
Modernizing Hierarchical Delta Debugging

Renáta Hodován
University of Szeged

Department of Software Engineering
Dugonics tér 13, 6720 Szeged, Hungary

hodovan@inf.u-szeged.hu

Ákos Kiss
University of Szeged

Department of Software Engineering
Dugonics tér 13, 6720 Szeged, Hungary

akiss@inf.u-szeged.hu

ABSTRACT
Programmers tasked with the fixing of a bug prefer working
on a minimal test case where every single bit is needed to
reproduce the failure. However, cutting off the excess parts
of a potentially large test case can be a tedious and time-
consuming task if performed manually, which has led to the
research and development of automated test case reduction
techniques. The decade-old Hierarchical Delta Debugging
(HDD) algorithm targets structured test inputs, parses them
with the help of grammars and applies the minimizing Delta
Debugging algorithm to the built trees.

We have investigated this algorithm and its implementa-
tion, and propose improvements in this paper to address the
found shortcomings. We argue that using extended context-
free grammars with HDD is beneficial in several ways and
the experimental evaluation of our modernized HDD imple-
mentation, called Picireny, supports the outlined ideas: the
reduced outputs are significantly smaller (by circa 25–40%)
on the investigated test cases than those produced by the
reference HDD implementation using standard context-free
grammars. These results, together with the technical im-
provements that ease the use of the modernized tool, can
hopefully help spreading the adaptation of HDD in prac-
tice.

CCS Concepts
•Software and its engineering → Software testing
and debugging; •Theory of computation→ Grammars
and context-free languages;

Keywords
Hierarchical Delta Debugging; Extended Context-free Gram-
mars; Parallel

1. INTRODUCTION
Random test generation, or fuzzing [14], is an increasingly

popular technique, which has become an integral part of the

stability and security testing of various software projects [8].
However, fuzzer-generated failure-inducing test cases tend
to be overly large and contain parts that contribute nothing
to the failure. (The same may hold for non-generated test
cases as well, of course.) However, programmers tasked with
the fixing of a reported bug prefer working on a minimal test
case where every single bit is needed to reproduce the failure.
Cutting off the excess parts of a test case can be a tedious
and time-consuming task if performed manually, which has
led to the research and development of automated test case
reduction techniques.

Perhaps the most well-known and wide-spread automatic
technique is the minimizing Delta Debugging (DD) algo-
rithm of Zeller and Hildebrandt [16, 4, 17]. The algorithm
is theoretically sound and produces so-called 1-minimal test
cases on a selected granularity. However, the selection of the
granularity can cause usability issues in practice. In a typi-
cal use case where DD is applied to a structured text file, the
granularity is either at line or character level. Unfortunately,
character units cause unacceptably long running times very
often while lines can contain complex structures and thus
may result in non-minimal test cases (which are 1-minimal
at line granularity, but not minimal from the viewpoint of
the bugfixing programmer). To overcome this difference in
concepts, Misherghi and Su [9, 10] proposed Hierarchical
Delta Debugging (HDD), which makes use of the structure
of the test case by parsing it with the help of an appropriate
grammar and building an abstract syntax tree (AST). The
minimizing Delta Debugging algorithm is then applied to
the levels of the AST, thus ensuring that the boundaries of
the units the DD is working with do align with the structure
of the file.

Even though the idea of HDD is promising, we didn’t see
it spread in practice. We have investigated related papers
and the reference implementation and found several issues –
some purely technical, some more intricate – that might have
hindered its usage. These findings have led us to modernize
HDD, and the result of that work is presented in this paper.

First, in Section 2, we briefly overview Hierarchical Delta
Debugging, both ideas behind it and the reference imple-
mentation, and then in Section 3, we describe how to deal
with the identified issues and introduce Picireny, the mod-
ernized HDD implementation. In Section 4, we evaluate our
approach on three test cases. In Section 5, we discuss re-
lated work. Finally, in Section 6, we give a summary of our
work and conclude the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

A-TEST’16, November 18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4401-2/16/11...$15.00
http://dx.doi.org/10.1145/2994291.2994296

31

Figure 1: Architecture overview of HDD (user-provided elements marked with grey background).

Listing 1: The Hierarchical Delta Debugging Algo-
rithm
1 procedure hdd(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes 6= ∅ do
5 minconfig ← ddmin(nodes)
6 prune(input tree, level,minconfig)
7 level← level+ 1
8 nodes← tagNodes(input tree, level)
9 end while

10 end procedure

2. HIERARCHICAL DELTA DEBUGGING
In their first paper [9], Misherghi and Su define HDD as an

iterative algorithm on trees representing hierarchical inputs
(parse trees). The HDD algorithm applies minimizing Delta
Debugging to each level of a tree starting from the top and
progressing downwards. For the sake of completeness, we
give the verbatim copy of the pseudocode formulation of
HDD in Listing 1.

In a subsequent work [10], Misherghi realizes that pruning
a tree during and after DD (i.e., handling subtrees rooted at
nodes that are not kept in a configuration by DD) may be
more complex than simply omitting the corresponding parts
from the input. In order to ensure the syntactic validity of
a test case, non-kept nodes (together with their subtrees)
should be replaced by the smallest allowed syntactic frag-
ments. For context-free grammars, a fix-point algorithm is
given to compute minimal length strings for non-terminals.
These minimal strings can act as replacements of inner tree
nodes built by a corresponding parser.

Even if the HDD algorithm is general – i.e., no restric-
tion is placed on how the tree it is working on is built –,
its discussion and evaluation, and especially the minimal
replacement string computation are greatly tied to context-
free grammars. Unfortunately, as even the original authors
note, context-free grammars use recursion to represent lists,
which yields heavily unbalanced trees. This property does
not only increase the number of iterations in HDD but also
has an effect on the size of the reduced test case.

The HDD algorithm has only one reference implemen-
tation available1 written mostly in Python 2 and utilizing
Zeller’s DD routine2, with flex and bison-generated native

1http://www.gmw6.com/src/hdd.tgz
2https://www.st.cs.uni-saarland.de/dd/DD.py

lexer and parser routines bound to the Python code with the
help of the SWIG interface compiler, and minimal parser
rule computation supported by an ANTLRv2-based algo-
rithm. This quite heterogeneous component list – with some
very outdated elements – not only makes the dependencies
of the project hard to fulfill but also complicates its us-
age. As depicted in Figure 1, making the project operational
requires several preparatory steps involving flex and bison
invocations and the building of a shared library, which is
unusual (or at least inconvenient) in the case of a Python
project. Moreover, when the build step finishes, the user of
HDD also has to provide a module (e.g., one with a com-
mand line interface) that connects and drives all components
of the system.

Finally, although the project is flex and bison-based, its
grammar file format is – strictly speaking – incompatible
with those tools. Albeit the parser rules are to be defined
in bison format, they have to be combined into a single file
with lexer rules. Moreover, lexer rules must be composed of
regular expressions and their manually computed minimal
replacement strings. All this means that even if flex and
bison grammar rules are available for a given input format,
they cannot be put to use without potentially considerable
efforts of preprocessing.

3. PICIRENY, THE MODERNIZED HDD
Now, we discuss how to deal with the shortcomings iden-

tified in the previous section. First of all, we argue that in-
stead of standard context-free grammars, extended context-
free grammars (ECFGs) should be used for parsing inputs
and building the input trees. Extended context-free gram-
mars allow the right-hand side of rules to be regular ex-
pressions over terminals and non-terminals, i.e., alternation
operators, groupings, and quantifiers (?, *, +) may appear.
While extended context-free grammars describe exactly the
context-free languages, just like standard context-free gram-
mars do, the quantifiers allow the omission of recursive rules
for list-like structures, and this results in much better bal-
anced parse trees.

Using ECFGs requires the adaptation of the minimal re-
placement string computation algorithm to production rules
with regular expression right-hand sides. We don’t give the
formal definition here, but informally mention that the al-
gorithm has to consider the right-hand side of every rule as
an expression tree where internal nodes represent concatena-
tion, alternation and repetition (quantifiers), while the leafs
are the terminal and non-terminal symbols of the ECFG.
By recursively walking such an expression tree, the mini-
mal string for a concatenation node can be calculated as

32

Figure 2: Architecture overview of Picireny.

the concatenation of the minimal strings of its children, for
an alternation node as the minimum of the minimal strings
of its children, for a + quantifier as the minimal string of
its single child, and for * and ? quantifiers as the empty
string. With this extension, the original fix-point iteration
algorithm can handle the proposed extended context-free
grammars as well. A fortunate side-effect of this extension is
that because the tokens of parser grammars given as ECFG
tend to be given with regular expressions over characters
themselves, the extended minimal replacement calculation
algorithm can be used for lexer grammars as well.

Another important effect of the use of ECFGs is that when
a node in a parse tree in not kept by DD, its smallest al-
lowed syntactic fragment is not necessarily the minimal re-
placement string calculated for the corresponding terminal
or non-terminal grammar symbol, but it can be the empty
string when that particular parse tree node corresponds to
a quantified part of the production rule of its parent node.

In a Python 3 package named Picireny3, we have imple-
mented the above outlined algorithmic changes, making use
of Picire [5], an improved implementation of the DD algo-
rithm, and ANTLRv4 [11], a parser generator tool that al-
lows the specification of grammars in extended context-free
form. In addition to the changes in the algorithms, we took
care to avoid the usability issues of the original implemen-
tation. First, we have made the system as homogeneous as
possible, i.e., except for the Java-based ANTLR command
line tool, all components are purely Python 3-based (even
the lexers and parsers generated by ANTLR). Thanks to the
dynamic nature of the Python language, no preceding build
step is needed when an input needs to be reduced, as Pi-
cireny can invoke ANTLR on its grammar and dynamically
load the generated lexer and parser during runtime. More-
over, a convenient command line interface is included in the
package along with the API to facilitate its use in practice.
The overview of the architecture of Picireny is presented in
Figure 2.

As we had serious struggles with the original implemen-
tation when it came to the grammar specifications, we took
extra care to stay format-conforming in Picireny. As we
will also show in Section 4, our system can be used by sim-
ply downloading existing grammars from the public reposi-
tory of ANTLR without any further need for manual edits,
file concatenations, etc. As both lexer and parser rule re-
placements can be automatically calculated now, the manual
specification of lexer rule replacement strings is not neces-
sary anymore. However, if users still wish to override au-

3https://github.com/renatahodovan/picireny

Listing 2: Java test case reduced by HDD
1 final class a { ; a a () { ; a = 0 / 0 ;

; ; ; ; ; ; } ; ; ; ; ; ; }

Listing 3: Java test case reduced by Picireny
1 class a
2 {
3 void a ()
4 { a =a / 0;
5 }
6 }

tomation, they can do so by providing a separate replace-
ment description file.

Last but not least, we mention one more useful techni-
cality. Sometimes a single grammar is not enough to de-
scribe the structure of an input. E.g., complex web pages
composed of various HTML, style and script parts cannot
be correctly (or completely) parsed by an HTML grammar
only. Even in the best case, the HTML lexer would recog-
nize all the styles and scripts as single tokens, losing their
internal structures and thus losing granularity as well when
it comes to the HDD algorithm. Similar examples are reg-
ular expressions, URLs, paths, macros, JSON strings, etc.
that are included in various host languages. To deal with
such inputs, we have prepared Picireny to support so-called
island grammars and allow the user to define those lexer to-
kens of the host grammar that incorporate structured con-
tent adhering to different rules. After building trees from
these tokens by the island parsers, their roots are plugged
into the main parse tree in place of the original terminal
node.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results obtained

during the evaluation of our modernized implementation Pi-
cireny. Our platform during the experiments was a quad-
core Intel Core i5 CPU clocked at 2.80GHz equipped with
20GB RAM. The machine was running Ubuntu 15.10 with
Linux kernel 4.2.0.

Our primary goal in the evaluation was to compare the re-
sults of our tool with the reference implementation of HDD.
First, to have a fair comparison, we took the only publicly
available test case that was used for the evaluation of HDD
by its authors. The test case, Java source code, contains an
expression that ends in a division by zero. The interesting-
ness criterion for reduction is based on this division but it
ignores semantic errors. Informally, this means that a test is
considered failing if it contains the string ‘ / 0’ but it is not
actually passed to the Java compiler, thus class, method, and
variable identifiers may be replaced incorrectly. The original
archive contained all the needed resources along the test in-
put, e.g., the bison grammar and the minimal replacements
of the lexer tokens were available. As the official ANTLR
grammar repositories4 also contain a grammar for Java, the

4https://github.com/antlr/grammars-v4

33

Listing 4: Bison parser rule for Java block
1 block
2 : block_begin block_end
3 | block_begin block_statements block_end
4 ;
5
6 block_statements
7 : block_statement
8 | block_statements block_statement
9 ;

Listing 5: ANTLR parser rule for Java block
1 block
2 : ’{’ block_statements* ’}’
3 ;
4
5 block_statements
6 : local_variable_declaration_statement
7 | statement
8 | type_declaration
9 ;

test case could be executed with both tools. Listing 2 con-
tains the reduced test case produced by HDD, while Listing 3
is the output of Picireny.

Although the results are similar, we can still observe some
differences. First, Listing 2 contains everything in a single
line, while Listing 3 is split into multiple lines, better reflect-
ing the layout of the input file. This comes from a difference
in the unparsing methods, i.e., how kept nodes of a tree are
written to an output file (while HDD joins every kept token
with a single space character, Picireny tracks the type of
whitespaces (if any) that separate tokens in the original in-
put and uses that knowledge in the unparse step). Second,
the result of HDD contains many extra semicolons, which
are absent from the output of Picireny. Ultimately, this is
rooted in the different types of context-free grammars (stan-
dard and extended) used by the two approaches and the
parse trees built from them. Listings 4 and 5 show excerpts
of parser grammars of the Java language. In both gram-
mars, the block statements rule is responsible for recogniz-
ing the contents of a compound statement. However, while
it is expressed as a left-recursive rule for bison, it is a non-
terminal that appears *-quantified in the right-hand side of
the block rule in the ANTLR version. Therefore, although
the minimal replacement string for block statements is a
single semicolon in both grammar variants, the extended-
context free grammar-based Picireny can replace the non-
kept *-quantified subtrees with the empty string while HDD
using the standard context-free grammar concepts is obliged
to keep the semicolons. (Third, we may observe that the
denominator of the division by zero is different in the two
results. However, this is nothing algorithm-specific. Be-
cause of differences in grammar structures and in the order
of rules, the two approaches find different minimal replace-
ment strings for the left-hand side of the division expression;
but both approaches find a single character replacement.)

In addition to inspecting the outputs, we compared some
metrics of the two reduction processes, too. We have mea-

Table 1: Java example
HDD Picireny

Input
source

Lines 489
Bytes 18804

Non-ws chars 13269

Output
source

Lines 1 6
Bytes 98 37

Non-ws chars 39 23

Input
tree

Height 252 35
Terminal nodes 5390 5937

Non-terminal nodes 36802 8821

Output
tree

Height 44 21
Terminal nodes 1 1

Non-terminal nodes 43 20
Non-empty non-kept nodes 27 14
Executed tests 82 50

Time (s) 15 9

sured the size of the inputs and outputs in various ways,
the number of executed tests and the overall time needed
by the tools to perform the reductions. We have investi-
gated both the non-structured size metrics (i.e., the number
of lines, bytes, and non-whitespace characters) of the input
and output files, and as both tools build trees in a similar
way, we have measured the height of the trees, and the num-
ber of terminals (leaves) and non-terminals (inner-nodes) in
the trees as well.

The results are presented in Table 1. As the Output source
section and the output listings show, there is not much dif-
ference between them. However, the Input tree category, the
dimensions of the built trees are different. The HDD tree
is more than 7 times higher than the Picireny version, con-
sequently it contains much more non-terminal nodes. This
variance is a straight consequence of the way repetitions are
expressed by the grammars.

The Output tree section of the table shows details about
the final trees. Terminal nodes and Non-terminal nodes de-
note the number of kept nodes, while the fourth entry, the
Non-empty non-kept nodes, gives the number of nodes (ei-
ther terminals or non-terminals), that are marked to be re-
moved but have a non-empty minimal replacement string.
This data has to be taken into consideration since these
nodes also contribute to the final output. As it turns out
that both implementations keep only a single terminal node
in their output tree, the difference in the number of non-
empty non-kept nodes becomes highly important.

As the next evaluation step, we took failing test cases
from real life. The chosen tests caused assertion failures in
the rendering engine of Google Chrome at revision 402879.
For the evaluation, we used a debug version of the so-called
content shell component, which is a minimal browser built
on top of the rendering engine of Chrome.

Our first test case was an HTML file with styles and
scripts included. However, the failure was only caused by
an unexpected structure of three HTML tags although the
size of the whole test case was more than 30KB. To perform
the reductions and the comparison, we ran both HDD and
Picireny with HTML grammars only. Since this target was
not provided with the published HDD implementation, we
had to perform the preparatory steps ourselves. This step
included the quest for an HTML bison grammar and the

34

Table 2: HTML example
HDD Picireny

Input
source

Lines 662
Bytes 31173

Non-ws chars 27660

Output
source

Lines 1 1
Bytes 478 238

Non-ws chars 319 238

Input
tree

Height 2934 101
Terminal nodes 3806 1123

Non-terminal nodes 3638 1359

Output
tree

Height 70 96
Terminal nodes 11 3

Non-terminal nodes 86 97
Non-empty non-kept nodes 59 214
Executed tests 203 263

Time (s) 1872 2631

refactoring of an HTML lex grammar to suite the needs of
HDD. To run Picireny, again, we only had to download the
HTML grammar from the official repository. The details of
the various runs are shown in Table 2.

The input test contains 662 lines and more than 30KB
data. The built trees show the same pattern as observed
at the Java example, i.e., the tree built by HDD is much
deeper and hence it contains more inner nodes. Consider-
ing the outcomes, the result of HDD with 478 bytes is two
times larger than Picireny’s 238 bytes, even if they only cor-
respond to 1.5% and 0.7% of the original input. The reason
behind the difference is the difference in the grammar struc-
tures, again, although not completely in the same way as
for the Java example. Unlike the ANTLR variant, the bison
version of the HTML grammar does not require the open-
ing and closing tags to be paired, ending up in independent
removals and leaving several closing tags behind. Another
interesting observation is the number of executed tests. In
this case, HDD outperformed Picireny since it executed 60
tests less. The grammars explain this difference too, but
not in a way that would make any of them superior to the
other. Representing the same input with trees of highly dif-
ferent shapes will naturally place the units of the input (and
so the failing-inducing parts) to different places. It would
be possible to tweak the input to have the failure-inducing
part higher up or deeper down the tree for both grammars,
and thus force them to reach the final result sooner or later,
respectively.

For the sake of a fair comparison, Picireny was executed
in single-process mode in the previous tests even though
it is able to execute tests in parallel (as it is built on the
Picire DD implementation). However, when exploiting the
parallelization capability and running 4 tests in parallel, we
could reduce the running time by 31%, to 1810 seconds,
and achieve the same reduced output. With this speed-up
Picireny could outperform HDD.

In our third experiment, we wanted to evaluate the is-
land grammar support of Picireny (and as a fortunate side-
effect, we also discovered its error tolerance). The chosen
test was also written in HTML and contained style (CSS)
and script (JavaScript) definitions. However, in this case
not only the HTML but also the style and script sources
were contributing to the failure. Using only one grammar

Listing 6: Minimized multi-language test case
1 <head><a>
2 <script>window.onload = function() {
3
4 document.execCommand (’selectAll’)
5 document.designMode = ’on’
6 document.execCommand (’indent’)
7 } </script><style>
8 *, metadata:first-letter {
9 will-change:a

10 }
11 * {;
12 position: fixed
13 } </style>
14 </head><html ><a><body ><a><a><a><a ><a

><a><metadata >­�A1Lc
</body></html>

Table 3: HTML & CSS & JS example
Picireny

Input
source

Lines 756
Bytes 29610

Non-ws chars 26817

Input
tree

Height 48
Terminal nodes 5665

Non-terminal nodes 8185

Output
source

Lines 14
Bytes 359

Non-ws chars 327

Output
tree

Height 33
Terminal nodes 52

Non-terminal nodes 144
Non-empty non-kept nodes 70
Executed tests 1014

Time (s) 3603

would have recognized these inline fragments as single to-
kens and since they could not have been removed as a single
unit, they wouldn’t have been changed – i.e., reduced – at
all. Moreover, the test case was generated randomly and it
contained syntax errors, which made it impossible to parse
and reduce it with HDD, as the used grammar expected the
original test case to be syntactically correct. Because of the
above issues, we could not manage to execute HDD for this
test case. Another comparison baseline could have been a
simple line-based DD reducer, but because of the random
generated nature of the test, most of the HTML part was
on a single line, leaving no chance for DD to reduce it and
also making DD-based comparisons pointless.

Since we couldn’t compare Picireny to any other tool in
this case, we feel it is fair to use parallelism and other im-
provements. Beside running 4 workers, we have configured
the underlying DD algorithm according to the suggestions
in Hodován and Kiss [5], and so we ran only complement
tests. The minimized test case is shown in Listings 6 and
the metrics of the reduction are presented in Table 3. As the
figures show, the test case was squeezed from 29610 bytes
to 359 bytes, which is only 1% of the original file. In this
evaluation, we had to run 1014 test cases in an hour.

35

5. RELATED WORK
The majority of automated debugging techniques can be

sorted into two categories. The first approach, just like this
work, focuses on the failure-inducing input and tries to find
its smallest relevant subset that still produces the expected
failure. The other approach is a code-centered solution that
tries to reduce the amount of relevant statements contribut-
ing to the failure.

Probably the best known technique of the first category
is delta debugging [16, 4, 17], which iteratively splits up
the input into smaller pieces with increasing granularity and
greedily chooses from them until it finds a 1-minimal subset
that still produces the expected failing behavior. In spite of
its simplicity, it became a widespread method for debugging
that motivated many researchers to improve it further. Its
main drawback is that sometimes hundreds or even thou-
sands of test cases need to be executed until the final 1-
minimal test case is found, which is highly time-consuming.
A plausible way of lowering the number of test executions is
concentrating on those cases only that fulfill various levels of
syntactical requirements. The first related work was delta5

that processed inputs with C/C++-like structures using the
topformflat tool and put syntactically related tokens on one
line before applying the DD algorithm to the input with
line granularity. To generalize this approach, Misherghi and
Su [9, 10] suggested to parse the inputs with appropriate
language grammars and perform splitting along the bound-
aries of matching rules. This resulted in an order of mag-
nitude less test cases than the original approach. Zhiqiang
and Xiangyu have developed a technique [7] to reverse en-
gineer input syntactic structures from executions and used
this structure as the input of HDD, eliminating the need for
a grammar of the input.

Another input-centered solution, that also operates with
grammars is SIMP [1]. Contrary to HDD, SIMP uses the
language grammars not only for parsing, but also for ana-
lyzing the built AST. As a result of this analysis, SIMP can
identify syntactically interchangeable subtrees and it has a
strategy to efficiently replace them with each other without
breaking the syntactical correctness. Although its primar-
ily goal is to improve the reduction of failing database test
cases, the idea can be adapted to other languages too.

C-Reduce [12] is a modular reducer developed for C/C++
sources. During reduction, it iteratively performs source-to-
source alternations on the test. The transformations im-
plement such operations that a skilled developer would do
while manually executing the minimization, e.g., replacing
constants, removing balanced parentheses, removing unused
variables, etc. As a result, the authors report reaching 25
times speed-up in the reduction of C/C++ sources over
other public tools.

Beside semantic improvements, there was room for tech-
nical trade-offs too. One example is the Lithium project6,
which is a clean-room and simplified implementation of the
original DD algorithm. Another similar tool is Picire [5],
which beside leveraging the technical progress of hardware
in the last decade and parallelizing the minimization process
of the original DD algorithm, also revealed such tweaks in
DD that could significantly improve its efficiency without
changing the 1-minimality of the results.

5http://delta.tigris.org/
6http://www.squarefree.com/lithium/

The solutions falling in the code-centered category try to
identify those statements of the failing application that are
responsible for the failure. These approaches are usually
based on program code analysis, slicing being the most wide-
spread technique among them, either by using its static [15]
or dynamic version [6, 18, 3]. Renieris and Reiss [13] use
program spectra for fault localization. They expect to have
many correct runs of a program beside the one failing in-
stance. During reduction, faulty and correct versions are
ran in pairs while monitoring and comparing the executed
program entities and identifying the likely faulty statements.

Penumbra [2], which uses dynamic tainting to find the fail-
ure inducing input, combines the ideas of the two categories
reviewed above. It tracks the flow of inputs along data and
control dependencies at runtime and uses this information to
identify the failure-relevant parts of inputs after the failure
has happened.

6. CONCLUSIONS
In this paper, we have investigated the decade-old HDD

algorithm and its implementation, and proposed improve-
ments to address their shortcomings. We have found that
although HDD itself is not strictly dependent on how the
tree it is working on is built, both its discussion and its
reference implementation are tied to standard context-free
grammars. We have argued that using extended context-
free grammars for HDD is beneficial in several ways, as the
use of quantifiers in the right-hand side of grammar rules in-
stead of recursive rules yields more balanced parse trees and
enables an improved strategy for “smallest allowed syntactic
fragment replacement”, which in turn can result in smaller
output. In addition to the grammar-related proposals, we
have pointed out practical issues that hinder the use of the
reference implementation. All the enhancement ideas and
usability improvements are embodied in a modernized HDD
implementation tool called Picireny.

The new implementation

• uses ANTLRv4 grammars supporting extended context-
free grammar notation,

• is more homogeneous than its predecessor (containing
only two language dependencies, Python and Java),

• implements minimal string replacement calculation for
lexer tokens as well,

• supports island grammars for inputs with multi-language
structures,

• uses standard grammar file formats and has easy access
to already available grammar definitions,

and thus – because of its ease of use – it can hopefully help
spreading the use of HDD in practice.

Experimental evaluation of Picireny supports the grammar-
related ideas outlined in this paper: its reduced outputs are
significantly smaller (by cca. 25–40%) on the investigated
test cases than those produced by the original HDD imple-
mentation using standard context-free grammars (if count-
ing the non-whitespace characters in the result, which metric
is perhaps the least biased by pretty printing strategies or
grammar representations).

For future work, we plan to investigate how the ideas dis-
cussed by Bruno [1], i.e., the identification and movement of

36

syntactically interchangeable sub-trees could be adapted to
Hierarchical Delta Debugging. An adapted approach could
allow the removal of unnecessary parental structures around
failure-inducing subtrees. E.g., in Listing 6, the anchor tags
(<a> and) around the metadata tag, which are basi-
cally the minimized versions of an unnecessary tag structure,
could have been completely removed.

Furthermore, the current HDD algorithm applies DD to
levels of the tree, i.e., it cuts across different branches. Al-
though this approach doesn’t injure any syntactical require-
ments, it can break semantic dependencies. To avoid such
breaks, we could explore and make use of such semantic de-
pendencies in the input. However, it is not only challenging
but would result in losing the algorithm’s language indepen-
dence. Instead, we could heuristically change the order of
the tree traversals to decrease the number of test cases con-
taining semantic errors. Picireny (and the underlying DD
implementation, Picire) has the ability to run DD in differ-
ent directions already, so this is a potential course for future
research as well.

7. REFERENCES
[1] N. Bruno. Minimizing database repros using language

grammars. In Proceedings of the 13th International
Conference on Extending Database Technology (EDBT
’10), pages 382–393. ACM, Mar. 2010.

[2] J. Clause and A. Orso. Penumbra: Automatically
identifying failure-relevant inputs using dynamic
tainting. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis (ISSTA
’09), pages 249–260. ACM, July 2009.

[3] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating
faulty code using failure-inducing chops. In
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE
’05), pages 263–272. ACM, Nov. 2005.

[4] R. Hildebrandt and A. Zeller. Simplifying
failure-inducing input. In Proceedings of the 2000
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’00), pages 135–145.
ACM, Aug. 2000.

[5] R. Hodován and Á. Kiss. Practical improvements to
the minimizing delta debugging algorithm. In
Proceedings of the 11th International Conference on
Software Engineering and Applications (ICSOFT-EA
2016), page (to appear). SciTePress, July 2016.

[6] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155–163, Oct.
1988.

[7] Z. Lin and X. Zhang. Deriving input syntactic
structure from execution. In Proceedings of the 16th

ACM SIGSOFT International Symposium on
Foundations of Software Engineering (SIGSOFT
’08/FSE-16), pages 83–93. ACM, Nov. 2008.

[8] Microsoft Corporation. Security development lifecycle
(verification phase).
https://www.microsoft.com/en-us/sdl/default.aspx.

[9] G. Misherghi and Z. Su. HDD: Hierarchical delta
debugging. In Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06),
pages 142–151. ACM, May 2006.

[10] G. S. Misherghi. Hierarchical delta debugging.
Master’s thesis, University of California, Davis, June
2007.

[11] T. Parr. The Definitive ANTLR 4 Reference. The
Pragmatic Programmers, 2013.

[12] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’12), pages 335–346. ACM, June 2012.

[13] M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. In Proceedings of the 18th
IEEE International Conference on Automated
Software Engineering (ASE 2003), pages 30–39. IEEE,
Oct. 2003.

[14] A. Takanen, J. DeMott, and C. Miller. Fuzzing for
Software Security Testing and Quality Assurance.
Artech House, 2008.

[15] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering
(ICSE ’81), pages 439–449. IEEE Press, Mar. 1981.

[16] A. Zeller. Yesterday, my program worked. Today, it
does not. Why? In Proceedings of the 7th European
Software Engineering Conference Held Jointly with the
7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE
’99), volume 1687 of Lecture Notes in Computer
Science, pages 253–267. Springer-Verlag, Sept. 1999.

[17] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200, Feb. 2002.

[18] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing
long running programs through execution fast
forwarding. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (SIGSOFT ’06/FSE-14), pages 81–91.

ACM, Nov. 2006.

37

