
On the Utility of Dominator Mutants for Mutation Testing

Bob Kurtz
Software Engineering

George Mason University
Fairfax VA, USA

rkurtz2@gmu.edu

ABSTRACT
Mutation testing has been shown to support the genera-
tion of test sets that are highly effective at detecting faults.
However, practitioner adoption of mutation testing has been
minimal in part because of problems that arise from the huge
numbers of redundant and equivalent mutants that are gen-
erated. The research described here examines the relation-
ship between mutants and attempts to reduce the number
of redundant and equivalent mutants in order to make mu-
tation testing more practical for the software tester.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Mutation analysis, subsumption, dominator mutants

1. RESEARCH PROBLEM
Mutation testing [7] is a test criterion that generates a set

of alternate programs, called mutants, and then challenges
the tester to design tests to detect the mutants. Tests that
cause a mutant to behave differently from the original pro-
gram are said to kill the mutant. Some mutants behave ex-
actly the same as the original on all inputs. These are called
equivalent mutants and cannot be killed. Mutants are gen-
erated by mutation operators, rules that generate variants
of a given program based on particular syntactic elements.

Early on, researchers observed that mutation operators
produced far more mutants than necessary [18]. These re-
dundant mutants are mutants that can be killed, but do not
improve the test suite by requiring new or different tests.
Consequently, these mutants simply waste the tester’s time.

Minimal mutation [2] precisely defines redundancy among
mutants by identifying dominator mutants, which subsume
other mutants. A test set that kills the dominator mutants
will kill all other non-equivalent mutants. Subsumption re-
lationships identify mutant redundancy and can be used to

optimize both mutant and test generation. This research
seeks to apply the concepts of subsumption and dominator
mutants to improve the efficiency of mutation testing.

2. RELATED WORK
The large number of mutants generated by mutation test-

ing has long been a recognized problem. Mathur [15] intro-
duced the idea of constrained mutation to reduce the number
of mutation operators to create fewer mutants. Offutt et al.
[18] took an empirical approach to defining a subset of se-
lective mutation operators that achieved a mutation score
of 0.99 or higher. Wong et al. [22] evaluated combinations
of mutation operators for efficiency and effectiveness.

Barbosa et al. [3] generated a set of mutation operators
that reduced the computational cost of mutation testing
without losing effectiveness. Namin et al. [17] analyzed the
Siemens suite programs to identify three high-performing
operator sets. Delamaro et al. [6] defined a growth model
for mutation operator selection, adding operators until a mu-
tation score of 1.00 was achieved. All concluded that there
is no single best set of operators for all programs.

Taking mutation operator reduction to an extreme, Untch
[21] evaluated the statement deletion (SDL) operator on its
own and found it to be competitive with the operator sets
found by Namin. Deng et al. [8] found that SDL achieved a
mutation score close to that of Offutt’s E-selective operators
while generating approximately 80% fewer mutants. Dela-
maro et al. [5] evaluated SDL against programs written in
C using Proteum and confirmed Deng’s findings.

Other researchers have examined whether selective muta-
tion is more effective than random sampling of similar num-
bers of mutants. Acree [1] and Budd [4] separately concluded
that executing tests that kill a randomly-selected 10% of mu-
tants could provide results close to executing tests that kill
the full set of mutants. Wong and Mathur [23] demonstrated
similar results. More recently, Zhang et al. [26] also found no
appreciable difference in performance between selective mu-
tation and random selection. Gopinath et al. [9] expanded
this investigation using a much larger body of open-source
code, again finding that random selection performs as well
as any other strategy. Zhang et al. [25] combined selective
mutation with random mutant selection to further reduce
the effort required to achieve a high mutation score.

Several efforts have tried to formalize the widely-held no-
tion that some mutants are more valuable than others with
respect to forcing particular test cases. Yao et al. [24] sug-
gested stubborn mutants that are not killed by a branch-
adequate test set. Namin et al. [16] hypothesized the ex-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983950

1088

istence of “super mutants” that are difficult to kill and for
which a killing test also kills a number of other mutants.
Papadakis et al. [19] confirmed Ammann’s inflation of mu-
tation score, and determined that 68% of recent research
papers are vulnerable to threats to validity due to the effect
of redundant mutants. The subsumption relation has been
studied in a variety of contexts for many years. Jia and Har-
man defined the notion of subsuming Higher Order Mutants
(HOMs) [10], where two or more mutation operations are ap-
plied to create a mutant that is harder to kill than the first
order mutants from which it is constructed. Ammann et al.
[2] introduced a formalized description of mutant subsump-
tion, including dynamic mutation subsumption based on the
score function as a binary matrix. The thesis described here
is based primarily on Ammann’s work.

3. PROPOSED APPROACH AND EXPECTED
CONTRIBUTIONS

This research seeks to apply the concepts of mutant sub-
sumption and dominator mutants to improve the process
of mutation testing by determining approaches to preferen-
tially produce useful mutants while reducing the production
of redundant and equivalent mutants.

3.1 Research Results So Far
“Mutant subsumption graphs” [11] refined minimal mu-

tation and defined true subsumption and its static and dy-
namic approximations. We defined a dynamic approxima-
tion of true subsumption and defined the mutant subsump-
tion graph (MSG), a graphical notation for representing the
subsumption relationship between mutants.

“Static analysis of mutant subsumption”[12] explored static
subsumption using symbolic execution on the same small
program. We described an algorithm for using directed in-
cremental symbolic execution (DiSE) [20] to perform sub-
sumption analysis, and concluded that the limitations of
symbolic execution made it impractical to directly deter-
mine subsumption relationships. However, symbolic execu-
tion proved effective at generating test cases dynamically
eliciting an approximation of the subsumption relationship.

“Are we there yet? How redundant and equivalent mu-
tants affect determination of test completeness” [14] formal-
ized decoupled metrics for measuring the number of redun-
dant and equivalent mutants. We showed how redundancy
makes it difficult to determine the completeness of a test
suite because mutation score quickly increases to nearly 1.0
and then increases very slowly until testing is complete.
Dominator mutation score, the number of dominator mu-
tants killed divided by the total number of dominator mu-
tants, is a more linear predictor of completeness. Unfortu-
nately dominator score cannot be determined until testing
is complete, while mutation score can at least be reasonably
estimated at any point during testing.

We then examined how redundancy and equivalency af-
fect the ability of the tester to predict dominator score (and
thus test completeness) based on mutation score, and discov-
ered that redundant mutants strongly degrade this ability.
Equivalent mutants, perhaps surprisingly, have little effect
on the ability to predict completeness. We also examined
how redundancy and equivalency affect the amount of work
required by the tester, and found that redundancy had a
small impact on work because killing any randomly-selected

mutant tends to kill many other mutants. Equivalency had
a strong impact on work because every equivalent mutant
must be individually examined.

“Analyzing the validity of selective mutation with domi-
nator mutants” [13] considered the effectiveness of selective
mutation as a function of dominator score per unit work
(defined as the number of mutants examined by the tester)
based on a small set of sample programs. We found that
the traditional E-selective mutation operators [18] generate
high mutation scores but relatively low dominator scores.

We determined that while various combinations of muta-
tion operators achieved high dominator scores with low work
for any particular program in our sample set, there were no
such combinations that performed well for all of our sample
programs. We concluded from this experiment that when
viewed through the lens of dominator mutation score, se-
lective mutation as it has been practiced is not especially
optimal, and that new approaches are needed in order to
generate high dominator scores with reasonable work.

3.2 Future Research Plans
In our future work we seek to develop an approach to cus-

tomize the generation of mutants based on program struc-
ture. To this end, we hope to characterize the program fea-
tures at mutant injection points and train a machine learn-
ing algorithm on a portion of the Defects4J programs to as-
sociate program features with the mutation operators that
tend to generate dominator or near-dominator mutants at
those injection points. Identification of the program fea-
ture set is key to success; currently we are considering the
mutated statement, the applied mutation operator, the sur-
rounding context (loops, if statements, return statements,
etc.) in the control flow graph.

If we can develop such a correlation between program fea-
tures and effective mutation operators, we could then eval-
uate the effectiveness of the algorithm by applying it to the
remaining Defects4J programs. Evaluation of success would
be based on achieving a significantly higher dominator score
per unit work as compared to existing techniques like selec-
tive mutation or random mutant selection.

Unkilled mutants are a particular concern. An unkilled
mutant might truly be equivalent, in which case we want
to avoid selecting it. However, it may simply be a mutant
that hasn’t yet been killed by a test, which suggests that it
might actually be a dominator or near-dominator mutant.
We conjecture that the machine learning algorithm will re-
duce these false negatives because they are likely to have
similar features to other dominator mutants.

If successful, my research will improve mutation testing by
preferentially generating dominator mutants, thus reducing
the number of redundant and equivalent mutants. This will
improve the ability of the tester to determine how much test-
ing work has been completed and how much remains, while
also significantly reducing the amount of work required.

4. ACKNOWLEDGEMENTS
Thank you to Dr. Paul Ammann for his guidance in my

research and to my co-authors for their contributions.

5. REFERENCES
[1] A. T. Acree. On Mutation. PhD thesis, Georgia

Institute of Technology, Atlanta, Georgia, USA, 1980.

1089

[2] Paul Ammann, Marcio E. Delamaro, and Jeff Offutt.
Establishing theoretical minimal sets of mutants. In
7th IEEE International Conference on Software
Testing, Verification and Validation (ICST 2014),
pages 21–31, Cleveland, Ohio, USA, March 2014.

[3] E. F. Barbosa, J. C. Maldonado, and A. M. R.
Vincenzi. Toward the determination of sufficient
mutant operators for C. Software Testing, Verification,
and Reliability, Wiley, 11(2):113–136, June 2001.

[4] T. A. Budd. Mutation Analysis of Program Test Data.
PhD thesis, Yale University, New Haven, Connecticut,
USA, 1980.

[5] Marcio E. Delamaro, Lin Deng, Serapilha Dureli, Nan
Li, and Jeff Offutt. Experimental evaluation of SDL
and one-op mutation for C. In 7th IEEE International
Conference on Software Testing, Verification and
Validation (ICST 2014), Cleveland, Ohio, March 2014.

[6] Márcio E. Delamaro, Lin Deng, Nan Li, and Vinicius
H. S. Durelli. Growing a reduced set of mutation
operators. In Proceedings of the 2014 Brazilian
Symposium on Software Engineering (SBES), pages
81–90, Maceió, Alagoas, Brazil, September-October
2014.

[7] Richard A. DeMillo, Richard J. Lipton, and Fred G.
Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34–41,
April 1978.

[8] Lin Deng, Jeff Offutt, and Nan Li. Empirical
evaluation of the statement deletion mutation
operator. In 6th IEEE International Conference on
Software Testing, Verification and Validation (ICST
2013), pages 65–74, Luxembourg, March 2013.

[9] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed,
Carlos Jensen, and Alex Groce. Do mutation
reduction strategies matter? Technical report, School
of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, Oregon, USA,
August 2015.

[10] Yue Jia and Mark Harman. Constructing subtle faults
using higher order mutation testing. In 2008 Eighth
IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 249–258,
Beijing, September 2008.

[11] Bob Kurtz, Paul Ammann, Márcio E. Delamaro, Jeff
Offutt, and Lin Deng. Mutation subsumption graphs.
In Tenth IEEE Workshop on Mutation Analysis
(Mutation 2014), pages 176–185, Cleveland, Ohio,
USA, March 2014.

[12] Bob Kurtz, Paul Ammann, and Jeff Offutt. Static
analysis of mutant subsumption. In Eleventh IEEE
Workshop on Mutation Analysis (Mutation 2015),
Graz, Austria, April 2015.

[13] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio E.
Delamaro, Mariet Kurtz, and Nida Gökçe. Analyzing
the validity of selective mutation with dominator
mutants. In FSE 2016, Proceedings of the ACM
SIGSOFT 24nd Symposium on the Foundations of
Software Engineering, page to appear, Seattle,
Washington, USA, November 2016, to appear.

[14] Bob Kurtz, Paul Ammann, Jeff Offutt, and Mariet
Kurtz. Are we there yet? How redundant and
equivalent mutants affect determination of test

completeness. In Twelfth IEEE Workshop on Mutation
Analysis (Mutation 2016), Chicago, Illinois, USA,
April 2016.

[15] Aditya Mathur. Performance, effectiveness, and
reliability issues in software testing. In Proceedings of
the Fifteenth Annual International Computer Software
and Applications Conference, pages 604–605, Tokyo,
Japan, September 1991.

[16] Akbar Namin, Xiaozhen Xue, Omar Rosas, and
Pankaj Sharma. Muranker: A mutant ranking tool.
Software Testing, Verification and Reliability, to
appear. Published online August 2014.

[17] Akbar Siami Namin, James H. Andrews, and
Duncan J. Murdoch. Sufficient mutation operators for
measuring test effectiveness. In Proceedings of the 30th
International Conference on Software Engineering,
pages 351–360, Chicago, Illinois, USA, 2008. ACM.

[18] Jeff Offutt, Ammei Lee, Gregg Rothermel, Roland
Untch, and Christian Zapf. An experimental
determination of sufficient mutation operators. ACM
Transactions on Software Engineering Methodology,
5(2):99–118, April 1996.

[19] Mike Papadakis, Christopher Henard, Mark Harman,
Yue Jia, and Yves Le Traon. Threats to the validity of
mutation-based test assessment. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA’16), page to appear, Saarbrücken,
Germany, July 2016.

[20] S. Person, G. Yang, N. Rungta, and S. Khurshid.
Directed incremental symbolic execution. In
Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 504–515, San Jose, California,
June 2011. ACM SIGPLAN.

[21] Roland Untch. On reduced neighborhood mutation
analysis using a single mutagenic operator. In ACM
Southeast Regional Conference, pages 19–21, Clemson
SC, March 2009.

[22] W. Eric Wong and Aditya P. Mathur. Reducing the
cost of mutation testing: An empirical study. Journal
of Systems and Software, Elsevier, 31(3):185–196,
December 1995.

[23] W. Eric Wong and Aditya P. Mathur. Reducing the
cost of mutation testing: An empirical study. Journal
of Systems and Software, 31(3):185–196, December
1995.

[24] Xiangjuan Yao, Mark Harman, and Yue Jia. A study
of equivalent and stubborn mutation operators using
human analysis of equivalence. In Proceedings of the
36th International Conference on Software
Engineering, pages 919–930, Hyderabad, India, May
2014.

[25] Lingming Zhang, Milos Gligoric, Darko Marinov, and
Sarfraz Khurshid. Operator-based and random
mutation selection: Better together. In 28th IEEE
International Conference on Automated Software
Engineering, pages 92–102, November 2013.

[26] Lu Zhang, Shan-San Hou, Jun-Jue Hu, Tao Xie, and
Hong Mei. Is operator-based mutant selection superior
to random mutant selection? In 32nd ACM/IEEE
International Conference on Software Engineering,
pages 435–444, May 2010.

1090

