
Combining Eye Tracking with Navigation Paths for
Identification of Cross-Language Code Dependencies

Martin Konopka
Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies
Ilkovičova 2, 842 16 Bratislava, Slovakia

martin_konopka@stuba.sk

ABSTRACT
In recent years, fine-grained monitoring of software developers
during software development and maintenance activities has
increased in popularity, together with use of devices for eye
tracking and recording developer’s biometric data. We look for
everyday application of such data to support developers in their
work. In this paper we discuss an approach to identify potential
code dependencies in source code, even when written in different
programming languages, by combining identification of areas-of-
interest in source code using eye tracking with developer’s
navigation paths. Our plan is to evaluate it with data of developers
working on real development tasks.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation, restructuring, reverse engineering
and reengineering.

General Terms
Experimentation, Human Factors, Measurement.

Keywords
Eye Tracking, Interaction Data, Potential Code Dependencies.

1. INTRODUCTION
For the long time, the prevalent sources of information about source
code were based on static and dynamic analysis of its contents [8],
later supplemented by monitoring a developer in revision control
and task management systems, followed by interaction data from
development tools [15]. External devices, like eye tracking,
webcam, or pressure sensors, further extend possibilities of
monitoring a software developer during software development and
maintenance activities [6]. The first of the two common use case
scenarios for gathering such data is to evaluate a developer herself,
e.g., for ability to comprehend code [1, 9], or her expertise [4, 7].
Here, we focus more on the second use case, and thus on identifying
information about source code that is initially hidden but may be
revealed by means of developer’s activity [10, 11, 15], as an
implicit feedback to source code.

In our work we use eye tracking data and developer’s interactions
in an integrated development environment (IDE) for identifying

source code entities and their connections [8, 12, 13] without
analyzing the code (we use areas-of-interest). Such method may be
used to uncover dependencies between entities in different
programming languages, e.g., a client JavaScript application
referencing a REST web service in C# [16].

2. RELATED WORK
Traditional approaches for identifying code dependencies are based
on syntactic analysis [8]. However, several authors have used
interaction data from an IDE [15], e.g., Mylyn [10], or PerConIK
[3], for identifying connections between source code entities, e.g.,
as interaction couplings [21], traceability links [18, 20], potential
dependencies [11, 12], or recommending next navigation steps [5].
All these works differ in details of used interactions and their
processing. In addition to other use cases for interaction data, e.g.,
assisting comprehension [3, 17, 18], or maintaining mental models
and task contexts [7, 10, 14]; identifying and providing source code
dependencies when syntactic analysis is not possible [11, 12, 16] is
different approach to answer this problem than using dynamic
analysis of source code [16, 19].

Unfortunately, interaction data still lack information whether a
developer reads code when not interacting with it at all [15]. This
inspires authors to employ eye tracking [9, 17, 18] for revealing
developer’s behavior and interest in specific blocks of code [6],
e.g., how she comprehends code [1, 9, 18], debugs code [2, 9], or
even to understand her expertise [4].

3. DEVELOPER’S ACTIVITY AND GAZE
The most common interaction that developers perform within
development activities is navigation in a space of source code
entities, i.e., source code documents, types, or their members. We
may distinguish between these ways to navigate in an IDE:

– Choosing entities in a structural view on source code, e.g.,
project or package explorer, class view, search results, etc.

– Switching tabs of recently opened documents in a code editor,
e.g., sequentially, or directly choosing a document.

– Changing viewport of an actual source code document using
mouse or keyboard, e.g., scrolling in a code editor.

– Jumping between types and their members in source code
using references – requires source code analysis.

Developers arbitrarily navigate in source code, based on their
current task and activity [10, 15], and then perform other
interactions, e.g., comprehend code, solve a problem while
debugging, or maintain client and server code successively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2807561

1057

Figure 1. Example of developer’s gaze in two source code

documents and navigation between them.

Based on that, we expect the source and target entities of a
navigation to be somehow connected, being it syntactically, or even
semantically [11].

Eye tracking technology, e.g., by Tobii (http://www.tobii.com/),
allows us to record developer’s areas-of-interest in a source code
document [18]. In comparison to recording information just about
source and target documents of a navigation, recording developer’s
fixations on lines of code (or blocks) tells us the exact parts of those
documents that she is interested in. Figure 1 shows an example
scenario of a developer exploring one source code document,
interacting with its fragment, then switching to another one, finding
a related fragment, and then going back.

We can get similar, but less-detailed, information about developer’s
gaze from the current viewport of a source code document [5].
However, eye tracking metrics may be later used for detailed
evaluation of developer’s gaze, e.g., pupil size [6].

4. IDENTIFICATION OF DEPENDENCIES
Monitoring developer’s navigation paths and eye tracking provides
us with developer’s implicit feedback on source code. We aim to
employ it to infer existence of potential source code dependencies
[12], e.g., method calls or type references.

As we shown in [11], static dependencies may be inferred from
developer’s interactions. However, we were able to identify
dependencies between source code documents only, not entities
contained in them. We expect that before an attempt to navigate,
developer focuses on a code element related to an element which
she works with right after the navigation. Using developer’s
navigations to traverse a source code space, we connect fixations
between documents. Attempted navigation results in changing the
displayed content in a code editor, and, although a developer has
done even no saccades, she then fixates her gaze on different
content than before. Finally, we expect those specific places in code
to be potentially dependent.

To make our method independent from any syntactic analysis of
underlying source code contents, we use these IDE interactions:

– Navigation between documents – open, switch to, or close.

– Change in viewport of a document – scrolling.

We use actual contents of a document only to infer areas-of-interest
in source code that we represent by the starting and ending lines in
a document. We propose to assign a sequence of the last N fixations
in a source document, and the first M fixations in a target document
(e.g., N=M=10), for each performed document navigation, together
with duration of fixations, dwell time in the target document [11],

and other eye tracking metrics. Then we aggregate fixations
(coordinates on the screen transformed into line and column
positions in source code documents) into area(s)-of-interest, i.e.,
source code elements (possibly blocks of code) as the source and
target places of performed navigation. With this approach we
identify potential dependencies between not just documents, but
more fine-grained source code entities within and between
documents [11, 12]. In the example shown in Figure 1, the areas
underneath fixations 7 and 13 may be potentially dependent.

5. EVALUATION PROPOSALS
To experimentally evaluate proposed approach we collect
recordings of various development sessions in two stages.

In the first stage of experimental evaluation of proposed approach,
we plan to use Tobii Studio with Tobii X60 and TX300 devices for
controlled experiment of a developer studying source code known
to him and editing it. After that, we will manually analyze and
annotate data to explore how the nearest eye fixations in source
code documents before and after a navigation correlate with actual
static dependencies in source code. We expect the navigation
interaction itself to make noise in tracking developer’s gaze in
documents, e.g., checking the list of documents when switching
tabs, or navigating to wrong place.

In the second stage, we equip developers with Tobii X60 or EyeX
devices, together with our tools to record data from them, as well
as to record screencast, and interactions in Microsoft Visual Studio
or Eclipse IDEs [3]. This setup may be more feasible for developers
to track their own software development activities, rather than
being set up in an experiment room [1]. We expect to gather noisy
data of real development scenarios, although unknown to us, and
not repeatable among participants. Optional audio (think aloud)
recording may help us to overcome this problem, as well as asking
developers to textually describe their development sessions. To
avoid developers’ misconceptions on privacy leaks, they will be
selected specifically for the experiment, and will be able to turn off
the recording anytime.

6. DISCUSSION AND CONTRIBUTION
In this work, we use eye tracking data and navigation paths for
identification of potential source code dependencies, independently
from programming languages used. Although navigation paths may
be taken even at random, in many cases, they implicitly reveal static
dependencies in source code [11]. As a result, we identify potential
dependencies even between entities in different languages, e.g.,
JavaScript and C#, C++, Java, etc.

We chose to use eye tracking for our work because it provides finer
data than just recording viewports in code editor [5], and we may
apply eye tracking metrics for weighting and validating identified
potential dependencies [11].

For experimental evaluation we record eye tracking and interaction
data of both controlled and uncontrolled development sessions
using Tobii devices and tools provided by the PerConIK project
(http://perconik.fiit.stuba.sk/) [3]. We see usage of such data also
for other studies, thus we plan to release them to public.

7. ACKNOWLEDGMENTS
This work was partially supported by the Scientific Grant Agency
of Slovakia, grant No. VG 1/0752/14; and it is the partial result of
the Research & Development Operational Programme for the
project “University Science Park of STU Bratislava”, ITMS
26240220084, and the project PerConIK, ITMS 26240220039,
both co-funded by the ERDF.

1058

8. REFERENCES
[1] Bednarik, R., Tukiainen, M. 2006. An eye-tracking

methodology for characterizing program comprehension
processes. In Proc. of the 2006 Symposium on Eye Tracking
Research & Applications. ETRA ’06. ACM, 125-132.

[2] Bednarik, R., Tukiainen, M. 2008. Temporal eye-tracking
data: evolution of debugging strategies with multiple
representations. In Proc. of the 2008 Symposium on Eye
Tracking Research & Applications. ETRA 2008. ACM,
99-102.

[3] Bielikova, M., Polasek, I., Barla, M., et al. 2014. Platform
independent software development monitoring: design of an
architecture. In Proc. of the 40th International Conference on
Current Trends in Theory and Practice of Computer Science.
SOFSEM 2014. Springer-Verlag, 126-137.

[4] Busjahn, T., Schulte, C., Sharif, B., et al. 2014. Eye tracking
in computing education. In Proc. of the 10th Annual
Conference on International Computing Education Research.
ICER ’14. ACM, 3-10.

[5] DeLine, R., Khella, A., Czerwinski, M. et al. 2005. Towards
understanding programs through wear-based filtering. In
Proc. of the 2005 ACM Symposium on Software
Visualization. SoftVis '05. ACM, 183-192.

[6] Fritz, T., Begel, A., Müller, S. C., et al. 2014. Using psycho-
physiological measures to assess task difficulty in software
development. In Proc. of the 36th International Conference
on Software Engineering. ICSE 2014. IEEE CS Press,
402-413.

[7] Fritz, T., Murphy, G.C., Murphy-Hill, E., et al. 2014.
Degree-of-knowledge: Modeling a developer's knowledge of
code. In ACM Transactions on Software Engineering and
Methodology, Vol. 23 Issue 2, Article 14. TOSEM. ACM.

[8] Grove, D., Chambers, C. 2001. A framework for call graph
construction algorithms. In ACM Transactions on
Programming Languages and Systems, Vol. 23 Issue 6.
TOPLAS. ACM, 685-746.

[9] Hejmady, P., Narayanan, N. H. 2012. Visual attention
patterns during program debugging with an IDE. In Proc. of
the Symposium on Eye Tracking Research and Applications.
ETRA ’12. ACM, 197-200.

[10] Kersten, M., Murphy, G.C. 2006. Using task context to
improve programmer productivity. In Proc. of the 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. SIGSOFT '06/FSE-14. ACM, 1-11.

[11] Konopka, M., Bielikova, M. 2015. Software developer

activity as a source for identifying hidden source code
dependencies. In Proc. of the 41st International Conference
on Current Trends in Theory and Practice of Computer
Science. SOFSEM 2015. Springer-Verlag, 449-462.

[12] Konopka, M., Navrat, P., Bielikova, M. 2015. Poster:
Discovering code dependencies by harnessing developer’s
activity. In Proc. of the 37th International Conference on
Software Engineering. ICSE 2015. IEEE CS Press, 801-802.

[13] Krämer, J.-P., Karrer, T., Kurz, J., et al. 2013. How tools in
IDEs shape developers’ navigation behavior. In Proc. of the
SIGCHI Conference on Human Factors in Computing
Systems. CHI ’13. ACM, 3073-3081.

[14] LaToza, T.D., Venolia, G., DeLine, R. 2006. Maintaining
mental models. In Proc. of the 28th International Conference
on Software Engineering. ICSE ’06. ACM, 492-501.

[15] Maalej, W., Fritz, T., Robbes, R. 2014. Collecting and
processing interaction data for recommendation systems.
Recommendation Systems in Software Engineering. Ch. 7,
Springer-Verlag, 173-197.

[16] Nguyen, H. V., Kästner, C., Nguyen, T. N. 2014. Building
call graphs for embedded client-side code in dynamic web
applications. In Proc. of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering. FSE 2014. ACM, 518-529.

[17] Rodeghero, P., McMillan, C., McBurney, P. W., et al. 2014.
Improving automated source code summarization via an eye-
tracking study of programmers. In Proc. of the 36th
International Conference on Software Engineering. ICSE
2014. IEEE CS Press, 390-401.

[18] Sharif, B., Kagdi, H. 2011. On the use of eye tracking in
software traceability. In Proc. of the 6th International
Workshop on Traceability in Emerging Forms of Software
Engineering. TEFSE ’11. ACM, 67-70.

[19] Spasojević, B., Lungu, M., Nierstrasz, O. 2014. Mining the
ecosystem to improve type inference for dynamically typed
languages. In Proc. of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software. Onward! ’14. ACM, 133-142.

[20] Walters, B., Shaffer, T., Sharif, B., et al. 2014. Capturing
software traceability links from developers’ eye gazes. In
Proc. of the 22nd International Conference on Program
Comprehension. ICPC 2014. ACM, 201-204.

[21] Zou, L., Godfrey, M. W., Hassan, A. E. 2007. Detecting
interaction coupling from task interaction histories. In Proc.
of the 15th International Conference on Program
Comprehension. ICPC 2007. IEEE CS Press, 135-144.

1059

