
Automating Traceability Link Recovery through Classification
Chris Mills

Florida State University
Tallahassee, Florida, USA
chris.mills0905@gmail.com

ABSTRACT
Traceability Link Recovery (TLR) is an important software engineer-
ing task in which a stakeholder establishes links between related
items in two sets of software artifacts. Most existing approaches
leverage Information Retrieval (IR) techniques, and formulate the
TLR task as a retrieval problem, where pairs of similar artifacts are
retrieved and presented to a user. These approaches still require
significant human effort, as a stakeholder needs to manually in-
spect the list of recommendations and decide which ones are true
links and which ones are false. In this work, we aim to automate
TLR by re-imagining it as a binary classification problem. More
specifically, our machine learning classification approach is able
to automatically classify each link in the set of all potential links
as either valid or invalid, therefore circumventing the substantial
human effort required by existing techniques.

CCS CONCEPTS
• Software and its engineering→ Traceability;

KEYWORDS
Traceability, Machine Learning, Classification

ACM Reference Format:
Chris Mills. 2017. Automating Traceability Link Recovery through Classifi-
cation. In Proceedings of 2017 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, Paderborn, Germany, September 4–8, 2017
(ESEC/FSE’17), 3 pages.
https://doi.org/10.1145/3106237.3121280

1 INTRODUCTION
Traceability Link Recovery (TLR) is an important software engi-
neering task in which explicit links are established between re-
lated documents in different software artifact sets (e.g., source code,
requirements, design documents, use cases, test cases, etc.). Hav-
ing reliable traceability links between artifacts has been shown
to improve the software maintenance process [15, 16]. While the
traditional TLR approach involves a stakeholder establishing these
links manually, this process is error-prone and time-intensive. To
mitigate these challenges, researchers have often formulated TLR

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3121280

as a retrieval problem. That is, given one set of artifacts as queries,
use Information Retrieval (IR) techniques to retrieve a list of similar
artifacts from the other artifact set, ordered by their textual similar-
ity to the query. While this type of approach can help stakeholders
perform TLR by increasing the likelihood of finding true links, it
still requires a substantial amount of human effort to investigate
the list of results and differentiate the true links from the false ones.

Ideally, the perfect TLR process should be fully automated: pro-
vided with two sets of artifacts, a TLR approach should return all
valid links between them. In this work we propose an approach that
takes significant steps towards this goal and involves re-imagining
TLR as a binary classification problem. Using machine learning
techniques, our approach automatically classifies each potential
link as a true or false one based on a set of features describing
the two artifacts in the link and their relationship. The machine
learning classifier is trained to predict the validity of each possible
link using patterns mined from historical data. The results of our
evaluation indicate that our approach is able to correctly classify
the majority of valid links, with a low error rate.

2 RELATEDWORK
The majority of current approaches designed to assist with TLR use
IR techniques, such as probabilistic [3, 4] and vector space models
(VSM) [2], Latent Semantic Indexing (LSI) [17], Latent Dirichlet
Allocation (LDA) [5] and so on. For a thorough overview of IR for
TLR, Borg et al. [6] provide a systematic mapping study of the field.
Our work differs from these TLR approaches as it uses a classifier to
automatically identify the true and false links, rather than leaving
this task for the developer.

Though different from our approach, some existing work has
used classification approaches in the context of TLR. Cleland-Huang
et. al. [9] first proposed a probabilistic classifier trained on a set
of indicator words for non-functional requirements, which was
subsequently used for linking regulatory codes with project re-
quirements [8] and architectural tactics to source code [20]. Our
work differs from theirs, as it does not require the intermediate
step of manually identifying indicator terms, and does not use a
pre-determined threshold for classification. Rather, our approach is
completely automatic. Falessi et al. [10] applied machine learning
to the task of predicting the number of valid links remaining in an
IR result list; however, they did not address the task of predicting
the identity of remaining valid links as done in this work.

3 THE APPROACH
The proposed approach uses machine learning classifiers to au-
tomatically differentiate valid from invalid links using patterns
mined from existing, historical traceability data [19]. To represent
traceability links within these models, we introduce three types of

1068

https://doi.org/10.1145/3106237.3121280
https://doi.org/10.1145/3106237.3121280

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany C. Mills

Table 1: Software Systems Used in Evaluation

System Possible Links Valid Links Artifact Types
CM-1 1166 45 (3.86%) High-R, Low-R
eAnci 7645 554 (7.25%) UC, CC
eTour 6728 366 (5.44%) UC, CC
SMOS 6700 1044 (15.58%) UC, CC
iTrust 1551 58 (3.74%) UC, CC
EasyClinic 1410 93 (6.60%) UC, CC
EasyClinic 2961 204 (6.89%) TC, CC
EasyClinic 1260 83 (6.59%) ID, TC
EasyClinic 600 26 (4.33%) ID, UC
EasyClinic 1890 63 (3.33%) TC, UC
EasyClinic 940 69 (7.34%) ID, CC
Total 32821 2605 (7.94%)

High-R = High-level Requirements, Low-R = Low-level Requirements,
UC = Use Cases, CC = Code Classes, ID = Interaction Diagrams,
TC = Test Cases

features: IR Ranking, Query Quality (QQ), and Document Statistics
Features:
• IR Ranking: These features represent the similarity of the two
documents in a possible link as a pair of ranks derived from using
either document as a query to find the other. Features can be
generated for any number of IR techniques, and in this work we
used standard VSM, BM25, and two language smoothing models:
Jelinek Mercer and Dirichlet.

• QQ: These features help the model differentiate cases in which
IR Ranking features are high (i.e., the documents in a possible
link have low textual similarity) because the link is invalid from
those in which the features are artificially elevated due to one
or both documents being poor quality queries. Metrics from [18]
are applied to both documents in the potential link.

• Document Statistics: These features represent basic statistics
about the documents (i.e., software artifacts) themselves, namely
the size of each document (i.e., number of non-unique words),
the size of each document’s vocabulary (i.e., number of unique
words), and the percentage of terms that overlap between the
two documents.
Using these features, we investigate several classification algo-

rithms: Random Forest, Decision Trees (J48), Näive Bayes, and
k-Nearest Neighbors (KNN) with k = 5. In each case, the Weka1
implementation is used with default parameters. Table 1 shows the
data used in our evaluation of the approach, which includes eleven
datasets from six software projects, involving six different types of
artifacts. These datasets were chosen as they have frequently been
used to evaluate new techniques for TLR [1, 11, 12]. As expected,
there is a significant class imbalance between valid and invalid links,
at an average ratio of 1 : 13. Unless addressed, this can represent
an obstacle for the correct classification of valid links. Therefore,
we apply Synthetic Minority Oversampling TEchnique (SMOTE)
[7] and majority undersampling [13] to balance the data for our
evaluation.

When evaluating our approach we are most concerned with two
metrics: True Positive Rate (TPR) and False Positive Rate (FPR),
which are given by equations 1 and 2 respectively. In both we
use the abbreviations TP (true positives), FP (false positives), TN
(true negatives), and FN (false negatives) to denote the number of

1http://www.cs.waikato.ac.nz/ml/weka/

Table 2: Average TPR and FPR for each classification algo-
rithm using either SMOTE or majority undersampling

SMOTE Undersampling
Algorithm TPR FPR TPR FPR
J48 0.657 0.041 0.870 0.152
KNN 0.656 0.057 0.882 0.276
Näive Bayes 0.741 0.194 0.836 0.234
Random Forest 0.695 0.017 0.927 0.122

each provided by model evaluations. TPR is equivalent to Recall,
and represents the percentage of valid links that were retrieved
by the approach. FPR is the proportion of false positives in the
classification (i.e., invalid links predicted to be valid links).

TPR =
TP

TP + FN
(1)

FPR =
FP

FP +TN
(2)

Note that each of the datasets involved in this study are com-
prised of three components: textual representations of two software
artifact sets and a list of known valid links derived from the original
developers of the systems.We use standard ten-fold cross-validation
to analyze the performance of each aforementioned algorithm. Us-
ing this technique, we randomly segment the available data into
two sets: the training and testing sets. For each trial, we use 90% of
the data to train a model that is then evaluated on the remaining
10%. This process is performed ten times, ensuring that for each
trial a single data point is only included in one testing set. The
results of these trials are then averaged to obtain a single set of
performance metrics.

4 INITIAL RESULTS
Table 2 shows the results from our preliminary evaluation. We aim
to determine the “best” classification algorithm and balancing tech-
nique to use for TLR. Because the ultimate goal of this research is
to develop a fully automated approach, minimizing FPR is of par-
ticular interest. This is because even though our aim is to correctly
classify a large percentage of the valid links, if these valid links are
buried in a large number of false positives, a user would be needed
to refute those false positives, therefore invalidating the automatic
nature of the approach.

In terms of TPR when using SMOTE, Näive Bayes is able to
retrieve the largest percentage of valid links on average; however,
Random Forest retrieves less than 5% fewer links with a dramatic
decrease in FPR. That is, it retrieves slightly fewer links with much
higher reliability. In the case of undersampling, Random Forest is
able to retrieve more than 90% of the valid links on average, more
than all the other algorithms, while also maintaining a lower FPR.
These preliminary results suggest that Random Forest is the most
promising classifier for this task. Furthermore, while undersampling
improves TPR, it also increases FPR. These differences between bal-
ancing approaches suggests that the mechanism used to address
class imbalance is important to overall performance, and that some

1069

http://www.cs.waikato.ac.nz/ml/weka/

Automating Traceability Link Recovery through Classification ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

combination of over- and undersampling is needed. While promis-
ing, the results also indicate potential for future improvements,
discussed in the following section.

5 CONTRIBUTIONS AND FUTUREWORK
The major contribution of this work is a novel approach towards
the automation of TLR which reformulates the task as a binary
classification problem. Preliminary results show that our approach
has promise, as it is able to accurately identify the majority of the
true links, achieving a recall of 0.7 at the low FPR of 0.017. Therefore,
while complete automation of TLR has yet to be achieved, our
proposed approach lays groundwork for significantly reducing the
substantial human effort required by current approaches to TLR.

Future work will perform a more rigorous evaluation of the
approach by also comparing it to existing IR-based techniques.
We will also focus on improving the approach in various ways.
First, we will perform more in-depth feature engineering and se-
lection to tune our representations, in an effort to optimize model
performance. Second, while the initial evaluation uses algorithms
with default parameters, we will utilize more modern approaches
that leverage genetic algorithms [21] or machine learning [14] to
establish near-optimal parameter configurations. Moreover, addi-
tional mechanisms to address the inherent class imbalance problem
will be explored. Additionally, because existing IR techniques do
not require training data, this approach will be extended to situa-
tions where labeled training data is not available by constructing
cross-project classification models. Finally, we will investigate us-
ing this approach as a pre-processing step that enhances current
semi-automatic approaches for high impact situations in which
complete automation is not possible or desired.

REFERENCES
[1] Nasir Ali, Yann-Gaël Gueheneuc, and Giuliano Antoniol. 2011. Requirements

traceability for object oriented systems by partitioning source code. In 18th
Working Conf. on Reverse Engineering (WCRE). IEEE, 45–54.

[2] Giuliano Antoniol, Gerardo Canfora, G Casazza, and A De Lucia. 2000. In-
formation retrieval models for recovering traceability links between code and
documentation. In Proceedings. Intl. Conf. on Software Maintenance, 2000. IEEE,
40–49.

[3] Giuliano Antoniol, Gerardo Canfora, G Casazza, A De Lucia, and Ettore Merlo.
2000. Tracing object-oriented code into functional requirements. In Proceedings.
IWPC 2000. 8th Intl. Workshop on Program Comprehension, 2000. IEEE, 79–86.

[4] Giuliano Antoniol, Gerardo Canfora, Andrea De Lucia, and Ettore Merlo. 1999.
Recovering code to documentation links in OO systems. In Proceedings. Sixth
(1999) Working Conf. on Reverse Engineering. IEEE, 136–144.

[5] Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. 2010. Software
traceability with topic modeling. In Proceedings of the 32nd ACM/IEEE Intl. Conf.

on Software Engineering-Volume 1. ACM, 95–104.
[6] Markus Borg, Per Runeson, and Anders Ardö. 2014. Recovering from a decade: a

systematic mapping of information retrieval approaches to software traceability.
Empirical Software Engineering 19, 6 (2014), 1565–1616.

[7] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[8] Jane Cleland-Huang, Adam Czauderna, Marek Gibiec, and John Emenecker.
2010. A machine learning approach for tracing regulatory codes to product
specific requirements. In Proceedings of the 32nd ACM/IEEE Intl. Conf. on Software
Engineering-Volume 1. ACM, 155–164.

[9] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. 2007. Auto-
mated classification of non-functional requirements. Requirements Engineering
12, 2 (2007), 103–120.

[10] Davide Falessi, Massimiliano Di Penta, Gerardo Canfora, and Giovanni Cantone.
2016. Estimating the number of remaining links in traceability recovery. Empirical
Software Engineering (2016), 1–32.

[11] Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. 2011.
On integrating orthogonal information retrieval methods to improve traceability
recovery. In 27th IEEE Intl. Conf. on Software Maintenance (ICSM). IEEE, 133–142.

[12] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, E Ashlee
Holbrook, Sravanthi Vadlamudi, and Alain April. 2007. REquirements TRacing On
target (RETRO): improving software maintenance through traceability recovery.
Innovations in Systems and Software Engineering 3, 3 (2007), 193–202.

[13] Haibo He and Edwardo A. Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering 21, 9 (Sept. 2009), 1263–1284.
DOI:http://dx.doi.org/10.1109/TKDE.2008.239

[14] Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane Cleland-
Huang. 2013. Improving trace accuracy through data-driven configuration and
composition of tracing features. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. ACM, 378–388.

[15] Patrick Mader and Alexander Egyed. 2012. Assessing the effect of requirements
traceability for software maintenance. In 2012 28th IEEE Intl. Conf. on Software
Maintenance (ICSM). IEEE, 171–180.

[16] Patrick Mäder and Alexander Egyed. 2015. Do developers benefit from require-
ments traceability when evolving and maintaining a software system? Empirical
Software Engineering 20, 2 (2015), 413–441.

[17] Andrian Marcus, Jonathan Maletic, and Andrey Sergeyev. 2005. Recovery of
traceability links between software documentation and source code. Intl. Journal
of Software Engineering and Knowledge Engineering 15, 05 (2005), 811–836.

[18] Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus, and
Andrea De Lucia. 2017. Predicting Query Quality for Applications of Text Re-
trieval to Software Engineering Tasks. ACM Transactions on Software Engineering
and Methodology (TOSEM) 26, 1 (2017), 3.

[19] Chris Mills and Sonia Haiduc. 2017. A Machine Learning Approach for Deter-
mining the Validity of Traceability Links. In Proceedings of the 39th Intl. Conf. on
Software Engineering Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA,
121–123. DOI:http://dx.doi.org/10.1109/ICSE-C.2017.86

[20] Mehdi Mirakhorli, Yonghee Shin, Jane Cleland-Huang, and Murat Cinar. 2012.
A tactic-centric approach for automating traceability of quality concerns. In
Proceedings of the 2012 Intl. Conf. on Software Engineering (ICSE). IEEE, 639–649.

[21] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. 2013. How to effectively use topic models
for software engineering tasks? an approach based on genetic algorithms. In
Proceedings of the 2013 Intl. Conf. on Software Engineering (ICSE). IEEE Press,
522–531.

1070

http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/ICSE-C.2017.86

	Abstract
	1 Introduction
	2 Related Work
	3 The Approach
	4 Initial Results
	5 Contributions and Future Work
	References

