
Engineering Mobile Field Worker Applications

Pietro Mazzoleni
IBM T.J. Watson Research Center

Hawthorne, New York, USA
pmazzol@us.ibm.com

Stefan Tai
IBM T.J. Watson Research Center

Hawthorne, New York, USA
stai@us.ibm.com

ABSTRACT
We envision next-generation Field Workers to use interactive
Web applications deployed on sophisticated mobile devices
in order to access remote services and data in support of
their business processes. Engineering such applications re-
quires combining services computing with mobile computing
and end-user oriented Web application development. In this
position paper, we identify the main challenges in this con-
text, and propose a preliminary platform architecture for
application deployment on Field Worker devices that ad-
dresses some of these challenges.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
Field Workers, Mobile Services

1. INTRODUCTION
Services departments in Automotive, Manufacturing, Elec-

tronics and many other industries require “anyplace” ac-
cess to relevant technical information. Anyplace data access
across heterogeneous and changing network environments
ensures that complex tasks can be resolved on-the-spot and
when needed, promising an increase in productivity and cus-
tomer satisfaction. For this reason, companies rely on“Field
Workers” – mobile experts that work on requests from vari-
ous locations.

While this “mobile force revolution” started many years
ago (with the arrival of laptop computers) [6] recent ad-
vances in technology and Web computing introduce new op-
portunities:

• Services computing. As service-oriented computing tech-
nologies mature and gain acceptance [8], the number of
(Web) services accessible by Field Workers increases.
Further, as computers are increasingly embedded in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESSPE ’07 September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-798-8/07/09 ...$5.00.

the machines that Field Workers are asked to fix or
maintain [3], services provided by the machines be-
come available. Field Workers must be able to access
all kinds of services across diverse pervasive environ-
ments and Beyond 3G (B3G) networks. In the Auto-
motive domain, for example, Field Workers may use
both Web-accessible and car services to execute diag-
nostic Engine procedures at a Dealership location.

• Resource“unconstrained”mobile devices. Next-generation
mobile devices are expected to be (nearly) as powerful
as desktop computers. Today, we can already assume
Field Workers to be equipped with small, lightweight
but powerful mobile devices such as Micro PCs 1.

• End-user-oriented Web applications. As the general
population is becoming more and more familiar with
the Internet and the use of Web applications such as
Web 2.0 digital communities, data exchange sites, and
social networks, we expect professionals including Field
Workers to expect and benefit from applications that
offer similar features and follow a similar interaction
paradigm.

Another important consideration in the engineering of Field
Worker applications is the emergence of Services-led Busi-
nesses. In the past, Field Workers were typically directly
hired by a manufacturer; today, manufacturers increasingly
rely on contracted Field Workers. In the latter case, a sin-
gle Field Worker may then work for multiple manufacturers,
with each manufacturer requiring its own set of processes
and standards to be followed, and thus its own set of services
and applications to be used. Further, Field Workers may be
micro-entities (a single or a few person business) and thus
demand applications in support of very small businesses, for
example, applications that simplify and ease customer col-
laboration, contracting, and pricing.

In this paper, we discuss the main challenges in engineer-
ing next-generation Field Worker applications and present a
platform architecture specifically designed in consideration
of the above described opportunities. Our approach is based
on a Service Mediator component that seamlessly accesses
any kind of service (either on the Web or on B3G networks).
We further introduce SOA Widgets as a way to manage a
variety of Field Worker application interfaces and services
interaction patterns.

1A typical Micro PC today runs Windows, has a large HD,
up to 1Gb of Ram, has a screen size of about 5-6 inches,
weights less than 1.4 lbs (600 grams), and can be wireless
connected to both GPS and GPRS networks.

Article Number 12
75

2. OPEN CHALLENGES
We can identify as the main challenges in engineering

next-generation Field Worker applications:
Uniform access to ubiquitous Services: Field appli-
cations have to access and compose diverse kinds of Web
services and data (SOAP, REST, Atom, RSS feeds) that
may be deployed on enterprise servers, be available in B3G
networks, or be deployed on other mobile devices. A uniform
programming and runtime model to access these services is
needed.
Context-Aware Service development: Even though
the notion and use of contexts have been investigated inten-
sively for mobile applications [1, 2], creating a Web Service
whose behavior depends on contextual information is still
a tedious and complex task [4, 5]. For Field Worker ap-
plications, we are less concerned about resource constraints
imposed by different mobile devices, but are interested in
contextual information such as physical location and busi-
ness context.
Consider, for example, the task of selecting a Field Worker
from a set of available workers and assigning him for a pend-
ing job. The semantics of this process can be quite complex
and contextual information such as physical location and
workload of the workers, customer (priority) status, severity
of the issue to be solved, etc may be critical for the deci-
sion making. While there are methods and tools for imple-
menting standard Web Services (for example, given a WSDL
specification, stubs and skeletons are generated), there are
no methods and tools available in support of context-aware
Web Services development.
Data management and visualization: Field Workers
require access to potentially very large sets of data. Thus,
there is a need for implementing effective means for data
retrieval and visualization. For example, large data may be
retrieved via asynchronous messaging, and RFID and GPS
technologies are two examples of contextual information that
can serve as filters for data to be presented.
Again, Field Workers are expected to execute potentially
complex tasks using their mobile device (such as executing
a set of diagnostic procedures to discover the root of a prob-
lem in a car), and thus require appropriate interfaces for
presentation and services interaction.
Mobile Web 2.0: Another important challenge relates to
the use and practice of Web 2.0 technologies [7], and in par-
ticular the creation of dynamic Field Worker networks and
communities for service and data exchange (for example,
communities of all workers in a specific geographic region
or of workers with specific skills) [9]. Applying Web 2.0 to
mobile applications promises to advance communication and
collaboration among workers, and enable community-based
knowledge sharing and joint issue resolution.

3. CLIENT PLATFORM ARCHITECTURE
To address some of the key challenges listed in the previ-

ous Section, we now introduce a client platform architecture
we are building to support the development and deployment
of Field Worker applications. Our solution applies in general
to any mobile application requiring intensive user interaction
and access to diverse data and functional services.

The architecture is going to be developed in the context
of the PLASTIC project2, a European research project that

2http://www.ist-plastic.org/

addresses the development and deployment of cost-effective
mobile application services across B3G networks.
The client platform architecture is illustrated in Figure 1;
the Figure illustrates the components that are installed on
the mobile device. At the server side, we only assume Web
Services to be available.

At the presentation layer, the SOA-Widgets represent the
user interface elements interacting with the services in the
network. SOA-Widgets make use of modern Web technolo-
gies (such as asynchronous Javascript 3), but, different from
existing solutions, they are specifically built to simplify ser-
vices interactions through XML specifications. More details
on SOA-Widgets will be provided in Section 4.

At the middleware layer, the SOA-Widgets Interpreter an-
alyzes the SOA-Widgets XML specifications and based on
events generated by the user executes one or more of the fol-
lowing actions: running some program (through the Widget
Behavior component); executing a BPEL process (through
the BPEL Engine component), or invoking one or more ser-
vices (through the Service Mediator component).

The Service Mediator component is the core element of the
middleware layer. The mediator is in charge of mediating
the interaction with all services needed by the application;
authentication, system transactions, and managed access to
services available on B3G networks are examples of mediat-
ing functions that can be supported.
Existing middleware such as Apache Synapse4 (a distributed
service mediation framework based on Web services, XML,
and Axis2) can be used to implement the Service Mediator.
In our Field Worker context, we foresee the need to extend
existing mediator technology such as Apache Synapse to me-
diate requests to services on B3G networks. Here, the medi-
ator needs to convert requests from the interfaces supported
by Synapse (WS-* and RESTstyles) to the ones supported
by B3G services and vice-versa.

Finally, at the data source level, we include any services
deployed on the mobile device. Two types of such ser-
vices exist: Context-Services, which expose contextual in-
formation as discussed earlier (e.g., physical location), and
Functional-Services, which provide specific functions needed
by the application (e.g., a Field Worker calendar and agenda
service).

Our client architecture promises to introduce a number
of advantages. First, SOA-Widgets, designed for interactive
service-oriented architectures, promote the reuse of interface
elements across various mobile applications.

Second, the Service Mediator is designed to enable and
guarantee uniform access to any Internet and B3G service.
Third, the Widgets interpreter can significantly reduce the
effort needed by an application developer to write code for
managing services interactions. The idea is to define the
rules for an open library of visual components that every-
body can contribute to, and to make available an engine
which can interpret and compose the components based on
the Services that each mobile application requires.

3In this paper, we intentionally omit the term Ajax because
the programming model used by Ajax is only one of the pos-
sible models that can be used to implement SOA-Widgets
4Apache Synapse is an Apache Incubator project available
on http://ws.apache.org/synapse/

Article Number 12
76

Figure 1: System Architecture

4. SOA-WIDGETS
Next, we discuss in more detail SOA-Widgets, which are

the user interface elements designed for services interaction.
SOA-Widgets are similar to other visual components which

are available today on the Web5. However, SOA-Widgets
are not just another set of visual components, but rather an
approach that can be applied on top of existing Widgets to
interact with Web Services. The approach is quite straight-
forward: each SOA-Widget is built as a template for a spe-
cific XML schema element (the complexity of which depends
on the Widget). An XML specification is used to describe
how the SOA-Widget schema can be bound to the WSDL
types used by one or more Web Services. The XML spec-
ification further contains information for associating events
to the Widget and to execute one or more of the following
tasks: to invoke a Web Service (and recursively render other
SOA-Widgets), to run a program, or to execute a BPEL
script.

Figure 2 and Figure 3 show a simple example of an XML
specification for SOA-Widgets. In the example, a Widget is
used to present data of all gasoline stations in a region6. In
addition, an event has to be associated to the Widget such
that when the user selects one of the entries, another Service
is invoked to retrieve (and present in another Widget) the
number of issues pending at the selected gasoline station.

5Dojo, Rico, Jquery, and Yahoo Widgets are examples of
frameworks offering extensible sets of Widgets to perform
different tasks.
6The data for the example is available
from commercial services such as the Strike-
Iron Gasoline Station Service accessible at
http://www.strikeiron.com/ProductDetail.aspx?p=279

In Figure 2, a Widget called GasTable is defined. The
Widget makes use of WSDL2Table, a SOA-Widget we cre-
ated starting from the Dojo FilteringTable Widget7. WSDL2Table
takes as input any sequence of elements and arranges them
in a sortable XML-spreadsheet. In the specification, a Wid-
get is represented by three elements: <input>, to identify
the source of the data to be displayed, <appearance> to
describe how such data should be displayed, and event to
list the events supported by the Widget. In our example,
the input for the GasTable Widget is the result of the in-
vocation of the GasStationWS Service. The appearance of
the Widget is derived from the WSDL type Supplier of the
same Service (further customization have been omitted for
the sake of readability) and the field <htmlContainer> spec-
ifies the location (HTML container) in the Web page where
the output should be rendered. Finally, a “Click-button”
event is associated to the Widget such that when triggered,
the Service called PendingIssueWS will be invoked.

The XML specification describing the GasStationWS and
PendingIssueWS services is illustrated in Figure 3. Each
Service is described by an ID, and EPR (EndPoint Refer-
ence), and a method. Similarly to the Widget specification,
the input of the Service can be either statically specified in
the specification file (as for GasStationWS) or dynamically
collected as a result of an external event such as the ones
associated to the Widgets (as for PendingIssueWS).

Once the Service has been invoked, its results can be ren-
dered to multiple Widgets (in addition to the one triggering
the invocation). This is the case of the PendingIssueWS Ser-
vice, the results of which are rendered on a different Widget,
called NumIssuesWidget the definition of which will be sim-

7http://dojotoolkit.org

Article Number 12
77

<!- - List of Widgets participating in the page- ->
<Widget id=”GasTable”>
<WidgetTemplate>WSDL2Table</WidgetTemplate>

<input>
<!- - the Widget can be immediately rendered –>
<xml-text/>
<!- - Services to be invoked before renderering the Widget- ->
<service-id>GasStationWS</service-id>

</input>
<appearance>

<HtmlContainer>Area04</HtmlContainer>
<Display>
<!- - This complextype is the one returned from the WS and it can be automatically extracted from the WSDL - ->

<complexType name=”Supplier”/>
</appearance>
<events>

<InternalEvents/>
<ExternalEvents>

<event Id=”click-butt”>
<function> <name>SingleData</name> <parameters>State</parameters> </function>
<serviceId>PendingIssueWS</serviceId>
<BindingFunct>

<name>SingleBindGasToServiceIssue</name> <parameters/>
</BindingFunct>

</event>
</ExternalEvents>

</events>
</Widget>

Figure 2: Widget Specification

ilar to the one described for GasTable.
No additional tasks are required to model our simple ex-

ample. The Widget Interpreter takes the specification, pre-
pares the service invocation (after executing programs and/or
running BPEL processes described in the specification), and
submits it to the Service Mediator. The Service Mediator
will then discover (eventually on B3G networks) the actual
service to be invoked, will convert the request (if needed) to
the interface supported by the discovered service, and will
invoke it. The results are then collected by the Widget Inter-
preter which will decide the program to execute, the BPEL
process to run, and new Widgets to be displayed with their
content and supported events.

The relation between SOA Widgets and Services is N:N.
One Widget can be used to simultaneously render multiple
Services while a Service can be rendered on multiple Wid-
gets. The only restriction is the nature of the Widgets and
the XML schema (and set of events) it supports.

We consider the use of SOA-Widgets to be important for
Field Worker applications. As discussed in Section 2, Field
Workers need access to many data sources and must execute
many tasks on the machines to be fixed. For this reason, a
library of SOA-Widgets specifically built to support Field
Workers activities will be provided as part of our solution.
Among others, we are considering SOA-Widgets to render
both proximity (through RFID) and geographical (through
GPS) information, agenda management, charts, and com-
munity elements such as chats and knowledge forums. In
addition, specific Widgets will be created to manage Diag-
nostic and Resolution protocols which are the tasks needed
to solve a technical issue. The protocol SOA-Widgets will
contain several elements which are customizable according
to services with which they will interact. Specifically, the
protocol Widget considers the following aspects:

• Organization of the process flow structure considering
both sequences, alternatives, and cycles.

• Identification (through proximity) of the various com-
ponents and use of geographical location information

to support parts pricing and availability.

• Interaction with diagnostic instruments (if available)
and logging of testing procedures performed on the
machines.

• Automatic management of time consumed and overall
cost calculation.

• Management of relationships among multiple repair
protocols sharing similar diagnostic procedures and is-
sues to be solved.

In our approach, the library of SOA-Widgets will not be
proprietary but rather open for contributions. Developers
can make available their components to the community and
use the ones shared by others. This approach has proven use-
ful for implementing visual components (e.g.www.dojo.com)
but has not been used for Services components for mobile
applications.

From a technical point of view, the SOA-Widget Inter-
preter has been written completely in Javascript which makes
it usable independently from the framework and the pro-
gramming model used to create the SOA-Widgets. With
this approach, the advances (and the new Widgets) of frame-
works such as Dojo, Rico, and Jquery could be easily inte-
grated with the mobile application.
Notice, the decision to implement everything through SOA-
Widgets or to use them only for Service interaction (and im-
plementing the rest using HTML or any server-based script-
ing language) is left to the application developer. SOA-
Widgets (and its engine) are built as Web components, and
therefore they can be used in different ways. Our client plat-
form architecture however readily supports SOA-Widget-
based application development.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described how advances in services com-

puting and Internet technology together with changes in
business models for Field Workers are promoting a new

Article Number 12
78

<service id=”GasStationWS”>
<!- - Information concerning the service to be invoked- ->
<epr>http://localhost:8008/axis2/services/GasStationWS/</epr>
<operation>http://www.strikeiron.com/GetSuppliers</operation>
<namespace>http://www.strikeiron.com/</namespace>
<input/>

<xml-text>
<ns1:GetSuppliers> <ns1:ZipCode>89104</ns1:ZipCode> </ns1:GetSuppliers>

</xml-text>
<output>

<WidgetId>MyLocationContext</WidgetId>
</output>

</service>
<service id=”PendingIssueWS”>

<!- - Information concerning the service to be invoked- ->
<epr>http:// localhost:8008/axis2/services/GetPendingProxy/</epr>
<operation>GetPendingIssue</operation>
<namespace>http://www.manufacturer.com/</namespace>
<input/>
<output>

<WidgetId>NumIssuesWidget</WidgetId>
</output>

</service>
Figure 3: Service Specification

phase of the “mobile force revolution”. Different from the
past, where most challenges were related to managing offline
activities and executing programs on “resource-constrained”
devices, today a number of other, additional challenges are
emerging. Solutions are needed which combine Services Com-
puting with mobile B3G network computing and enhanced
user interface elements and end-user orientation. To address
these challenges, we presented a platform architecture in-
cluding the SOA-Widget model which simplifies the process
of engineering mobile services applications.

The work presented in the paper is work-in-progress. As a
next step, a more complete formalism for SOA-Widgets will
be prepared and the SOA-Widget Interpreter will be made
available for use and testing. In addition, the architecture
presented in Figure 1 will be refined taking into account
the work done by other partners of the PLASTIC project.
Finally, we aim to improve the development of context-aware
services by extending the well-known WSDL2Java tool to
include contextual information.

6. ACKNOWLEDGMENTS
This work is partially supported by the PLASTIC Project

(EU FP6 STREP n.26955): Providing Lightweight and Adapt-
able Service Technology for pervasive Information and Com-
munication. http://www.ist-plastic.org.

7. REFERENCES
[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on

context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing, pages Vol. 2, No.4 pp. 263 –
277, 2007.

[2] A. K. Dey. Providing architectural support for building
context-aware applications. PhD thesis, 2000.

[3] S. Jin. Ubiquitous service-oriented architrecture. W3C
Ubiquitous Web Workshop., 2006.

[4] P. R. Julien Pauty, Davy Preuveneers and Y. Berbers.
Research challenges in mobile and context-aware
service development. In Proceedings of Future Research
Challenges in Software and Services (FRCSS 06), 2006.

[5] Z. Maamar, D. Benslimane, and N. C. Narendra. What
can context do for web services? Commun. ACM,
49(12):98–103, 2006.

[6] E. NewComer. Mobile orchestration: Using web
services to empower your mobile workforce. Web
Service News, 2003.

[7] T. O’Reilly. What is web 2.0? design patterns and
business models for the next generation of software.
2005.

[8] J. Spohrer and D. Riecken. Introduction. Commun.
ACM, 49(7):30–32, 2006.

[9] S. Tai, N. Desai, and P. Mazzoleni. Service
communities: applications and middleware. In SEM
’06: Proceedings of the 6th international workshop on
Software engineering and middleware, pages 17–22,
New York, NY, USA, 2006. ACM Press.

Article Number 12
79

