Automatically Locating Framework Extension Examples

*
Barthélémy Dagenais Harold Ossher
School of Computer Science IBM T.J. Watson Research Center
McGill University P.O. Box 704
Montréal, QC, Canada Yorktown Heights, NY 10598
bart@cs.mcgill.ca ossher@us.ibm.com
ABSTRACT number of applications extend the Eclipse Rich Client Plat-

form (RCP)!, which provides Graphical User Interface facili-
ties to create components such as editors and views. Finding
an extension example such as the implementation of an edi-
tor within an existing application requires identifying those
pieces of code that make up that extension. This can be
difficult because those pieces of code might not be located
together and might be intermixed with other code, and some
pieces of code might be shared among several extensions.
For instance, a typical Eclipse application includes many
editors, and it is not always obvious which pieces of editor
code belong to which editors. Even if a developer succeeds
in identifying the important code elements that implement
a framework extension, the responsibilities of those elements
and their relationships to the details in the tutorial may not
be clear. For example, what is the role of StructuredText-
Editor? What is the relationship between it and JSPTagInfo-

Using and extending a framework is a challenging task whose
difficulty is exacerbated by the poor documentation that
generally comes with the framework. Even in the presence
of documentation, developers often desire implementation
examples for concrete guidance. We propose an approach
that automatically locates implementation examples from a
code base given lightweight documentation of a framework.
Based on our experience with concern-oriented documenta-
tion, we devised an approach that uses the framework doc-
umentation as a template and that finds instances of this
template in a code base. The concern instances represent
self-contained and structured implementation examples: the
relationships and the roles of parts composing the examples
are uncovered and explained. We implemented our approach
in a tool and conducted a study comparing the results of our
tool with results provided by Eclipse committers, showing

that our approach can locate examples with high precision. Hoverproces,sf’r?
. . . Two families of approaches have been researched to help
Categorles and Subject Descrlptors developers locate implementation examples, unrelated to doc-

umentation. Tools such as Strathcona [7] mine code bases
to recommend snippets of code relevant to a development
task. These snippets of code are useful to understanding
fine-grained framework extensions, but are not adequate for

D.2.6 [Software Engineering]: Programming Environments;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms extensions spanning multiple classes, such as a text editor,
Algorithms, Documentation, Experimentation because the examples are typically related to code found in
only one method. Feature-location techniques [4, 9, 10, 20]
1. INTRODUCTION are ar}other fam%ly of approaches that locate a set of func-
i) o) tions implementing one feature. Unfortunately, these tech-
Understandlng and extending an appl%catlon.framework 18 niques do not leverage the fact that framework extensions
a difficult task. Even when documentation artifacts such as exhibit a common structure, and this structure is also not
tutorials are available, developers often want to look at real reflected when presenting the implementation to the user.
implemer{tation examples for. concrete guidance [12]: clear We propose a technique that enhances framework docu-
and working examples are an important complement to text. mentation by automatically locating structured implemen-
Whe.n developers Wan.t to look .at examples of framework tation examples of documented framework extensions in a
extensions docgmen.te(.i m a tu.torl?ul, they can generally find code base. The structure of the examples mirrors the organi-
such examples in existing applications. For example, a large zation of the documentation, and the relationships between

*rp s . . the elements comprising the examples are uncovered and ex-
This research was conducted while the author was working . .) . . .
at the IBM T.J. Watson Research Center. plained. We implemented this technique in XFinder (eXam-

ple Finder), an extension of Mismar [3], which is a concern-
oriented documentation toolset. Guides to framework ex-
tensions are created and encoded as concerns in Mismar.

Permission to make digital or hard copies of all or part of this work for XFinder basically reuses these concerns as concern templates
personal or classroom use is granted without fee provided that copies are and tries to find instances of these templates in the code
not made or distributed for profit or commercial advantage and that copies base. The two types of documentation artifacts augment

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE-16, November 9-15, Atlanta, Georgia, USA 1 :
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00. www.eclipse.org

each other: the guide provides a template used to struc-
ture and locate the examples, and the examples are a form

203

of documentation in themselves. For instance, assume that
there is a Mismar guide to help developers create Eclipse
text editors. Given the entire Eclipse code base, XFinder
would find all text editors (Java, XML, HTML, JSP, etc.),
and for each of these editors, XFinder would identify the
piece of code implementing each step of the guide.

To validate to what extent our approach correctly iden-
tifies implementation examples, we performed an experts
study on the Eclipse text editor framework extension, in
which XFinder’s results were compared to results provided
by the editors’ developers. We found that our approach
correctly located 93% of the implementation pieces of five
text editors, a high level of precision that was confirmed by
two case studies performed on two other frameworks. The
contributions of this paper include (1) a technique to au-
tomatically locate structured implementation examples of
a framework extension based on documentation, and (2) a
framework documentation toolset that integrates the docu-
mentation along with examples.

In the remainder of this paper, we start by describing
concern-oriented documentation (Section 2). Then we de-
scribe how we can use this type of documentation to find
implementation examples (Section 3) and present the results
of the preliminary evaluation we performed on our approach
(Sections 4 and 5). We cover the related work (Section 6)
and conclude in Section 7.

2. CONCERN-ORIENTED
DOCUMENTATION

Mismar is a toolset tightly integrated within the Eclipse
development environment that allows developers to create
documentation simply by pointing out elements in the soft-
ware system that are important for a particular task [3].
Elements include classes, methods, extension points, files
and even web pages. From these elements, a guide for the
task with an appropriate step for each element is created.
For example, if the user selects the XYZ interface as an
important element, an “Implement XYZ interface” step is
created. Hence, a developer can create a complete guide
by simply dragging and dropping elements from a system
onto the guide editor. Once a step is created, comments
and references to other artifacts can be added to provide
contextual information. Moreover, it is possible to reorder
the steps or to change their nature (e.g., from “Implement
XYZ interface” to “Use XYZ interface”). We refer to this
approach as concern-oriented because it focuses on software
artifacts and their relationships instead of steps or process;
a concern [14, 17] captures all elements in a software system
that are relevant to a particular point of interest. Mismar
guides are saved in an extensible concern model [3].

The resulting guide is also tightly integrated into the de-
velopment environment, providing interactive support to the
user following the guide. For example, when the user per-
forms the “Implement XYZ interface” step by double-clicking
on it, the “Create new class” wizard in Eclipse is launched,
initialized with the step information. As the user performs
the steps, the resulting artifacts, called outputs, are recorded
for presentation as implementation examples to future users.
A collection of outputs in Mismar is called a result, and is
also a concern modeled in the concern model. A result can
be presented to the user in two ways: for each step, a list
of outputs from multiple results (see Figure 1), or overall
results, each showing a coherent set of outputs for all steps.

204

& 1 = (F]

Implement ITextEditor - org.eclipse.ui.texteditor

w Steps
| Step Status Opt | Output 5

=%y Create extension org.eclipse.ul editors Completed]
| 2l Create editor - org.eclipse.ui. editors element Inprocess ||

€2 Implement ITextEditor - org.eclipse.ui.textaditor Mot compl...] |
@ Extend SourceViewerConfiguration - org.eclips... Mot compl.., []]
 Details

=| Dutput Examples Examples: Up | Down

Dutpuk
[c] PropertiesFileEdicor - org.eclipse. jdt.internal .ui.propertiesfi...
® ClassFisEditor - aorg.eclipse.jdt.internal ui. javasditor

Concern
Properties File Editor
Class File Editar

ilakion Unit Editor

kernal

CompilationnitEdito

Details:

Figure 1: Mismar Result View

+ Step Details Up | Down

As just noted, examples are captured as a guide is used.
There are two scenarios, however, in which examples might
exist and yet not be tied to the guide. To find such existing
examples and associate them with a guide, we devised an
approach that is implemented as XFinder, an Eclipse plug-
in extending Mismar.

In the first scenario, a developer might obtain a guide that
does not have examples provided, but know that his/her
workspace contains potential examples. Assume that a de-
veloper wants to create a text editor for the Groovy Server
Page language (GSP)?, which combines the Groovy language
with HTML. A colleague provides a short tutorial on cre-
ating a text editor in Eclipse: the tutorial can already be
in the form of a Mismar guide, but without examples, or it
can easily be converted to one by selecting the important
elements in the tutorial, as described earlier. Because the
functionality of the GSP editor is similar to that found in
three Eclipse text editors (Java, HTML, and JSP), the de-
veloper wants to know how these editors were implemented.

S/he thus loads the Mismar guide in an Eclipse workspace
and starts XFinder to find examples. XFinder locates all
text editors in the workspace® and lists them in the XFinder
view (Figure 2). The developer can browse the results to ex-
amine any editor implementations of interest. Each is pre-
sented as the list of steps from the guide, with a ranked
list of potential outputs for each step. The ranking is ac-
cording to the likelihood that a potential output is the right
output for that step of the particular implementation being
examined. For example, XFinder indicates that the class
JavaOutlinePage, which displays the members declared by a
Java class, belongs to the Java class file editor. By expand-
ing the JavaOutlinePage entry further, the developer could
see that, indeed, JavaOutlinePage is referenced by the class
ClassFileEditor, a key element of the editor. Finally, a con-
text menu action allows the user to convert any editor shown
into standard Mismar results. Finding examples for a given
guide might be useful even if examples were provided with
the guide: the user might have more relevant examples in
his/her workspace than the guide developer had.

In the second scenario, a developer creating a guide will
often do so after having performed the task being described,
perhaps several times. During these activities, examples will
have been created, but before the guide existed. It would

2groovy.codehaus.org/GSP
3The source code of the editors can be either in a project or
attached to the binaries.

7 #Finder £2 & Search

+- %] Scraphook
+-|X| Properties File Editar
=I-[X] Class File Yiewer
#)-Lg* Create a Plug-in Project
- Depend on org.eclipse ui workbench, bexteditor
-3 Depend on org.eclipse.jface. text
+-=" Create extension org.edipse.ui.editars
+-= Create editor - org.eclipse.Ui.editors element
+- @A Implement ITextEditar - org.eclipse .ui texteditor
+-{P Extend SourceViewerConfiguration - org. eclipse. fface.text, source
++ @, Call setSourceviewerConfigurationd...) - org.eclipse.ui.texteditor, Abstrack TextEditor
#-{A Extend RuleBasedScanner - org.eclipse.jface text. rules
+-{P Extend RuleBasedPartitionScanner - org.eclipse, jface. text.rules
+- @A Implement ITextHaver - org.eclipse.jface.bext
+ (‘ Implement IContentAssistProcessor - org.eclipse. jface bext.contentassist
=1 @A Implement IContentOutinePage - org.eclipse. Ui, views, contentoutling
2@ JavaOutlinePage - org.eclipse.jdt.internal.ui.javaeditor (84}
GRC] ConfigurableContentOutlinePage - org, eclipse, wst,sse uiinternal.contentoutline {7;
+ (_9 PageflowEditorOutinePage - org.edlipse.jst. jsf .Facescanfig.ui. pageflow (5)

Figure 2: XFinder view

add to the value of the guide if the developer could add these
examples to the guide without manually linking them. As-
sume that a developer is creating a guide for how to create
an Eclipse text editor. S/he already has several Eclipse text
editors in his/her workspace, and would like to provide these
as examples. The developer launches XFinder on the exist-
ing guide and obtains a list of all text editors. The developer
reviews the outputs selected by XFinder for the most rele-
vant editors and converts them into results, automatically
linking them with the guide. The result of this operation
is a richer, “illustrated” guide that will be of greater value
to users, at low cost to the guide developer. There is the
added advantage that the process of finding and examining
the examples might reveal flaws in the guide.

3. LOCATING STRUCTURED EXAMPLES

To support the previous scenarios, we designed an algo-
rithm that locates coherent implementation examples. For
each example, the algorithm identifies an output, or the fact
that there is none, for each step in a given guide.

In Mismar, a guide is a structured concern that contains
an ordered list of steps. Each step has a type (e.g., “Extend
a Java class”) and most of the steps refer to a main element
(e.g., a Java class, an extension point, etc.). The idea is to
use the structure of the guide concern as a template to be
matched when searching for examples in a code base.

Given a Mismar guide and a code base, XFinder first
searches for all possible outputs for each step. For exam-
ple, if the type of a step is “Implement an interface” and
its main element is the Java interface ITextEditor, XFinder
finds all classes that implement this interface directly or in-
directly. XFinder is not limited to Java-related steps: it can
also handle steps involving Eclipse artifacts such as plug-ins,
and XFinder plug-ins can provide support for more.

The result of this search is usually to find multiple outputs
for each step, belonging to different examples. A key chal-
lenge of this work is to cluster those outputs into coherent
example sets, one for each example containing all the ele-
ments of that example. This is done by means of an ezample-
aggregation algorithm. It starts with a user-designated seed
step, whose outputs are deemed to be in one-to-one corre-
spondence with the examples. For example, if the seed step
is “Create extension org.eclipse.ui.editor” and there are five
such extensions in the code base, XFinder will try to lo-
cate five editor implementations. Such extension steps are

205

typically good seed steps for Eclipse extensions. In other
contexts, a step asking to implement a major interface or to
extend a class is often a good seed step. Ideally, the seed
step should not be an optional step or one whose outputs
might be shared by multiple extensions. Although, in our
experience, one can usually find such seed steps easily, we
found during our evaluation (Section 4) that our algorithm
was relatively robust to the choice of seed step.

Each output of the seed step designates an example. With
this starting point, the aggregation algorithm greedily se-
lects appropriate outputs for other steps based on a variety
of relationships between outputs, and adds them to the ex-
ample set.* The intuition is that those outputs making up a
single, coherent example will be more closely related to one
another than to outputs that belong to different examples.
All previously-selected outputs contribute to the determina-
tion of the next output: potential outputs that are closely
related to multiple selected outputs are selected first by the
algorithm. Details of relationship handling and the aggrega-
tion algorithm are illustrated in Figure 3. It shows a pruned
example consisting of three guide steps, a few outputs for
each step, and two types of relationships. The snapshots
shown will be described below.

3.1 Relationship Types

XFinder uses different types of relationships to determine
whether two outputs are part of the same example. Given
two possible outputs, a confidence value between 0% and
100% is computed for each type of relationship. The higher
the confidence, the more likely it is that two outputs are in-
deed related. The confidence value of a relationship falls into
four classes: Related, Not Related, Possibly Related (confi-
dence between 0% and 100%), and Inapplicable (confidence
is not taken into account). The last class of confidence value,
Inapplicable, is used when the types of outputs preclude a
certain relationship. For example, a Java class and a plug-
in extension cannot be related by a Java-to-Java relation-
ship. Snapshot #1 in Figure 3 illustrates the case where two
types of relationship are computed between JavaEditor and
the outputs of the other steps. Based on previous work on
program investigation [13] and semi-automated relationship
inferencing [6], we currently use four types of relationships.

Name similarity. If two potential outputs have similar
names, it is probable that they are related to the same ex-
ample. Given two possible output names (e.g., the short
names of two Java classes), the confidence of the name sim-
ilarity relationship is the number of common pairs of char-
acters divided by the total number of possible pairs. This
metric was previously shown to be robust for assessing the
similarity of code-related strings [19, p.4].

Location similarity. If the locations of two potential out-
puts are similar, it is probable that they are related to the
same example. XFinder computes a 3-part location for each
output: the container (e.g., the project), the module (e.g.,
Java package) and the unit (e.g., the Java source file). Given
two locations, the confidence of the location similarity rela-
tionship is the number of matching location parts divided by
the total number of location parts (e.g., 66% or 2/3 if the
containers and modules are the same, but not the units).

“We experimented with a fuzzy, relational clustering algo-
rithm, but found that it was not as effective as a greedy
algorithm, for reasons too complex to explain here.

java: 0% |
@ loc: 0%
aEdito
: java: inap.
I::),,;gfsnt:gi ! P java: 100%
ITextEditor -
’ ol 0% Toc: 66%
Java: nap. step 2 : Implement

ITextHover

Vi)
loc: 66% wst.ui

Snapshot #1 step 1: Create plug-in extension

root step | |

step 1

Snapshot #2

root step

Snapshot #3

_rel: 66% , rel: 0%,

step 1

Snapshot #4

Figure 3: XFinder Algorithm with strong combination strategy

Java-to-Java relationship. Two Java elements (e.g., a
class and a method) are probably in the same example if
they are related. XFinder currently computes three Java
relationships: calls, contains, and refers to. The confidence
of a Java-to-Java relationship is 100% if the two Java outputs
are related. If an ancestor of one output has a Java-to-Java
relationship with the other output, the confidence is 100% -
5 * n, where n is the hierarchy distance between the ancestor
and the original output. Otherwise, the confidence is 0%.

Plug-in-To-Java relationship. A plug-in extension is
probably related to a Java class if the former explicitly refers
to the latter (e.g., the editor extension element indicates
which Java class realizes the editor functionality). The con-
fidence of this relationship is 100% if the plug-in extension
explicitely refers to the Java class and 0% otherwise.

3.2 Combining Relationships

The separate relationships between two outputs, each with
its own confidence level, need to be aggregated into a single
relationship whose confidence level expresses the likelihood
that the two outputs belong in the same example. For ex-
ample, in Snapshot #1 of Figure 3, two relationships, loc
(location similarity) and java (Java-to-Java), are shown be-
tween JavaEditor and each output of each other step. In
Snapshot #2 they are combined into a single relationship,
rel, showing that JavaHover is the most closely-related el-
ement, and therefore the one most likely to belong in the
same example as JavaEditor.

During our initial experimentation, we tried several com-
bination strategies: (1) average: averaging the confidence
value of all relationships, (2) bonus: giving different weights
to relationships based on their confidence values, and (3)
strong: like bonus, but favoring domain-specific relation-
ships (Java-To-Java and Plug-in-To-Java), which we refer to
as strong relationships. Because we use a greedy aggregation
algorithm, we found that a naive combination strategy such
as average could throw off our approach by selecting a wrong
output and then sending our algorithm down an erroneous
path. Indeed, the average strategy gives the same weight to
coincidental relationships like name and important relation-
ships like Java-To-Java: we found that this often favors out-
puts that are similarly named and located at the expense of
strongly-related outputs. Consequently, we explored the two
other strategies in order to prevent the selection of wrong
outputs. Both the bonus and strong approaches operate
on a list of relationships ordered by confidence value, but

206

the strong approach moves any strong relationship(s) before
all others. The combination function weights relationships
based on their position in the list using the formula

ZZ‘L:_OI ria(l —)’
?;01 ol —a)’

where R = rg,...rn—1 is the ordered list of relationships be-
tween two outputs, and « is a decay constant. The higher
the value of «, the greater the weight we give to the fa-
vored relationships. In the case of the strong strategy, it
sometimes happens that no strong relationship is found be-
tween two outputs: we then only compute the average of the
relationships’ confidence values to ensure that we will not
promote a less relevant relationship. We found the strong
combination strategy with an « value set to 0.8 to be the
most successful strategy during initial prototyping; this was
later confirmed in our evaluation (see Section 4.4).

3.3 Example-Aggregation Algorithm

The objective of the example-aggregation algorithm is to
compute the example set containing all the step outputs
making up a single, coherent example. Some steps might be
found not to have outputs, because the steps were optional,
or, perhaps, because the example is imperfect.

The algorithm starts with the example set containing a
single output for the seed step (e.g., JavaEditor in snapshot
#1). Each iteration adds one more output to the set, from
a step not yet represented in the set (called a remaining
step), or determines that all remaining steps have no out-
puts, which terminates the algorithm. The algorithm also
remembers all computed relationships as it proceeds, for its
own use in later iterations and for presentation to the user.

The first iteration starts with the single seed output in the
example set. It computes all relationships between this out-
put and all outputs in all remaining steps (snapshot #1 of
Figure 3). It then aggregates the relationships, as described
earlier (snapshot #2), and selects the new output with the
largest confidence (JavaHover in snapshot #2). If the con-
fidence is less than a threshold value of 50%, the selected
output is dropped, all remaining steps are deemed to have
no outputs, and the algorithm terminates. Otherwise, the
selected output is greedily placed in the example set, and the
algorithm proceeds to the next iteration. Note that all re-
lated outputs are eventually listed for the user in confidence
order, but the algorithm greedily selects just the highest one
for use in its subsequent iterations.

Each subsequent iteration evaluates the relationships be-
tween the new output added to the example set and the
outputs of all the remaining steps (snapshot #3 in Figure 3,
which shows both the aggregated relationships computed
during the first iteration (dashed) and the new ones, be-
tween JavaHover and the outputs of step 1 (solid)). These
new relationships are aggregated, as before. Now we have
a situation where each output in each remaining step is re-
lated to multiple outputs in the example set. These rela-
tionships are also aggregated, using the strong combination
approach, as before (snapshot #4). Finally, the new output
referred to by the aggregated relationship with the largest
confidence (jdt.ui in snapshot #4) is selected, and the algo-
rithm proceeds as above. The step ordering is irrelevant for
this algorithm: in Figure 3, an output for step 2 is selected
before step 1, because of the confidence levels.

The algorithm uses a threshold confidence value of 50% to
detect cases where steps do not have outputs in a particu-
lar example. A confidence value below 50% means that the
output does not have a strong relationship with any other
previously-selected output, and that its name and location
are significantly different from the other outputs’. If no out-
put has a combined confidence over 50%, XFinder presumes
that no output is similar enough to belong in the example
set.

The complexity of the algorithm is bounded by n, the
number of steps in the guide, and m, the maximum number
of possible outputs per step, which is typically higher than n.
Computing the relationships between two outputs and ag-
gregating them is assumed to take constant time k, because
the number of relationships is fixed (at 4). Since we compute
the relationships between the last selected output and the
potential outputs of all the remaining steps, the complexity
of our exampls—aggregation algorithm can be expressed as

Z kim = kmw = O(mn®)

i=1

3.4 Seed Step Heuristic

During early experimentation with some small projects,
we observed that, when an example contains artifacts shared
with other examples, the greedy aggregation algorithm could
become confused: once it selects a shared artifact, it starts
evaluating other shared artifacts, sometimes at the expense
of specific artifacts. We thus added an optional heuristic
that gives a 15% bonus to the name and location relation-
ships between the seed step output and any other poten-
tial output. Given two artifacts with equivalent strong rela-
tionships, one shared and one specific to the example, this
heuristic favors the specific artifact. If most artifacts have
a similar location and name, this heuristic can be harm-
ful, however, as discussed in Section 5.1. XFinder therefore
automatically recommends that this heuristic be disabled in
one case of such co-location: when XFinder runs on a project
that does not reference any other projects.

4. EXPERTS STUDY

To validate to what extent XFinder produces correct re-
sults, we designed two studies. The first, presented in this
section, quantitatively evaluates the various factors impact-
ing the effectiveness of our approach by comparing XFinder’s
results on one framework extension with results obtained
from experts on this extension. Case studies, presented in
Section 5, evaluate the effectiveness of XFinder with respect

207

to two other frameworks. For the experts study, we were
interested in evaluating the following criteria:

1. The overall quality of the results provided by XFinder
as measured by the number of correct outputs selected
for each framework extension example.

2. The stability of our algorithm with respect to external
factors not under the control of XFinder: the quality
of the guide and the choice of the seed step.

3. The impact of various XFinder parameters: «, the
combination strategy, and the seed step heuristic.

4.1 Experimental Design

To evaluate the above criteria, we selected the text editor
extension of the Eclipse platform,® which enables develop-
ers to create text editors that provide standard features such
as code completion, text hovering, and syntax highlighting.
Based on our own experience with text editors, we created
a guide in Mismar consisting of 13 steps (shown under the
Class File editor in Figure 2). More precisely, the guide con-
tains (1) mandatory configuration steps such as creating a
project and a plug-in extension, (2) mandatory Java steps
such as implementing the ITextEditor interface, and (3) op-
tional Java steps related to optional functionality such as
syntax highlighting. The idea was to use this guide as an
input to XFinder and to find text editor implementations in
a standard Eclipse distribution.

To evaluate the correctness of XFinder results, we con-
tacted ten Eclipse committers within IBM who were respon-
sible for the development or maintenance of Eclipse text
editors, and asked them to complete a questionnaire on a
specific editor they were familiar with. Eight of the ten
committers replied positively and six of them completed the
questionnaire. The questionnaire consisted of four sections:
the first section asked demographic questions, the second
asked questions on evaluating XFinder results, the third sec-
tion covered the quality of our 13-step guide and the fourth
section asked questions about framework documentation in
general. Only the first and second sections were manda-
tory. Since all responders agreed to detailed reporting of
their answers, the results of the second section are available
online.® On average, the responders had 7.1 years of experi-
ence in Java development and 5.4 years of experience specific
to Eclipse development. Four of them were the main devel-
opers of the editors they were asked to evaluate; the two
others evaluated editors they were familiar with.

The second section of the questionnaire presented the 13-
step guide to creating a text editor. For each step, we pro-
vided a list of potential outputs for the step, and asked the
responder to identify the correct one(s) by: (1) selecting one,
(2) selecting multiple and ranking them according to their
importance for this step, (3) indicating that this step was not
implemented, or (4) indicating an output not listed. The list
of outputs was created by selecting all outputs that resided
in the same project as the editor under evaluation, adding
a random list of outputs from other projects (not exceeding
15 outputs in total) and then randomizing the order of the
outputs. This particular design was selected for practical
reasons: for certain steps, there were more than 30 possi-
ble artifacts and listing them all (or offering no choice at

Swww.eclipse.org
Sbart.prologique.com/projects/mismar /xfinder-eval

Editor All Name & Strong
Relationships | Location only
Ant 92 (100) 83 (92) 58 (66)
Java source 92 (92) 58 (58) 58 (58)
Java class 92 (92) 42 (75) 58 (58)
HTML 100 (100) 50 (50) 42 (42)
JSP 92 (92) 58 (58) 42 (42)
Feature 33 (92) 33 (92) 0 (0)
Average 83 (94) 54 (71) 43 (44)
w/out outlier 93 (95) 58 (67) 52 (53)

Table 1: XFinder results

all) would have put an unacceptable burden on the Eclipse
committers.

The answers from the Eclipse committers gave us an or-
acle to validate the results of XFinder for the Ant Editor,
Java Source Editor, Java Class Editor, HTML Editor, JSP
Editor, and Feature Editor (an editor for an Eclipse exten-
sion artifact). These editors represent an interesting range
of implementation examples because they exhibit character-
istics that typically make locating code examples difficult.
For example, the two Java editors (class and source) share
many classes, and the HTML and JSP editors are scattered
among multiple projects and share one main class. The Fea-
ture, HTML and JSP editors also implement some parts of
the editor in a non-standard way, using mechanisms not cov-
ered by Eclipse tutorials. The Ant editor is the simplest ed-
itor in our sample because it is the only editor defined in its
project and it provides a single output for each step.

We executed XFinder using the text editor guide as input
on an Eclipse workspace referencing the following plug-in
families: Web Tool Platform, Plug-in Development Envi-
ronment, Java Development Tools, Platform Text, and Ant.
We then compared the results obtained by various configu-
rations of XFinder with the answers given by the six Eclipse
committers. We analyzed the results in the light of the three
criteria mentioned at the beginning of Section 4. The results
of each execution are also available online.

4.2 Quality

To evaluate the quality of the results provided by our ap-
proach, we executed XFinder by selecting the step “Create
editor extension element” as the seed step and using the fol-
lowing parameters: a = 0.8, combination strategy = strong,
seed step heuristic = enabled. The seed step we chose is
the only step in the guide that cannot potentially refer to a
shared output: each editor in Eclipse must be declared by
this extension element, and only one editor can be declared
by each element. All of the other steps can produce an out-
put that is shared by multiple editors (e.g., the HTML and
JSP editors both share the same implementation of IText-
Editor). The parameters we used were found to be the most
successful during early validation of the approach.

After 128 seconds, XFinder returned a list of 49 editors, 21
of which were text editors (the others were form or graphical
editors). For the six editors evaluated by the Eclipse com-
mitters, we looked at the 12 steps (the 13th being the seed
step) and compared XFinder’s recommendations with the
answers from Eclipse committers. We considered that a rec-
ommendation for a step was correct if either (1) XFinder’s
top recommendation matched one of the outputs identified
by the Eclipse committer or if (2) XFinder and the Eclipse
committer both indicated that there was no output for that

208

step. We also relaxed the metric by considering for each step
the top three recommendations when XFinder had selected
an output: if one of the three recommendations matched an
output selected by the Eclipse committer, we considered the
recommendation to be correct according to the relaxed met-
ric. These two metrics accommodate the scenarios where
a tool would automatically use the results of XFinder and
where a user would browse the results: in the former case,
only the top recommendation is used, but in the latter case,
the user is expected to look at least at the top three recom-
mendations while reviewing the results.

Table 1 shows the results of this study. The first column
gives the name of the editor and the second column contains
the percentage of correct recommendations. The numbers in
parentheses represent the percentages of correct recommen-
dations if we consider the top three outputs suggested by
XFinder.” For example, for the Ant editor, XFinder rec-
ommended the correct output for 11 of the steps (11/12 or
92%), and the correct output was in the top three recom-
mendations for all steps (12/12 or 100%).

In 83% of the cases, XFinder correctly identified the out-
puts belonging to a particular editor and the steps where no
output had been produced. When looking at the top three
recommendations, XFinder achieved a success rate of 94%.
This is evidence that our approach can automatically locate
framework extension examples with considerable accuracy.
In 13 of the 18 cases where an Eclipse committer had selected
multiple outputs for a step, XFinder gave a high confidence
value to multiple correct outputs. For example, in the Java
source editor, all four classes implementing the syntax high-
lighting feature were recommended with the same confidence
value (78) and one of them was selected by XFinder: our
approach selects one output because the current version of
Mismar only supports one output per step.

The only exception is the Feature editor, for which XFinder
performed poorly by only identifying the correct output for
four steps. Looking more closely at the Feature editor, we
realized that it did not match exactly the definition of a text
editor as provided by the Eclipse platform: this editor is a
multi-page editor, i.e., a composite editor that offers mul-
tiple views of the same data. It provides nine views, seven
of them being form-based and two of them being text edi-
tors. Moreover, the extension element defining the Feature
editor (the seed step) refers to the class FeatureEditor which
belongs to the hierarchy of MultiPageEditor and does not im-
plement the interface ITextEditor. This means that strong
relationships from the main class implementing the Feature
editor are useless for finding outputs of other text-editor
steps. The algorithm must thus rely on weaker relationships
such as location and name similarity, which are less accurate.
This is a limitation of our approach: XFinder struggles to
locate an example whose structure greatly differs from the
documentation, rather than identifying the problem. In this
particular case, a guide on creating multi-page editors would
probably give better results. Because we consider this editor
to be an outlier, we did not include its results when assessing
the impact of other factors in the next sections: there was
no factor that improved the results for this editor and the
presence of an outlier might have hindered our evaluation.

Finally, we also executed XFinder using only Name and
Location relationships (third column of Table 1), and then

"Correctness will always be reported in this format from
now on.

Seed Precision Editors

Editor extension element 93 (95) 5/5
Project 96 (100) 2/5
SourceViewerConfiguration 86 (94) 3/5
ITextEditor 92 (94) 3/5
Table 2: Choice of seed step

Steps # of steps Precision
Complete 13 93 (95)
w/o optional 8 94 (100)
w/o configuration 9 85 (93)
w/o SourceViewerConfig. 11 74 (74)

Table 3: Guide quality

only Java-To-Java and Plug-in-To-Java relationships (fourth
column). XFinder performed poorly and selected correct
outputs in 54% and 43% of the cases, respectively. These
results provide evidence that all relationships are necessary
and that a more naive approach, considering only weak or
strong relationships, would probably fail in identifying most
of the correct outputs.

4.3 Stability

When locating examples, there are two main factors that
are outside the control of XFinder: the choice of the seed
step and the quality of the guide. To assess the algorithm’s
robustness with respect to the choice of the seed step, we ex-
ecuted XFinder by selecting different seed steps that, based
on the guidelines given in Section 3, could likely be chosen
by a user because they are mandatory and usually repre-
sentative of an editor. Table 2 contains the results of this
analysis. The first column indicates the seed step we used,
the second column presents the percentage of correct rec-
ommendations, and the third column indicates the number
of editors that could be found using this seed step. For ex-
ample, for the seed step “Create a plug-in project” (seed =
Project), there were only two editors out of the five that
could be found, the outlier not included. For those two edi-
tors, XFinder correctly identified an output for 96%(100%)
of the steps. The editors value, 2/5, is obtained by counting
the number of editors that have, for the seed step, an output
that represents their implementation only. For the project
seed step, we cannot include the Java source, Java class or
JSP editors because their respective projects define other ed-
itors also: XFinder is then confused and may select arbitrary
outputs from those multiple editors. Unfortunately, XFinder
does not detect the presence of multiple examples, a limita-
tion that remains an area for future work. Unfortunately,
XFinder does not detect the presence of multiple examples,
a limitation that remains an area for future work. Overall,
these results suggest that our approach can produce accu-
rate results even with suboptimal seed steps, for the cases
it can handle. For example, with the project seed, XFinder
could not compute strong relationships (e.g., Java-to-Java)
between the seed step output and other potential outputs.
To circumvent this problem, XFinder greatly favored out-
puts that were in the same project using the seed step heuris-
tic until stronger relationships could be computed. These
stronger relationships were eventually necessary for editors
like the HTML editor, whose implementation was scattered
in multiple projects.

Another factor that might impact XFinder’s effectiveness
is the quality of the guide used to locate an example. In-

209

Parameter Precision | Parameter Precision
heuristic 93 (95) a=0.5 85 (87)
w/o heuristic 85 (88) a=0.6 93 (97)
average 52 (53) a=0.7 93 (97)
bonus 83 (93 a=0.8 93 (95)
strong 93 (95) a=0.9 93 (95)

Table 4: XFinder parameters

deed, framework documentation is often incomplete or out
of date. To assess the impact of the documentation’s qual-
ity, we executed XFinder with various subsets of the steps
in the original guide. Table 3 reports the results. The first
column indicates the steps that we removed from the orig-
inal guide, the second gives the number of steps, including
the seed step, remaining in the guide, and the third shows
the percentage of correct recommendations for the five edi-
tors. The first row reports the results of executing XFinder
with the complete guide (13 steps). The second row repre-
sents the guide without the optional steps, such as providing
syntax highlighting. For the third execution, we simulated
a tutorial dealing only with code elements, because many
tutorials focus exclusively on these: we removed the con-
figuration steps such as the creation of a project and the
addition of dependencies. In the fourth execution, we eval-
uated a particularly bad scenario by removing two critical
steps: those asking to extend and call a method from the
SourceViewerConfiguration class, an essential element of any
text editor.

In general, our approach is robust with respect to the
quality of the guide. Not surprisingly, removing optional
steps increased the success rate: outputs of optional steps
are typically more difficult to locate because they are some-
times accessed indirectly (no strong relationships) or they
are not present at all (it is harder to be sure that an output
is not provided). Removing the configuration steps slightly
decreased the success rate because the few outputs that de-
pended only on the name and location similarity did not
reach a high-enough confidence level. Finally, the removal
of the two key steps related to the SourceViewerConfiguration
class had a major impact on XFinder effectiveness. Because
this class is usually the hub connecting all the other classes
in a text editor, XFinder was unable to compute strong rela-
tionships and missed several correct outputs. These results
suggest that XFinder will probably perform well with in-
complete or slightly out-of-date guides, but its effectiveness
will degrade significantly if key steps are missing.

4.4 XFinder Parameters

Thus far, we executed XFinder by fixing values to three
main parameters: the usage of the seed step heuristic (Sec-
tion 3.4), the combination strategy (Section 3.2), and the
« value used in some combination strategies. To validate
the optimality of these values, we report the results of exe-
cuting XFinder with different parameter values in Table 4.
The first and third columns indicate which values were given
to the parameters and the second and fourth columns show
the percentages of correct recommendations. Default values
used in the previous sections are in italics.

The first parameter we studied was the usage of the seed
step heuristic. This heuristic was essential in selecting cor-
rect outputs for the two editors that were scattered among
multiple projects, i.e., the HTML and JSP editors. Indeed,
the class that implements the interface ITextEditor for both

editors, StructuredTextEditor, is shared by multiple other
editors and refers to default implementations of optional fea-
tures. By increasing the confidence value of implementations
that had a name or location similar to the seed of these ed-
itors, the heuristic helped XFinder in selecting the outputs
that were specific to them. While enabled, the heuristic
did not hinder the location of outputs for other examples,
but disabling the heuristic slightly reduced XFinder’s suc-
cess rate: our approach missed the correct output for 3 steps
in the HTML editor and 2 steps in the JSP editor. This
indicates that, generally, the seed step heuristic should be
enabled, but we show in Section 5.1 when it should not.

The second parameter we studied was the selection of
one of our three combination strategies. As can be seen
in Table 4, the naive average strategy was unsuccessful and
XFinder recommended the correct output in only 52% of
the cases. The bonus strategy performed better, with a suc-
cess rate of 83%, approaching the success rate of the strong
strategy, 93%. The variation between the last two combi-
nation strategies can be explained by the fact that, for six
steps, bonus favored location similarity at the expense of a
Java relationship, resulting in the selection of an incorrect
output.

Finally, because it appeared that the strong relationship
combination strategy was best, we ran XFinder with differ-
ent values for the a parameter, effectively varying the degree
to which we favor strong relationships. Except for a value
of 0.5, the variation in the o parameter did not significantly
impact our results. The only difference is that one correct
output is ranked third for a value of 0.6 and 0.7 and ranked
fourth for a value of 0.8 and 0.9, hence the variation in the
top three recommendations’ correctness. We conclude that
between 0.6 and 0.9, our algorithm is not sensitive to the
value of «a, which suggests that it should not need to be
tailored to a particular framework extension.

4.5 Threats to Validity

Although we analyzed the results of six editors, the ex-
ternal validity of our study is limited by the fact that we
studied only one framework extension and one guide, which
means that it might not generalize to other frameworks and
tutorials. This is mitigated by the fact that the framework
extensions we studied exhibited a wide variety of structures,
and we evaluated the impact of the documentation qual-
ity. The analysis of various parameters also suggests that
some strategies are clearly more efficient than others, which
should limit the need to tailor those parameters to a par-
ticular framework. Furthermore, to reduce this threat, we
present in the next section two case studies that we per-
formed on other frameworks.

The choices that we offered in the second section of the
questionnaire to the Eclipse committers could be overly lead-
ing because some of the choices were taken from the project
where most parts of the editor under evaluation resided.
This threat was mitigated by the fact that all projects, ex-
cept the ant project, defined many editors and that two ed-
itors were scattered across multiple projects. Additionnally,
the Eclipse committers indicated that there was no imple-
mentation for seven steps and they specified an artifact not
mentioned in the choices for two steps, which provide evi-
dence that the committers did not feel compelled to select
only the choices that we offered.

Investigator bias was mostly limited to the choice of frame-
work extension and the creation of the documentation. We

210

Create a Java project

Extend soot.toolkits.scalar.AbstractFlowAnalysis

Call soot.toolkits.scalar.AbstractFlowAnalysis:doAnalysis
Extend soot.Transformer

Implement soot.tagkit.Tag

Call soot.tagkit.Host:addTag

Call soot.Transform:Transform

Call soot.Pack:add

Figure 4: Soot Guide

argue that Eclipse text editors are common enough to be of
interest. As for the documentation, three Eclipse commit-
ters reviewed our guide in the third section of the question-
naire and concluded that it was mostly complete, with one
committer suggesting one extra step. Though we used ex-
perts to validate the correctness of our results, human errors
remain; in fact, we needed to contact two responders to cor-
rect mistakes in their answers. Finally, even if our approach
usually provides correct results, we can only make hypothe-
ses about how developers would use our tool. Validating
those hypotheses is a natural next step in the evaluation of
XFinder.

S. CASE STUDIES

To gather preliminary evidence that our approach pro-
duces similarly high-quality results when applied to other
frameworks and guides, we performed two case studies on
framework extensions outside of the Eclipse platform. Al-
though investigator bias is inevitable with such studies, we
tried to reduce its impact by selecting framework extensions
that (1) were simple enough for us and external reviewers to
manually review the results, (2) had publicly-available docu-
mentation so we could create a Mismar guide as objectively
as possible, and (3) had a decent number of implementa-
tions. We found two such framework extensions, Soot data
flow analysis [16], and Swing JTable.® The results of both
case studies are available online.

5.1 Soot Static Analysis

Our first target system, Soot, is a static analysis frame-
work commonly used by researchers to create various kinds
of static analyses and improve the performance of Java and
AspectJ programs. The version we studied was 2.2.4 and it
comprised 180739 lines of code. We selected the ability to
create a custom data flow analysis as the framework exten-
sion. We used two Soot tutorials related to this extension? "
to write a guide: we basically dragged the main classes and
methods in the Soot source code that were referenced by the
tutorials and dropped them into our guide editor, a process
that took less than 5 minutes. The final guide consisted
of 8 steps helping a developer to create a data flow anal-
ysis, annotate classes using this flow analysis and register
the analysis within the Soot framework. Figure 4 lists the
steps of the guide without the textual description accompa-
nying them. The tutorials indicate that the last five steps
are optional.

Because Soot already defines a significant number of flow
analyses (some are optional, others are provided with the
framework), we used Soot as a client program. We selected
the second step, “Extend AbstractFlowAnalysis”, as the seed
step and we executed XFinder on a workspace containing the
source code of the Soot project. We used the same parame-
ters as in Section 4.2 except that the seed step heuristic was

8java.sun.com/products/jfc/tsc/articles/architecture/
9www.sable.mcgill.ca/soot /tutorial /analysis /index.html
10www.sable.mcgill.ca/soot /tutorial /tagclass /index.html

System Version LOC

Abacus GUI Builder 1.8 57171
BNF for Java alpha 1 9058

JDecompiler 1.2 85607
Fredy’s SQL Tool 2.4.2 41809
Class Editor 2.23 10027

Table 5: Target systems

disabled on XFinder’s recommendation (see Section 3.4).
After 93 seconds, XFinder returned a list of 43 data flow
analyses, 4 of them being abstract analyses not interesting
for this case study. We then randomly selected 15 of these
flow analyses. For each class extending the AbstractFlow-
Analysis abstract class in our random sample, we manually
identified the output for each step. We then compared our
findings with the results provided by XFinder: 97.8% of the
time, XFinder’s recommendation matched our finding. By
computing a 95% confidence interval, we estimated the pre-
cision of XFinder on this framework extension to be 97.8%
+ 4%, or 6.8 & 0.3 correct recommendations out of 7 steps.

Generally, we found the artifacts comprising Soot data
flow analyses to be strongly related to one another, and
often to be similarly named, which matched the premises
of our approach. For example, ParityAnalysis is called by
ParityTagger, which annotates classes by creating instances
of StringTag, a common class used by many analyses. X-
Finder missed two outputs because the usage of a factory
method introduced an indirection, inhibiting the computa-
tion of strong relationships. The presence of such methods
is not uncommon, and XFinder is usually able to rely on
weaker relationships to identify the correct output, but in
this case the name and location of the correct outputs were
not similar enough to previously-selected outputs. Addi-
tionally, in this case, dynamic analysis would be required to
identify the correct output because the factory method uses
a condition on the value of a program argument.

Finally, we went against the recommendation of XFinder
by running the analysis with the seed step heuristic enabled
and we observed that the precision fell to 81%. This drop is
due to two factors that reinforce each other: (1) the presence
of many optional steps and (2) the similar names and loca-
tions of potential outputs (e.g., almost all analysis classes
contain the word “Analysis” in their names and many anal-
yses are in the same package). The seed step heuristic in-
creased the confidence value of similarly-named and located
outputs for optional steps, which resulted in the selection
of wrong outputs for steps that should have had none. Our
greedy aggregation algorithm then computed relationships
from these wrong outputs, resulting in the selection of wrong
outputs for the remaining optional steps. With fewer op-
tional steps, the absence of relationships between correct
outputs and wrong outputs would prevail over the presence
of relationships between wrong outputs, as in the case of the
Eclipse editor guide.

The Soot case study indicates that XFinder can locate
implementation examples with high precision even if there
are many optional steps and the artifacts comprising the
various implementation examples have similar names and
locations.

5.2 Swing JTable

Our second case study involves the Swing framework, which
provides graphical user-interface capabilities on the Java
platform. We chose to study the JTable extension, which

12

1- Create a Java Project

2- Implement javax.swing.table.TableModel

3- Use javax.swing.JTable

4- Use javax.swing.JScrollPane

5- Call javax.swing.ListSelectionModel:addListSelectionListener
6- Implement javax.swing.table.TableCellRenderer

7- Call javax.swing.table.TableColumn:setCellRederer

8- Implement javax.swing.table.TableCellEditor

9- Call javax.swing.table.TableColumn:setCellEditor

Figure 5: Swing Guide

enables a developer to create a table with rows, columns
and cells. We created a guide consisting of 9 steps taken
from the Swing JTable tutorial.’* Creating the guide was
a challenging task for three main reasons. First, the Swing
API offers many ways of doing the same thing: for exam-
ple, there are many constructors and setters with different
parameters that can be used to bind a JTable instance with
a TableModel instance. We therefore kept the number of
method-call steps to a minimum, and only used a subset of
the methods mentioned in the tutorial. Second, the Swing
platform offers default implementations of virtually every-
thing, making any step optional. Third, it is possible to
extend the Swing framework in two ways: by composing ob-
jects (e.g., you bind a custom TableModel with a JTable) or
by extending classes (e.g., you extend JTable) which makes
it doubtful that one tutorial will be representative of all ex-
tensions. Figure 5 lists the steps of the guide without the
accompanying textual description.

After we created the guide, we looked on SourceForge'?
to find five open source programs that used JTable and that
were small enough to be inspected manually. Table 5 shows
the client programs we chose for this case study.

We selected the second step in our guide, “Implement
TableModel”, as the seed step and we executed XFinder on
a workspace containing the source code of the five projects.
We used the same parameters as in Section 4.2, except that
the seed step heuristic was again disabled on the recommen-
dation of XFinder. After 85 seconds, XFinder returned a
list of 49 table models, 4 of them being abstract tables not
interesting for this case study. We then randomly selected
15 of these tables. For each class implementing the Table-
Model interface in our sample, we manually identified the
output for each remaining step. We then compared our find-
ings with the results provided by XFinder: in 88.5% of the
cases, XFinder’s recommendation matched our finding. For
this case study, we considered that if a guide step described
some alternative not used in a particular JTable (e.g., ex-
tending a JTable instead of composing it), XFinder should
not select any output for that step. By computing a 95%
confidence interval, we estimated the precision of XFinder
on this framework extension to be 88.5% =+ 8.1%, or 7.1 &
1.1 correct recommendations out of 8 steps.

Because all the steps were optional, no table in our sample
implemented the full guide. XFinder was still able to detect
most of the cases where no output was provided by a table
implementation, as illustrated by the high precision. Most
of the wrong outputs were selected because of the unusu-
ally large number of optional steps and the many explicit
references to framework default implementations. Figure 6
shows an example of the problem: if a particular JTable im-
plementation explicitly uses framework default implementa-

Hjava.sun.com/docs/books/tutorial /uiswing/components,/

table.html
www.sourceforge.net

O Correct
@ Correct from

Framework
O Wrong

Figure 6: Framework defaults problem

tions for multiple steps, the number of outputs belonging to
the framework might outnumber the outputs belonging to
the specific JTable. Even if this JTable does not provide
implementations for the remaining optional steps, XFinder
might select wrong outputs if they also explicitly refer to
the framework default implementations: the presence of re-
lationships between framework outputs and wrong outputs
prevails over the absence of relationships between specific
correct outputs and wrong outputs. This problem did not
occur in the Eclipse text editor study because there were
fewer optional steps and the editors provided specific imple-
mentations for most steps.

The results of the JTable case study indicate that XFinder
can locate framework extension examples with reasonable
precision even when some examples use alternatives not doc-
umented in the guide. It also suggests that future work
is required to reduce the problems introduced by default
framework implementations.

6. RELATED WORK

Automatically locating framework extension examples in-
tersects with three main research areas: code example loca-
tion, feature location and framework documentation.

Example location. A number of approaches have been
proposed to locate code examples and leverage them to doc-
ument framework usage. Strathcona is a tool that mines the
source code of several example programs and recommends
snippets of code found in a method of an example program
that is similar to the local programming context [7]. Code
examples proposed by Strathcona are first presented as a
small UML diagram showing a main class with its most rel-
evant dependencies. Then, the user can see example code
taken from a method in the main class or move on to the
next recommendation. Strathcona is limited to examples
whose code comes from a single method: the tool does not
recommend examples that are scattered across several arti-
facts, which limits its applicability for coarse-grained frame-
work extensions such as text editors. Another limitation
of Strathcona with respect to finding implementations of
framework extensions is that the structure and the rationale
behind the returned code snippets are inconsistent across
recommendations: as stated on the tool’s website, “some of
the heuristics in the backend make different types of guesses
to generate the examples and some of them may not be
useful to you”'3. Because XFinder uses the documentation
structure to present the code examples, the user always re-
views the results in a familiar setting, i.e., as an implemen-
tation example of a tutorial.

FrUIT is a tool that solves the opposite problem addressed
by XFinder: by applying data mining to a set of framework
extension examples, it infers the framework documentation
in the form of usage rules such as “Extend class ABC”, and
“Override method m1” [2]. These usage rules, displayed with
code examples implementing them, can greatly reduce the

13]smr.cpsc.ucalgary.ca/projects/heuristic/strathcona/using

212

time required to learn a framework, but it is difficult at this
stage to assess the cost of this approach because a full valida-
tion study has yet to be published. For example, the authors
mentioned in their paper that their data-mining algorithm
was not yet scalable enough.

Code examples automatically retrieved from a local repos-
itory or from the web'? are used by Propespector [11] and
PARSEWeb [18], respectively, to recommend Method-Invo-
cation Sequences (MIS), each of which is a list of method
calls that produce an instance of a destination class, given a
source class. For example, a developer who wants to obtain
an instance of ICompilationUnit from an instance of IEditor-
Part could query PARSEWeb, which would then recommend
a sequence of three methods to call. XSnippet is another tool
that mines examples from a local repository and can recom-
mend a code snippet showing how to instantiate a particular
class [15].

One important advantage these tools have over XFinder
is that they do not require any kind of documentation to
locate examples of a framework extension and infer usage
rules. On the other hand, they do not address the problem
of finding examples to illustrate documentation, and they do
expect the user to have sufficient knowledge of the frame-
work extension to pose a query. Moreover, code examples
and usage rules produced by these tools are usually only re-
lated to one main class or method (e.g., getting an instance
of ICompilationUnit) and are thus more suitable for find-
ing examples of fine-grained framework extensions such as
syntax highlighting. As opposed to XFinder, these example-
location tools only deal with Java code elements and do not
take into account other artifacts such as plug-in extensions
and configuration files. Clearly, if a tutorial is unavailable
or if the framework extension can be expressed in the body
of a method, tools such as Strathcona should be preferred
to XFinder.

Feature location. Numerous techniques have been de-
vised to automatically locate implementations of features
in source code. For example, SNIAFL is a static feature-
location tool that combines static analysis and information
retrieval to identify the functions that comprise a particu-
lar feature [20]. Other approaches use dynamic analysis to
find functions that were used during one or multiple pro-
gram executions [4, 9, 10] and that are specific to a feature.
Feature-location techniques are targeted toward identifying
a specific feature implementation (e.g., the HTML editor)
whereas we want to identify multiple implementations of the
same framework extension. To achieve these related goals,
feature location tools have requirements similar to XFinder:
they need feature descriptions (often taken from specifica-
tion or design documents) or execution traces and we need
lightweight documentation of the framework extension.

Results returned by feature-location tools often take the
form of lists of functions along with confidence numbers indi-
cating to what extent each function is relevant to a feature.
One could thus run a feature-location tool on a target sys-
tem for each desired framework extension implementation
(e.g., the Java, JSP and HTML editors). As opposed to
XFinder, though, the results for each implementation would
probably not be presented with the same structure (e.g., the
functions would not be presented in the same order, not all
parts of the editor would be selected, etc.).

Mwww.google.com/codesearch

Framework documentation. Various approaches have
been proposed to document framework usage and framework
extension examples. Fairbanks et al. devised a technique
that enables a developer to document patterns of engage-
ment with a framework, called Design Fragments [5] (e.g.,
call methodA() before methodB()). When extending a frame-
work, developers can annotate the extension to map the code
entities to a design fragment; a tool then statically checks for
conformance to the design. Users of design fragments have
access to a catalog of fragments along with a list of instances
(i.e., implementation examples) for each fragment. Our ap-
proach does not require a manual mapping between the doc-
umentation and the implementation examples, but we could
use design fragments as templates to locate examples and
then check their full conformance with the fragments.

Framework-specific modeling languages (FSML) offer an-
other way of describing framework extensions and enable
semi-automatic location of implementation examples [1]. A
framework extension (called a concept) can be represented
as a hierarchy of features, which are themselves composed of
structural and behavioral patterns defined with a pointcut-
like language [8]. For each of these patterns, the authors
offer several queries that can locate instances in the code of
one project. The authors give an example where they are in-
terested in a feature that displays messages in an applet: the
query they use returns the string values of all messages that
could be determined statically in the code. The patterns
are more fine-grained than Mismar steps and can be used
to identify very specific behavior. Because the user must
select an adequate query for each pattern, we consider this
approach to be semi-automatic. Although a Mismar guide
could be encoded using some of the more coarse-grained pat-
terns offered by FSML, it is not clear how this approach
could be used to cluster the results at the granularity of the
framework extension instead of the project.

7. CONCLUSION

We presented a technique for automatically locating struc-
tured examples of framework extensions given guides that
document the framework. Our approach uncovers the rela-
tionships and the roles of the elements in each example. The
use of a generic concern model guides the example-location
process and allows the inclusion of different artifact types.
Our evaluation provides evidence that our approach is effi-
cient and reasonably accurate: an experts study performed
on the Eclipse text editor framework extension showed that
our approach could correctly locate 93% of the implementa-
tions of five text editors. We conclude that given concern-
oriented documentation, it is possible to use the underlying
concern model as a concern template and then transform the
problem of finding implementation examples into a simpler
problem: finding instances of this concern template. Docu-
mentation not specifically concern-oriented, such as tutorials
and cheat sheets, nonetheless has underlying concerns—the
elements referenced—so we believe our approach to be more
generally applicable. Deriving the concern models automat-
ically remains an area for future research.

Acknowledgments

The authors thank Martin Robillard for his valuable com-
ments on the paper and all the Eclipse committers who con-
tributed to the validation study.

213

8.
(1

(2]
3]
[4]

5]

6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]
(14]

(15]

[16]

(17]

(18]

(19]

(20]

REFERENCES

M. Antkiewicz, T. T. Bartolomei, and K. Czarnecki. Automatic
extraction of framework-specific models from framework-based
application code. In Proc. of the 22nd Int’l Conf. on
Automated Software Engineering, pages 214—-223, 2007.

M. Bruch, T. Schifer, and M. Mezini. FrUiT: IDE support for
framework understanding. In Proc. of the OOPSLA Workshop
on Eclipse Technology eXchange, pages 55-59, 2006.

B. Dagenais and H. Ossher. Aiding evolution with
concern-oriented guides. In Proc. of the 8rd AOSD Workshop
on Linking Aspect Technology and Evolution, page 4, 2007.
T. Eisenbarth, R. Koschke, and D. Simon. Locating features in
source code. IEEE Transactions on Software Engineering,
29(3):210-224, 2003.

G. Fairbanks, D. Garlan, and W. Scherlis. Design fragments
make using frameworks easier. In Proc. of the 21st Conf. on
Object-Oriented Programming Systems, Languages, and
Applications, pages 75-88, 2006.

L. Gong, T. Klinger, P. Matchen, P. Tarr, R. Uceda-Sosa,

A. Ying, J. Xu, and X. Zhou. Integrated solution engineering.
In Companion to the 21st Conf. on Object-Oriented
Programming Systems, Languages, and Applications, pages
726-727, 2006.

R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach for recommending
relevant examples. IEEE Transactions on Software
Engineering, 32(12):952-970, 2006.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proc. of the 11th European Conf. on Object-Oriented
Programming, pages 220-242, 1997.

R. Koschke and J. Quante. On dynamic feature location. In
Proc. of the 20th Int’l Conf. on Automated Software
Engineering, pages 420-432, 2005.

D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature
location via information retrieval based filtering of a single
scenario execution trace. In Proc. of the 22nd Int’l Conf. on
Automated Software Engineering, pages 234-243, 2007.

D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In Proc. of the
Conf. on Object-Oriented Programming Systems, Languages,
and Applications, pages 48-61, 2005.

J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace,
and M. Gordon. What programmers really want: results of a
needs assessment for sdk documentation. In Proc. of the 20th
Int’l Conf. on Computer Documentation, pages 133-141, 2002.
M. P. Robillard, W. Coelho, and G. C. Murphy. How effective
developers investigate source code: An exploratory study. IEEE
Transactions on Software Engineering, 30(12):889-903, 2004.
M. P. Robillard and G. C. Murphy. Representing concerns in
source code. ACM Transactions on Software Engineering and
Methodology, 16(1):3, 2007.

N. Sahavechaphan and K. Claypool. Xsnippet: mining for
sample code. In Proc. of the 21st Conf. on Object-Oriented
Programming Systems, Languages, and Applications, pages
413-430, 2006.

V. Sundaresan, P. Lam, E. Gagnon, R. Vallée-Rai, L. Hendren,
and P. Co. Soot - a java optimization framework. In Proc. of
CASCON, pages 125-135, 1999.

P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of concerns.
In Proc. of the 21st Int’l Conf. on Software Engineering,
pages 107-119, 1999.

S. Thummalapenta and T. Xie. PARSEWeb: A programmer
assistant for reusing open source code on the web. In Proc. of
the 22nd Int’l Conf. on Automated Software Engineering,
pages 204-213, 2007.

Z. Xing and E. Stroulia. UMLDIff: an algorithm for
object-oriented design differencing. In Proc. of the Int’l Conf.
on Automated Software Engineering, pages 54—65, 2005.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL:
Towards a static non-interactive approach to feature location.
In Proc. of the 26th Int’l Conf. on Software Engineering,
pages 293-303, 2004.

