

[50] M. Voelter. Language and IDE Modularization and
Composition with MPS. In GTTSE, LNCS. Springer,
2011.

[51] M. Voelter and S. Lisson. Supporting Diverse Notations

in MPS’ Projectional Editor. 2014.

[52] M. Voelter, D. Ratiu, B. Kolb, and B. Schätz. mbeddr:
Instantiating a Language Workbench in the Embedded
Software Domain. Autom. Softw. Eng., 20(3):339–390,
2013.

[53] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr:
an extensible c-based programming language and ide
for embedded systems. In Proceedings of the 3rd annual
conference on Systems, programming, and applications:
software for humanity, pages 121–140. ACM, 2012.

[54] M. Voelter, D. Ratiu, and F. Tomassetti. Requirements
as First-Class Citizens. In Proc. ACES-MB, 2013.

[55] M. Voelter, J. Siegmund, T. Berger, and B. Kolb.
Towards User-Friendly Projectional Editors. In Proc.
SLE, 2014.

[56] M. Voelter, A. van Deursen, B. Kolb, and S. Eberle.
Using C Language Extensions for Developing
Embedded Software: A Case Study. In Proc. OOPSLA,
2015.

[57] M. Voelter, A. van Deursen, B. Kolb, and S. Eberle.
Using c language extensions for developing embedded
software: A case study. In Proc. OOPSLA, 2015.

774


