
On Engineering Standards Based Carrier Grade Platforms 
Francis Tam 

Nokia Research Center 
P.O. Box 407 

FI-00045 NOKIA GROUP 
Finland 

francis.tam@nokia.com
  

ABSTRACT 
The remarkable pace of advancement in communications 
technologies and the exponential growth of the market have 
pressured network equipment providers into producing more 
features in products in a much faster rate at lower costs. The 
strategy of buying constituent components instead of building 
one’s own has shown promises in achieving these goals. In this 
paper, we articulate the needs for following standards, and discuss 
the impact and the required changes for engineering a standards 
based carrier grade platform. The focus is on the introduction of 
an availability management middleware, in the form of an off-the-
shelf component, and its impact on the product life cycle. By 
applying and adapting a selection of research results from the 
dependability community, we show that the telecommunications 
industry can benefit and achieve its target of reducing 
development costs. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – life cycle; K.6.3 
[Management of Computing and Information Systems]: 
Software Management – software maintenance, software process, 
software selection; C.4 [Performance of Systems]: reliability, 
availability, and serviceability. 

General Terms 
Design, Reliability, Standardization. 

Keywords 
Robustness, Upgrade. 

1. INTRODUCTION 
The modern telecommunications market is huge and can be 
thought of being made up by three groups consisting of the end 
users, operators and network equipment providers. Figure 1 shows 
how the never-ending challenges of expectations funnel down 
from the end users as requirements onto the operators and then to 
the network equipment providers. 
At the top of the model are the end users. The typical expectation 

from this group is to have new features frequently introduced by 
the operators. These services should also be affordable and 
dependable. 

new features

affordable dependable frequent
introduction

End users

first to
marketcosts

Network
Equipment
Providers

highly
available

scalable
high

performance

low cost flexible

Operators

 
Figure 1 Expectations and requirements 

The second layer represents the operators. They must have low 
implementation and operating costs in order to make their 
services affordable to the end users. The expectation is that the 
underlying communications infrastructure equipment must have 
high performance to cater for the potentially large number of 
service subscribers. Another expectation is the flexibility of the 
network equipment so that new features can be deployed very 
quickly. Scalability, both upwards and downwards, is important 
for the expanding and emerging markets respectively. Last, but 
not least, the network equipment must be highly available because 
it is one of the key factors that has a direct impact on the revenue 
generation for this group. The challenge for this group is to be 
able to respond, in a timely manner, to the diverse market needs. 
At the bottom of the model are the network equipment providers. 
Since their customers are the operators, they have to satisfy the 
long list of requirements and meet the high expectations that have 
been passed downwards. As if this is not enough, the fierce 
competition in this industry pushes this group to have an ever 
shorter time to market, at lower development costs, in order to 
win businesses. 
There are many ways to achieve the goals of reducing 
development costs. For example, by using advanced software 
technology, development process improvement, automatic code 
generation, standardised components are some of the few 
solutions commonly used in the industry. In this paper, we discuss 
the latest trend of exploiting standardised components in the 
carrier grade base platforms construction. We show how the 
product development process has to be adapted, taking into 
account the need for integrating off-the-shelf components into the 
final product. This paper focuses on the software side, in 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
EFTS’07, September 4, 2007, Dubrovnik, Croatia. 
Copyright 2007 ACM ISBN 978-1-59593-725-4/07/09…$5.00. 
 



particular the high availability middleware for carrier grade base 
platforms. This also serves as a case study of how the 
telecommunications industry can apply and benefit from the 
research results produced by the dependability community. 

2. CARRIER GRADE BASE PLATFORM 
The term carrier grade base platform is widely used in the 
network equipment provider community. It refers to a class of 
systems that possess a notable characteristics of high availability. 
This carrier grade quality can be traced back to the early 
telephone switching systems in which continuous operation for 
99.999% of the time was expected. Other properties such as high 
performance and scalability are also attached to this term. As the 
name base platform indicates, this class of systems serve as a 
foundation on which higher level of functionality are 
implemented. In essence, it is an attempt to capture, as much as 
possible, a common set of features that are required for a broad 
range of network element products. Note that a carrier grade base 
platform on its own does not provide any specific 
telecommunications capabilities. The application that runs on the 
base platform would determine what the network element is. 

Figure 2 illustrates an architecture for a carrier grade base 
platform that is commonly used in the industry. At the hardware 
level, redundant communication networks are used. For example, 
redundant interconnect such as Ethernet is used in loosely coupled 
systems, while replicated backplane bus structure is utilised in 
closely coupled implementations. The interconnected nodes 
typically contain hardware resources such as CPUs, Network 
Processors, Digital Signal Processors, disk storage and switches. 

Applications

Hardware

DSP

Operating System

Carrier Grade Extensions of                    
Platform

High Availability 
functionality

NPCPUCPUCPU

Redundant 
Interconnect

NP – Network Processor DSP – Digital Signal Processor
 

Figure 2 Carrier grade base platform architecture 
The operating system controls all the hardware resources and 
provides an abstract view upon which software can be written. 
One of the key benefits of having the operating system layer is 

that the software above this level can be decoupled from the 
hardware. This is of particular advantage when we consider the 
typical scenario that members of a product family essentially have 
a similar set of features, and yet due to the usage in the field the 
capacity requirements and expected price range for the customers 
could be very different. The operating system layer ensures that 
the software does not tie to a specific kind of hardware. As and 
when a less powerful, hence less expensive hardware is used for a 
particular configuration of a product, the higher level software 
can be ported to the new hardware environment with relative ease. 
The high availability function provides support for the capabilities 
such as the provisioning of protective redundancy in different 
models, for example active standby, N+M depending upon the 
application requirements. Another group of functions is fault 
management, which involves the detection of faults and sending 
of notifications to the concerned parties for possible recovery. 
Finally load balancing and sharing are typically considered in this 
category as most of these schemes tend to exploit the inherent 
redundant resources in the system during the error free periods of 
operation. This collection of features essentially delivers the 
carrier grade characteristics to the platform. 
The carrier grade extensions usually contains those functions that 
are commonly used in the telecommunications domain. For 
example, signalling protocol stacks, alarm management, 
performance management, configuration management, directory 
services, to new just a few. Although these extensions provide the 
base platform with telecommunications system specific functions, 
the particular application that run in the platform would turn the 
base platform into a concrete network element. For example, if 
the application is a Serving GPRS (General Packet Radio Service) 
Support Node (SGSN), the resulting platform would therefore 
become a SGSN network element in the packet switched domain 
in the Public Land Mobile Network. On the other hand, if the 
software is a Gateway GPRS Support Node (GGSN) the final 
product would become a GGSN network element instead. 

3. PRODUCT LIFE CYCLE 

3.1 Simplified Model 
We have adopted a product life cycle model from [2] to facilitate 
discussions in this paper. It has four phases: specification, design, 
production and operation. It is assumed that the requirements, 
mainly expressed in natural languages as needs, have been 
captured prior to the specification phase. 

The outcome of the specification phase is essentially a contract 
defining the mission (functional characteristics) describing the 
desired service and its duration of operation, and the non-
functional characteristics dealing with product dependability 
requirements such as reliability, availability etc. 
Design is a process consists of successive steps of transforming a 
specification into a model that represents an abstraction of the 
future product. Each step refines the model from the previous 
step, for example, from a general design to detailed design. 
Sometimes the final step of realisation is included to complete the 
design phase. Hardware and software designs have similar 
processes and means. There are three design levels. First, the 
behavioural level formalises the specification on what the product 
needs to do. Second, the structural level breaks a system down 



into an interconnection of sub-systems. Third, the technological 
level materialises the designed model to an executable system. 
The production phase is the integration of the realised design 
systems with other required products, which are either created by 
the same organisation or bought from outside. The outcome of 
this phase is the created product. 
The operation phase is the duration of time when a product is 
placed in the final environment for use according to its mission. 
Maintenance is needed when actions are performed on the product 
structure during its useful life, either as corrective actions or 
improvements. As a result, the specification may be modified and 
lead to the design of a new version of the initial system. The 
maintenance phase is generally underestimated, especially in 
products where the life duration are longer than their creation 
time. This is especially true in some telecommunication 
deployment. 
We have identified three areas in the product life cycle that 
require attention when engineering a standards based carrier grade 
platform. We are particularly interested in the impact of 
incorporating the carrier grade characteristics on the overall 
product life cycle. In the design stage, the chosen standards must 
naturally be reflected in the overall architecture. In the production 
stage, steps must be taken to ensure that high availability is 
maintained even when off-the-shelf components are used. In the 
operation stage, means must be made available to reduce the 
mean time to repair. We examine each area in turn in the 
following sections. 

3.2 Architecture 
The architecture of a carrier grade base platform shown in figure 
2 is not the result of an accident. It has been refined over the 
years. In the early stages of development, a company typically 
constructed their products in a vertical fashion. In other words, a 
product was built from the application all the way down to the 
hardware. Needless to say, this approach took a considerable 
amount of development time and costs. One popular solution as 
witnessed in the industry is to buy the constituent parts whenever 
possible, instead of building one’s own. In order to prevent from 
being locked in by a single vendor who supplies such a part, the 
use of standardised components is regarded as a risk management 
strategy because there tend to be more than one vendor to choose 
from. In addition, it is very often that one could select the best 
product available. 

As the development of technology used in constructing carrier 
grade base platforms progresses, we have already seen the 
replacement of 1) custom-built processors by their commercially 
available counterparts, 2) proprietary hardware by standards 
based computing elements such as the PICMG’s AdvancedTCA 
[11], and 3) in-house development of systems software by 
standards operating systems such as Carrier Grade Linux [3]. This 
trend of using more and more standardised components continues 
to move upwards to the high availability functionality level. To 
date, the Service Availability Forum’s standards [12] are 
predominant and is striving to become the de facto standard of 
high availability middleware in carrier grade base platforms. 
The Service Availability Forum is an industrial coalition formed 
in December 2001 by a group of communications and computing 
companies working together on open standards for availability 

middleware in the telecommunications domain. Its mission is to 
foster an ecosystem that enables the use of off-the-shelf building 
blocks in the creation of highly available network infrastructure 
products, systems and services. Thus far, the Forum has already 
released several versions of the Application Interface 
Specification and Hardware Platform Interface. 
Figure 3 shows the architecture of the service availability 
middleware. The Hardware Platform Interface (HPI) primarily 
deals with the monitoring and controlling the physical 
components of a carrier grade computing platform. By abstracting 
the platform specific characteristics into a model, an HPI 
implementation provides the users with standard methods of 
monitoring and controlling the physical hardware via this 
abstraction. The Application Interface Specification (AIS) defines 
the capabilities of a high-availability middleware, interfacing with 
applications and the underlying carrier grade hardware platform. 
The AIS abstracts the high-availability characteristics into a 
model upon which an implementation provides standard methods 
to the application developers to respond and manage events such 
as failures. AIS defines an extensive Application Programming 
Interface for both threaded and non-threaded applications, 
supporting synchronous and asynchronous interfaces. 

Applications
Application Interface Specification (AIS)

Hardware Platform
Interface (HPI)

Availability
Management
Framework

Cluster
Membership

Service

Checkpoint
Service

Message
Service

Event
Service

Lock
Service

High Availability Hardware Platforms

Carrier Grade
Operating System

 

Figure 3 Positioning of Service Availability Forum 
middleware 

The availability management and control capability are captured 
in the Availability Management Framework (AMF). AMF is a 
software entity that provides service availability by coordinating 
redundant resources within a logical cluster consisting of cluster 
nodes. From the AMF perspective, an application is structured as 
logical entities known as components. Each of these components 
implements state models and callback interfaces according to the 
standard. 
Additional services, known as AIS Services, have also been 
defined in AIS to support the development of a carrier grade 
system. Cluster Membership Service provides applications with 
the current cluster node membership information. Checkpoint 
Service provides a means to record checkpoint data incrementally 
in order to protect an application against failures. Event Service 
provides an asynchronous communication means between 
multiple publishers and multiple subscribers over an event 
channel. Message Service provides a buffered message passing 
system based on the concept of a message queue, which is 
expected to preserve messages during a switch-over. Lock Service 
provides a means to synchronise access to shared resources 
among application processes on different nodes in a cluster. 



By using AIS as the high availability middleware, an application 
can now focus on the functionality of the network element. In 
addition, as and when the same application is required to be 
ported to another hardware platform, the needed changes would 
be minimal. 

3.3 Dependability Benchmarking 
Fault prevention and fault removal techniques are generally used 
throughout the product life cycle. In the production stage, this 
means that some forms of assessment must first of all be carried 
out to determine if the carrier grade requirements have been met 
in the currently realised subsystems. If there are still residual 
faults they must be removed before proceeding to creating the 
final product. In software, this involves not only the application, 
but also the run-time environment and other off-the-shelf software 
components. Since the latter are third party software, their 
development cycle are however outside of our control. As such, 
other means must be used in order to ensure that the selected 
products are indeed dependable. 

The benefit of having open standards is the choices available from 
different vendors. In practice however, when one chooses a 
product from a pool of suppliers robustness is very often over 
shadowed by performance. The "seems to work well" criterion is 
typically the most commonly used without any further 
consideration of the robustness of such an implementation. Worse 
still, the crashing or hanging of such a third party software causes 
the whole system to fail, too. The challenge here is to develop the 
appropriate technology for measuring and comparing robustness 
of off-the shelf software in order to support the product selection 
process. 
Figure 4 shows the vision of a dependability benchmark machine 
that supports the selection process for a suitable third party 
availability management middleware. The principle is to have the 
dependability benchmarking machine executing a set of 
benchmark suites on a number of off-the-shelf availability 
management middleware products according to some pre-defined 
fault-load and workload. The benchmark suites contain test cases 
that are designed to uncover how the system under test react to 
exceptional inputs and stressful environmental conditions. The 
fault-load and workload are configurable according to the 
requirements exhibited by the specific network element that runs 
on the base platform. The benchmark results for each vendor’s 
implementation can then be compared. 

Results
vendor 1 – 72%
vendor 2 – 89%

...

...
vendor N – 57%

Dependability
benchmarking

machineBenchmark
suite

Fault-load workload

Availability
management
middleware

vendor 1

Availability
management
middleware

vendor 2

Availability
management
middleware

vendor N

 

Figure 4 Vision of dependability benchmarking 
We have designed and implemented a prototype [5] of this vision 
and experimented on three versions of Service Availability 

Forum’s AMF implementations. The test cases are primarily for 
stretching the middleware with exceptional inputs. We have 
automated the generation of test cases directly from the interface 
specification by means of a template-based approach. In addition, 
we have incorporated mutation-based testing into the benchmark 
as a means of improving fault detection on more complex 
scenarios, which usually involve the accumulation of state 
information during a series of calls to the availability management 
middleware. Note that the orderly sequencing of certain calls to 
the availability management layer is a must because the 
middleware is the machinery holding the entire system’s current 
state information. The preliminary results have shown that 
different test methods were able to detect different failures 
successfully. Future work includes establishing a representative, 
configurable workload and fault-load for the dependability 
benchmarking machine for each class of network element 
application. This allows for the tailoring of different measurement 
criteria for different products. 

3.4 Online Software Upgrade 
During the operation stage, maintenance of a network element 
product is one of the key concerns. Nowadays hardware 
technologies have advanced to a point where replacement of 
physical components can be performed without powering off the 
system, thus interruption of service can be avoided. However, 
changing software, whether it is for bug fixing or version upgrade, 
may lead to a potential stoppage due to the need of restarting or 
reloading of data in some cases. Currently, this kind of 
unavailability of service is usually covered by the scheduled 
downtime as stated in the service level agreements between the 
operators and network equipment providers. Due to fierce 
competitions, there is a growing trend for the operators to remove 
this kind of scheduled maintenance time periods altogether. This 
has put demands on the network equipment providers to deploy 
online software upgrade in the field during a product’s operation 
stage. 

Upgrading software online with minimum or no service 
interruption is difficult to achieve. It requires a considerable level 
of support to be put in place. For example, software image 
management for the distribution, installation and configuration; 
version management for the software; control and monitoring of 
the upgrade procedure; and recovery from errors during the 
upgrade, to name just a few. Depending on the application 
requirements, other considerations may include how the upgrade 
should be carried out, for example, by using rolling upgrade or 
split-mode methods. 
Intuitively, online software upgrade interrelates to the protective 
redundancy of a system because it is the redundant resources that 
keep the system running while some parts of it are being replaced. 
Since the carrier grade base platform in this paper uses the 
Service Availability Forum’s availability management 
architecture, it is logical to anticipate that some kind of upgrade 
capabilities be defined by the Forum to work alongside.   Indeed 
the initial direction of a Software Management Framework has 
been reported in [14]. It is based on the notion of extending the 
representation of the types of entities in the system with 
versioning information. An upgrade operation is essentially an 
action to change a particular entity from one version to another. 
Interruption of services can be prevented or minimised by 
cooperating with the Availability Management Framework when 



needed. A means, in the form of XML schema, is provided to 
express how an upgrade should be conducted. The description 
includes what upgrade method should be used (e.g. rolling, split-
mode), what kind of error recovery action should be taken etc. It 
is expected that the Service Availability Forum will release the 
Software Management Framework standards soon. 

4. RELATED WORK 
There are plenty of related work in the general area of high 
availability that have been reported. Due to the space limitation, 
this section only review works that are narrowly linked to the 
development process for standards based systems. 

4.1 Architecture 
In the standards architecture space, the Object Management 
Group’s Fault Tolerant CORBA [6] is the only alternative to the 
Service Availability Forum’s Application Interface Specification. 
Fault Tolerant CORBA is based on the notion of object group in 
which services are replicated according to a selected strategy such 
as request retry, redirection to an alternative server, passive 
(primary-backup) and active replication. Interfaces for the 
replication manager, fault manager (faults detection and 
notification), logging and recovery management have been 
defined. At this high level of abstraction, both Fault Tolerant 
CORBA and AIS provide a very similar solution. However, Fault 
Tolerant CORBA attempts to be generic across wide-ranging 
applications from the enterprise domain to the communications 
and mission critical systems, which have very different 
dependability requirements. As a result, the interface definitions 
do not contain the required support for a specific industry. For 
example, in telecommunications applications, significant amount 
of effort would have been needed to integrate a Fault Tolerant 
CORBA implementation. This is due to the need for an 
application to explicitly interact with the other well established 
standards such as state management, alarm reporting and event 
management in this domain. 

4.2 Dependability Benchmarking 
The Ballista [9] testing methodology was a pioneer in robustness 
testing of off-the-shelf components such as an operating system. It 
was first shown to compare the robustness of 15 POSIX operating 
systems. The approach was then applied to other software 
components such as the CORBA middleware [10] in order to test 
the robustness of the C++ client side exception handling 
capabilities on two major versions of three ORB implementations 
on two operating systems. 

DBench [1] was a 3-year research project on dependability 
benchmarking funded by the European Commission under the 
Information Society Technologies Fifth Framework Programme. 
The project has developed a framework and guidelines for 
defining dependability benchmarks for off-the-shelf software 
components. The specific application areas covered were 
automotive control systems, onboard space control and enterprise 
systems. 
The dependability benchmarking approach discussed in this paper 
has been, to a large extent, influenced by the fundamental 
approach of Ballista and an adaptation of the DBench framework 
and guidelines to the off-the-shelf availability management 
middleware for the telecommunications domain. 

4.3 Online Software Upgrade 
One popular means of upgrade used in standards based systems is 
RPM (Redhat Package Manager) under the Linux Standard Base 
specifications [4]. It defines the format which is necessary to 
resolve compatibility and dependency issues. Together with the 
corresponding utilities, it handles the distribution and installation 
of new software. However, it does not address any of the 
procedural aspects of upgrades. 
The Open Group’s Distributed Software Administration (XDSA) 
[8], which is based on the IEEE 1387.2 standard, goes beyond the 
issues tackled by RPM. The XDSA specification defines the 
package layout and addresses the software administration 
requirements of distributed systems and applications. The 
specification defines a set of administration utilities that enable 
management applications to control the packaging, distribution, 
installation, update and removal of software across multiple nodes 
of a cluster. XDSA still does not address the service availability 
issue in any way. 
The Object Management Group’s Online Upgrade specification 
[7] addresses the upgrade of a CORBA object implementation. 
Interfaces have been defined for an upgrade manager to prepare 
an object for upgrading; to perform the upgrades of one or more 
objects; to rollback upgrades of objects; and to revert an object 
from its new implementation to its old implementation. The first 
step of an upgrade is to put both the old and new implementations 
into an object group, followed by the query to the old 
implementation to determine whether it is safe to perform the 
upgrade. A vendor specific implementation of the upgrade 
mechanisms is expected to stop new messages being delivered to 
the old implementation, instead, it queues them for delivery to the 
new implementation. When the old implementation responds 
affirmatively to the upgrade request, the current state of the old 
implementation is transferred to the new one. The queued 
messages are then replayed to the new implementation, and all 
future messages for this object group are directed to the new 
implementation. The old implementation is then removed from 
the object group before the upgrade is committed. If some part of 
the upgrade fails, an implementation specific rollback and 
reverting an upgrade could be used to recover. 
Some central features in the Online Upgrade specification are 
missing, for example, object implementations are not versioned 
and concurrent operation of the old and new implementations is 
not supported. In addition, it does not really support a true online 
upgrade because services provided by the object to be upgraded 
are not available during the upgrade, although the incoming 
messages for that object are preserved. To overcome this 
limitation, it has been recommended that the Fault Tolerant 
CORBA should be used in order to exploit the inherited 
redundancy for having minimum, or even no loss of service 
during an upgrade. However, there is no guidelines on how to 
integrate these two in a seamless manner. 

5. CONCLUSIONS 
In this paper, we have discussed the current directions of 
developing standards based carrier grade base platforms in the 
telecommunications industry. As a sanity check against our 
approaches, we have attempted to map the reported activities onto 
a recent study conducted by Siewiorek et al. [13], which suggests 
that the industrial trends and experimental research in 



[2] Geffroy, J-C. and Motet, G. Design of Dependable 
Computing Systems. Kluwer Academic Publishers, 2002. 

dependability are based on three observations: 1) Shifting error 
sources. 2) Explosive complexity. 3) Global volume. Figure 5 
highlights where the discussed steps are positioned in the 
simplified product life cycle model. For trend 1, the shift to more 
software failures and less tolerance to planned outages have 
necessitated dependability benchmarking and online software 
upgrade respectively. For trend 2, the use of standards can result 
in some control over the explosive complexity issue. For trend 3, 
the use of online software upgrade is essential to improve the 
dependability in systems management. We also concur with the 
authors’ conclusions that trends 1 and 2 are well underway with 
considerable body of research, whereas trend 3 is still relatively 
young. 

[3] The Linux Foundation. Carrier Grade Linux Workgroup. 
http://www.linux-foundation.org/en/Carrier_Grade_Linux. 

[4] The Linux Foundation. Linux Standard Base Core 
Specification. http://www.linux-
foundation.org/en/Specifications. 

[5] Micskei, Z., Majzik, I. and Tam, F. Comparing Robustness 
of AIS-Based Middleware Implementations. In Service 
Availability. Lecture Notes in Computer Science 4526. 
(Proceedings of the 4th International Service Availability 
Symposium, New Hampshire, U.S., 21-22 May, 2007). 
Springer, 2007, 20-30.  

Trend 1: Shifting Error Sources
•software failures
•planned outages

A simplified product life cycle

Operation

Trend 2: Explosive Complexity

Trend 3: Global Volume

Design Production

Standards
Dependability
Benchmarking

Online
Software
Upgrade

 

[6] Object Management Group. Fault Tolerant CORBA. In 
Common Object Request Broker Architecture: Core 
Specification. Chapter 23, version 3.0.3, formal/04-03-21. 
March 2004. 

[7] Object Management Group. Online Upgrade Specification. 
SMSC review copy, smsc/05-10-02. November 2005. 

[8] The Open Group. Systems Management: Distributed 
Software Administration (XDSA). CAE Specification. 
Document number C701. 1998. 

[9] Koopman, P. and DeVale, J. Comparing the Robustness of 
POSIX Operating Systems. In Proceedings of the 29th 
Annual International Symposium of Fault-Tolerant 
Computing. (Wisconsin, United States. 15-18 June, 1999). 
IEEE Computer Society 1999, 30-37. 

[10] Pan, J., Koopman, P., Huang, Y., Gruber R. and Jiang, M. 
Robustness Testing and Hardening of CORBA ORB 
Implementations. In Proceedings of the International 
Conference on Dependable Systems and Networks (Sweden, 
July 2001). 141-150. 

Figure 5 Mapping of research trends onto product life cycle 
We believe in using standards based carrier grade base platforms 
can reduce development costs and achieve the required cycle time 
reduction goal. The additional steps identified in the product life 
cycle, together with the proposed supporting technologies, are 
considered to be critical if such an approach is adopted. When the 
technologies are matured and commercially viable to be deployed 
in the development chain, we can anticipate a considerable and 
quantifiable return on investment. 

[11] PCI Industrial Computer Manufacturers Group. PICMG 3.0 
AdvancedTCA™ Base Specification. 
http://www.picmg.org/v2internal/specifications.htm. 

[12] Service Availability Forum. Application Interface 
Specification. http://www.saforum.org. 

6. ACKNOWLEDGMENTS [13] Siewiorek, D. P., Chillarege, R., and Kalbarczyk, Z. T. 
Reflections on Industry Trends and Experimental Research 
in Dependability. IEEE Transactions on Dependable and 
Secure Computing, 1, 2 (April-June. 2004), 109-127. 

The work presented in this paper had been carried out in the 
project “Highly Available Services: Standardisation and 
Technology Investigation” during 2001-2006. The project was 
funded by Strategy and Technology in Nokia Networks, which is 
now part of Nokia Siemens Networks. [14] Toeroe, M., Frejek, P., Tam, F., Penubolu, S. and Kasturi, K. 

The Emerging SAF Software Management Framework. In 
Service Availability. Lecture Notes in Computer Science 
4328. (Proceedings of the 3rd International Service 
Availability Symposium, Helsinki, Finland, 15-16 May, 
2006). Springer, 2006, 253-270.

7. REFERENCES 
[1] The DBench project. Dependability Benchmarking. 

http://www.dbench.org. 

 

http://www.dbench.org/
http://www.linux-foundation.org/en/Carrier_Grade_Linux
http://www.linux-foundation.org/en/Specifications
http://www.linux-foundation.org/en/Specifications
http://www.picmg.org/v2internal/specifications.htm
http://www.saforum.org/

	1. INTRODUCTION
	2. CARRIER GRADE BASE PLATFORM
	3. PRODUCT LIFE CYCLE
	3.1 Simplified Model
	3.2 Architecture
	3.3 Dependability Benchmarking
	3.4 Online Software Upgrade

	4. RELATED WORK
	4.1 Architecture
	4.2 Dependability Benchmarking
	4.3 Online Software Upgrade

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

