
A reuse-based approach to the correct and automatic
composition of web-services

Paola Inverardi
University of L’Aquila

Dep. Computer Science
Via Vetoio, 67100, L’Aquila (AQ), ITALY

inverard@di.univaq.it

Massimo Tivoli
University of L’Aquila

Dep. Computer Science
Via Vetoio, 67100, L’Aquila (AQ), ITALY

tivoli@di.univaq.it

ABSTRACT
Service oriented technologies, such as web services, can be
considered one of the latest trends in distributed computing.
Nowadays, the Internet arena is populated by an ever more
increasing number of web services. This has led to the need
for reuse-based approaches to the automatic construction of
new services as a correct composition of existing ones. A
composition of services is correct when it respects the Ser-
vice Level Specification (SLS) specified for the composite
service to be built. To this end, we propose an extension
of our previous work on the automatic component assembly.
The aim of this extension is to propose an automatic and
specification-based approach for constructing composite ser-
vices from existing ones, which are discovered from a service
repository. We instantiate the proposal in the context of
web services. This work has to be considered as an ongoing
work. In this paper, we also raise some research questions
concerning the current gap between what we are able to do
by means of the proposed extension and what still remains
an open issue.

1. INTRODUCTION
Service oriented computing is considered as the paradigm

that will support the new generation of global computers
(i.e., the web, the grid), enabling the flexible interconnection
of autonomously developed and operated applications [1].
This new paradigm leads to take into account a new ap-
proach to software development. That is, a service is not
directly provisioned to its clients (as they refer it at design-
time) but its provisioning is the result of a discovery and
negotiation process that takes place at run-time. In this
paradigm, services are usually understood as autonomous
computational entities that can be described, published, re-
quested, and dynamically composed over the Internet.

Nowadays, the Internet arena is populated by an ever
more increasing number of web services. This has led to
the need for reuse-based approaches to the automatic con-
struction of new services as a correct composition of exist-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESSPE ’07 September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-798-8/07/09 ...$5.00.

ing ones. A composition of services is correct when it re-
spects the Service Level Specification (SLS) specified for the
composite service to be built. Web service composition has
attracted attention from both industry and the academic
communities. BPEL4WS [7] (or simply BPEL) is an XML-
based programming language that can compose web services
manually.

In this paper, we propose an approach to automatically
and correctly compose existing services in order to form a
new (composite) service. The proposal is based on an ex-
tension of our previous work on the automatic component
assembly [2, 8], implemented in the SYNTHESIS tool [3].
The aim of this extension is to propose an automatic and
specification-based approach for constructing composite ser-
vices from existing ones, which are discovered from a service
repository. We instantiate the proposal in the context of
web services.

Our approach assumes the existence of a centralized repos-
itory, such as the UDDI registry [13], for already imple-
mented web-services published over the Internet. Each ex-
isting service, registered in the repository, publishes its SLS.
The SLS defines what the service is and not how it is im-
plemented. It is given in terms of the service signature,
i.e., its WSDL [12], plus possible invariants defined over the
signature’s operations. An invariant specifies a precise busi-
ness logic (i.e., a combination of operation invocations) that
must be respected, by a partner, to correctly interact with
the specified service. For example, it is not possible to per-
form any operation if, before, a login operation has not been
performed. In practice, this business logic is usually given
in form of a BPEL description of the service. As it has
been done for specifying component coordination policies [3]
in SYNTHESIS, within our method, a service invariant is
modeled by means of a Labelled Transition System (LTS)
with an expressive syntax for easily specifying quite com-
plex invariants. Note that, such LTS-based behavioral de-
scription can be derived, e.g., from the BPEL description of
the business logic of the service. Taking into account the
previous assumption, our method takes as input the SLS
of the composite service to be built. As it is done for the
existing services in the repository, this SLS is a signature
(i.e., the set of operation signatures of the composite ser-
vice) plus invariants on the operations. Differently from an
already implemented service (published in the repository),
these invariants are partial (they do not model the whole
BPEL process specifying the business logic of the composite
service). That is, they partially specify the business logic
of the composite service in terms of only a correspondence

Article Number 4
29

between an operation invocation on the composite service
(e.g., a <receive> activity in BPEL) and a combination
of operation invocations on the constituent services (e.g., a
<sequence>, <switch>, <pick>, <flow>, or <while> activ-
ity composition of <invoke> activities in BPEL). What is
missing is the interaction protocol that a customer of the
composite service has to respect in order to correctly use it.

Note that, on one hand, simply giving a correspondence
between a composite service operation and constituent ser-
vices operations does not guarantee that when one uses the
composite service, by performing invocations to its opera-
tions in any order, a business logic violation does not occur
(e.g., deadlock, or more simply, the invocation of an oper-
ation in a state that is not consistent with respect to the
service’s business logic). On the other hand, it is realistic to
assume that, in reusing existing services, the developer of the
composite service has only the sufficient knowledge to make
an operation of the composite service correspond to oper-
ations of the constituent services and he cannot guarantee
the correctness of a more global business logic specification.

The aim of our method is to extend, modify, or partially
reuse SYNTHESIS in order to automatically derive, from
the SLS of the existing services and the (partial) SLS of the
composite service, the correct (with respect to the deadlock-
freeneess and the business logic of the constituent services)
BPEL code of the composite service hence providing a con-
crete and correct specification of its business logic in terms
of interaction with existing services.

This work has to be considered as an ongoing work hence
addressing only a part of the underlining overall problem.
For example, semantic or extra-functional properties of the
composite service are not taken into account and their treat-
ment is considered as future work. In this paper we will also
raise unanswered questions concerning the overall actualiza-
tion of our approach.

The remainder of the paper is organized as follows. Sec-
tion 2 describes, as background, our SYNTHESIS tool for
the automatic and correct component assembly whose adap-
tation to web services is proposed in this paper. Section 3
informally describes, by means of an explanatory example,
our reuse-based approach to the correct and automatic com-
position of web services. Section 4 draws some conclusions,
present few related works, and raises unanswered questions
by discussing also possible future directions.

2. THE SYNTHESIS TOOL
This section introduces SYNTHESIS, a tool for automat-

ically assembling correct and distributed component-based
systems out of a set of already implemented black-box com-
ponents [3]. SYNTHESIS implements our adaptor-based ap-
proaches to component assembly (see [2, 8]).

The implemented approach automatically generates a dis-
tributed adaptor for a set of black-box components. It is
a specification-based and decentralized approach. Namely,
given (a) the interface specification (i.e., the IDL) of each
component, (b) the specification of the interaction behaviour
of each component with its environment, and (c) a specifica-
tion of the desired behaviour that the system to be composed
must exhibit, it generates a set of component wrappers (one
for each component). These wrappers suitably communicate
in order to avoid possible deadlocks and enforce the speci-
fied desired interactions. They constitute the distributed
adaptor for the given set of black-box components.

More precisely, starting from the components’ IDL and
from the specification of the components’ interaction be-
haviour, SYNTHESIS automatically builds a behavioural
model, i.e., an LTS, of a centralized glue adaptor. This is
done by performing a part of the synthesis algorithm de-
scribed in [8]. At this stage, the adaptor is built simply for
modeling all the possible component interactions. It acts as
a simple router and each request/notification it receives is
strictly delegated to the right component. By taking into
account the specification of the desired behaviour that the
composed system must exhibit, SYNTHESIS explores the
centralized adaptor LTS in order to find those states lead-
ing to deadlocks or violating the specified desired behaviour.
This process is used to automatically derive the set of com-
ponent wrappers that constitute the correct1 and distributed
version of the centralized adaptor.

SYNTHESIS supports two possible implementations of
the generated distributed adaptor. One implements the
adaptor’s actual code as a set of COM/DCOM component
wrappers (one for each component). These wrappers act on
the component registries in order to interpose themselves
among the components, intercept their messages, and coor-
dinate them as it has been specified. The other implements
the adaptor as a set of EJB component wrappers. Each
wrapper is developed by using AspectJ to intercept the com-
ponent messages and correctly coordinate them.

The method implemented by the current version of SYN-
THESIS assumes the following data as inputs: (a) the in-
terface specification of the components forming the system
to be built. It is given as a set of IDL files, one for each
component, implementing a server logic; (b) the specifica-
tion of the desired behaviours that the system to be built
must exhibit. It is given in terms of a set of LTSs with a spe-
cific syntax for the transition labels; (c) for each component
(either client or server), the specification of its interaction
protocol with the expected environment. It is an XML file
that encodes an high-level Message Sequence Chart (hMSC).

These three inputs are then processed in two main steps:
(1) by taking into account the inputs (a) and (c), SYNTHE-
SIS automatically derives the LTSs that model the compo-
nent interaction behaviour with the expected environment.
From a component LTS, a partial model of the centralized
glue adaptor is automatically built. It is partial since it re-
flects the expectation of a single component. By “unifying”
all these partial adaptor models, SYNTHESIS automatically
derives the LTS K of the centralized glue adaptor. (2) After
K has been generated, SYNTHESIS explores it looking for
those states representing the last chance before incurring in
an execution path that leads to a deadlock. The enforce-
ment of a specified desired behaviour is realized by visiting
the LTS modeling it (input (b)). The aim is to split and dis-
tribute this LTS in such a way that each component wrapper
knows which actions the wrapped component is allowed to
execute. The sets of last chance states and allowed actions
are stored and, subsequently, used by the component wrap-
pers as basis for correctly exchanging synchronizing infor-
mation when strictly needed. In other words, the generated
component wrappers interact with each other to perform the
correct behaviour of K with respect to deadlock-freeness and
the specified desired behaviours.

1With respect to deadlock-freeness and the specified desired
behaviour.

Article Number 4
30

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1
(WSDL +

BPEL)

WSn
(WSDL +

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service
specification

CWS
(WSDL +

partial
BPEL)

operation
correspondence

vectors

LTScws

composite service
implementation

CWS
(WSDL +

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY

provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout

(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4
31

Step 3:
mismatch prevention

and
correspondence

vector re-application

CWS.login CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

LIB.login | PAY.login

LIB.logout | PAY.logout
LIB.search

LIB.order

PAY.pay

Step 2:
guided parallel

composition

(A)

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.logout | PAY.logout

LIB.search

LIB.search

LIB.order

PAY.pay

LIB.login | PAY.login+

(B)

LIB
LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY
PAY.login PAY.logout

PAY.pay

Step 1:
correspondence

vector application

Figure 4: Method steps

In fact, it says nothing about the interaction protocol
that must be respected by a customer when he invokes the
composite service operations. It just specifies what exe-
cution flow (in terms of operations of the constituent ser-
vices) is triggered once an operation of the composite service
is invoked. By continuing our explanatory example, when
CWS.login is invoked on the composite service, LIB.login
and PAY.login are performed independently as two paral-
lel activities (i.e., the “|” operator). It is done analogously
for CWS.logout. When CWS.getBook is invoked, LIB.search,
LIB.order, and PAY.pay are sequentially performed (i.e., the
“->” operator).

From the WSDL specification of CWS, SYNTHESIS for
web services trivially derives an LTS modelling the most
permissive business logic for CWS, i.e., the one that allows
a customer to invoke the CWS’s operations in any order and
in any execution state (see Figure 3.(A)). It can be seen
as the model of an uncontrolled orchestrator for LIB and
PAY with respect to the operation “entry-points” of CWS. The
uncontrolled orchestrator is not the correct business logic
for CWS, although, e.g., no deadlock occurs. In fact, one
can, e.g., requires to pay for an empty order that, although
non-critical, represents a violation of the indeed business
logic of CWS. To derive the correct business logic, and hence
automatically complete the partially specified SLS of CWS,
our method takes into account the LTSs of LIB and PAY,
and combines them with the three operation correspondence
vectors above specified. This is done in order to refine the
LTS shown in Figure 3.(A) and automatically synthesize a
controlled orchestrator for LIB and PAY with respect to CWS,
whose LTS is shown in Figure 3.(B).

The LTS shown in Figure 3.(B) models the correct and
complete business logic for CWS. From it, SYNTHESIS for
web services, automatically derives the actual BPEL code
for CWS hence automatically completing its partially specified
SLS.

In Figure 4, we show the three steps automatically per-

formed by SYNTHESIS to derive the LTS of CWS, which
models its whole correct business logic.

In the first step, from the most permissive LTS of CWS,
a new LTS is automatically built by rewriting each transi-
tion according to the specified correspondence vectors. Let
us denote this new LTS as CWS′. Then, in the second step,
a kind of LTS parallel composition operator is performed.
This parallel composition takes into account the LTSs of
LIB, PAY, and CWS′. Differently from a classical synchronous
parallel composition operator between LTSs, our parallel
composition deals with “concurrent” actions. For instance,
the action LIB.login | PAY.login of CWS′ must synchronize
with both action LIB.login of LIB and action PAY.login of
PAY hence letting concurrently evolve the LTS of CWS′, LIB,
and PAY. Furthermore, our parallel composition is guided by
CWS′ in the sense that it does not look at all possible non-
deterministic choices. In other words, through this parallel
composition, our method searches for all those traces of CWS′

that can synchronize with traces of LIB and PAY. When a
synchronization does not occur, a transition leading to a sink
state (i.e., a state without outgoing transitions) is produced
(see the white-filled states shown in Figure 4). Each sink
state corresponds to a safety violation of the business logic
of CWS′ with respect to its constituent services (i.e., LIB, and
PAY). The third step performs backwards error propagation
in order to prevent the detected business logic mismatches
(i.e., all the finite traces in the parallel composition are re-
moved). Moreover, during this last step, the correspondence
vectors are re-applied in order to suitably rewrite the actions
in the parallel composition hence obtaining the correct LTS
for the business logic of CWS.

4. CONCLUSIONS
In this paper we proposed an automatic approach to the

correct composition of already implemented web services.
The aim of this composition is to automatically and cor-
rectly build a new web service. The proposed approach can

Article Number 4
32

be seen as an extension and/or adaptation of our existing
tool SYNTHESIS. Currently, SYNTHESIS is not for auto-
matic web service composition but for automatic component
assembly that is a similar problem.

To perform the method described in this paper, we need
to modify our SYNTHESIS tool as follows: (i) replace the
IDL parser with a WSDL parser; (ii) replace the hMSC-to-
LTS translator with a BPEL-to-LTS translator; (iii) mod-
ify the LTS unification algorithm in order to take into ac-
count the correspondence vectors and the new parallel com-
position operator (the backwards error propagation step re-
mains the same); and (iv) replace the COM/DCOM and
EJB model-to-code transformer with a BPEL model-to-code
transformer.

As SYNTHESIS currently is, it might be easily extended
to deal with automatic web services choreography. This is
especially true for the version of SYNTHESIS that, given a
set of EJB components (that can be considered as simple
web service implementations), a behavioral specification for
them (that is similar to consider WSDL + BPEL), and a
specification of the coordination policy (that is similar to
consider BPEL), automatically synthesizes a set of compo-
nent filters, which cooperate in order to prevent deadlocks
and to enforce the specified policy (each filter might be coded
as a choreography layer by using BPEL or WSCI). Although
this apparently easy extension of SYNTHESIS to the auto-
matic web services choreography, in this paper we proposed
something harder to achieve and hence more interesting for
our purposes. It concerns automatic web services orches-
tration. Orchestration, differently from choreography, does
not concern coordinating (in a distribute way) a set of web
services to reach a global goal, but it concerns composing a
set of web services to form a new (composite) service.

Many works have been proposed in the literature for the
automatic service coordination/composition, see [6, 4, 5, 11]
just to mention few ones. Most of them are more focused on
automatic choreography (i.e., coordination). Furthermore,
as far as we know, very few tools have been developed for
automatic orchestration (i.e., composition) in practical in-
dustrial contexts (i.e., web services embedding W3C stan-
dards technologies such as WSDL, BPEL, SOAP).

As already said in Section 1, this paper must be consid-
ered as an ongoing work. We are still a little bit far from
really having available SYNTHESIS for automatic web ser-
vices composition. Open issues that have not been taken
into account in this paper are related to discovery issues.
What kind of semantic information do we have to specify to
support the discovery process of the “most adequate” exist-
ing services? And how do we have to specify that? Further-
more, open issues also concern the possibility to deal with a
more complete, and hence, more realistic SLS, which should
take into account also QoS characteristics of the service to be
built, semantic information for supporting the discovery pro-
cess, resource-awareness or, in general, context-awareness.

Referring to the relevance of the proposed method with
respect to pervasive service-oriented environments, the dis-
covery process should be automatic. This can be achieved
by suitably integrating, e.g., our approach with automatic
schema matching approaches [9, 10]. Moreover, the ap-
proach should be performed at discovery-time, i.e., the com-
posite service equipped with its partial specification wants
to join the Internet arena and hence be published in the
service registry. The discovery of its constituent services

is performed. Then, the automatic orchestration method
proposed in this paper is carried on and the complete and
correct WSDL+BPEL description of the composite service
is derived. Finally, it is published in the registry and the
composite service is ready to be invoked by its customers.

5. ACKNOWLEDGMENTS
This work has been partially supported by the IST EU

project PLASTIC (www.ist-plastic.org).

6. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.

Web Services. Springer, berlin Heidelberg New York,
2004.

[2] M. Autili, M. Flammini, P. Inverardi, A. Navarra, and
M. Tivoli. Synthesis of concurrent and distributed
adaptors for component-based systems. In LNCS
4344. 2006.

[3] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli.
SYNTHESIS: a tool for automatically assembling
correct and distributed component-based systems. In
In proceedings of the International Conference on
Software Engineering (ICSE 2007) - Research Tool
Demos Track., 2007.

[4] A. Brogi, C. Canal, and E. Pimentel. Behavioural
types for service integration: achievements and
challenges. In Electronic Notes in Theoretical
Computer Science, Elsevier, ISSN 1571-0661, 2004.

[5] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing web service choreographies. In Electronic
Notes in Theoretical Computer Science, 105:73-94,
Elsevier. ISSN 1571-0661, 2004.

[6] A. Brogi and R. Popescu. Automated Generation of
BPEL Adapters. In In A. Dan and W. Lamersdorf,
editors, Proceedings of the 4th International
Conference on Service Oriented Computing (ICSOC
06), Springer-Verlag LNCS vol. 4294, pages 27-39,
2006.

[7] IBM. BPEL4WS, Business Process Execution
Language for Web Services, version 1.1,
http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-bpel/ws-bpel.pdf. 2003.

[8] P. Inverardi and M. Tivoli. Software Architecture for
Correct Components Assembly. volume LNCS 2804.
2003.

[9] H. R. M. Nezhad, B. Benatallha, A. Martens,
F. Curbera, and F. Casati. Semi-automated
adaptation of service interactions. In WWW 2007
Web Services Track, 2007.

[10] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB journal,
10:334–350, 2001.

[11] G. Salaun, L. Bordeaux, and M. Schaerf. Describing
and reasoning on web services using process algebra.
In ICWS’04, IEEE Computer Society Press, pages
43–51, San Diego, USA., 2004.

[12] W3C. Web Service Definition Language,
http://www.w3.org/tr/wsdl.

[13] W3C. UDDI technical white paper,
http://www.uddi.org/pubs/lru uddi technical
paper.pdf. 2001.

Article Number 4
33

