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ABSTRACT

Uncertainty complicates the formal verification of nondeter-
ministic systems. Unpredictable changes and alterations in
their environments can lead an invalid verification results
and the decrease of confidence degree of these systems. How-
ever, current literature provides little account of addressing
the uncertainty in formal verification. To address this prob-
lem, the goal of this research is to provide a method based
on perturbation analysis for probabilistic model checking of
nondeterministic systems which are modelled as Markov De-
cision Processes. And to apply our expected contributions to
ubiquitous systems due to inherent presence of environment
uncertainty and their resource limitations.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—model checking, formal methods; F.3.1 [Logic and
Meaning of Programs]: Specifying and Verifying and
Reasoning about Programs—specification techniques; G.3
[Mathematics of Computing]: Probability and Statis-
tics—Markov processes

General Terms
Verification, Theory

Keywords
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1. INTRODUCTION

Nowadays, it is inevitable to notice that the uncertainty
plays an important role in software engineering. Many of
real-world systems with which we interact are subject to
unpredictable changes and alterations in their environment
that we cannot predict in advance, or even failure rates of
some system components. As a result, these issues severely
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impact their functionality over time and they may produce
variance in the quantification of the confidence degree that a
system holds.

Generally, real systems such as wireless communication
protocols, decision-making problems, adaptive algorithms,
concurrency programs, biology systems, mobile devices, etc.
have in common the presence of unpredictable behaviour
that can only be accurately modelled by considering their
stochastic characteristics [15, 20] . Particularly, they can be
modelled as Markov Decision Processes, a variant of Markov
Chains which exhibits a combination of probabilistic and
nondeterministic behaviour [8]. Furthermore, they can be
analysed by a probabilistic model checker which inputs a
model and a specification and checks if the specification
is satisfied by the model; additionally, it can output the
probability or expected cost of it being satisfied behaviour
[20].

However, the estimation of those probabilities in nondeter-
ministic systems is far from accurate due to external factors
and uncertainty parameters present in the model, and they
can lead to a misleading or even invalid verification results
[19]. Consequently, several studies have shown that all these
possible alterations and risks are rarely considered explicitly
in software engineering decisions and the state-of-the-art
does not provide principled approaches to deal with them [7,
9, 18] .

Recent research works have addressed the problem of per-
turbed probabilistic models in the quantitative verification
through of the perturbation analysis. These studies focus
on compute perturbation bounds for probabilistic model
checking of Parametric Discrete Time Markov Chains. It is
important to note however, that this approach cannot be
applied directly to Markov Decision Processes due to the
presence of nondeterministic behaviour [21, 22].

Theoretically, this work aims to address the problem of
uncertainty in nondeterministic systems. Firstly, the idea is
to extend the perturbation analysis for the formal verification
of Markov Decision Processes and to determine the discrep-
ancy between a probabilistic and the real system represented
by the model. Secondly, we plan to develop a prototype
implementation for the verification of perturbed real systems.
Practically, we aim to apply our approach to areas of software
engineering such as ubiquitous computing where it is impor-
tant to analyse the reliability properties since the presence
of environmental uncertainty and resource limitations. Our
contribution will help to design more efficient and robust real
systems.



2. BACKGROUND AND RELATED WORK

In this section, we present brief literature review of the
works related to the proposed research and identify the re-
search gaps.

Firstly, we study the literature related to probabilistic
model checking and suitable probabilistic model for non-
deterministic systems. Probabilistic model checking is a
formal verification for calculating the likelihood of the occur-
rence of certain events during the execution of a system [20].
For instance, a probabilistic model checker takes as input
a probabilistic model (generally variants of Markov chains)
represented as a state transition system which encodes the
probability of making a transition between states; and a spec-
ification typically represented by some temporal logic, for
example Probabilistic Computational Tree Logic (PCTL) [8].
It is then possible to verify whether or not each property is
satisfied; and provide of quantitative measurements. One of
the most widely known and used probabilistic model checker
is PRISM [16].

Regarding to the probabilistic models used in probabilistic
model checking, Markov Decision Processes (MDPs) are com-
monly used for modelling systems that exhibit a combination
of probabilistic and nondeterministic behaviour [8]. Each
transition of an MDP consists of a nondeterministic choice
of actions. However, the semantics of an MDP depend on a
deterministic scheduler which resolves the nondeterministic
choices and it originates an induced Discrete Time Markov
Chain (DTMC). Consequently, the probability mass of a set
of execution sequences also depends on the chosen scheduler
[1]. Reachability properties and full PCTL properties are
desired specifications for the model checking MDPs. In order
to perform the model checking of these properties, in the lit-
erature, there exists different techniques, for example: linear
programming, value iteration and policy iteration [2, 5, 8].

With respect to the presence of unpredictable changes
in the environment of the models, the literature shows a
deep concern about the uncertainty in software engineering.
Flyvbherg et al. [7] argued that real-world systems require
us to consider uncertainty as a first-class concern in the
design, implementation, and deployment of those systems.
Furthermore, Letier et al. [18] proposed a systematic method
allowing software architects to describe uncertainty and to
calculate the consequences of uncertainty through Monte-
Carlo simulation. On the other hand, Filieri et al. [6] focus
on reliability properties in adaptive systems, using DTMCs
and probabilistic model checking. In this direction, we can
also find researches oriented to the computation of the asymp-
totic bounds for probabilistic verification, given in terms of
Parametric Discrete Time Markov Chains (PDTMCs)[21,
22].

In the case of Markov Decision Processes, there have been
several studies that address the uncertainty through of Para-
metric Markov Decision Processes (PMDPs), in which tran-
sition probabilities are not fixed, but depend on a set of
parameters [17]. In this context, Moritz et al. [10, 11] pro-
vide an approach to solve the PCTL synthesis problem for
PMDPs with reachability reward properties. Likewise, sev-
eral researches try to deal with uncertain Markov decision
problems using optimisation algorithms, uncertain transition
matrices and adaptive mechanism that aim to adjust the
system and reach the robustness of the properties in the
model [3, 4, 19].
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3. RESEARCH QUESTIONS

The goal of this research is to address the problem of the
inherent presence of uncertainty in software systems that
evince non-deterministic behaviour, and its impact in the
preservation of their qualitative and quantitative properties.
In detail, we plan to address the following research questions:

RQ1 Can we measure the effect of uncertainty in the formal
verification of nondeterministic systems?

RQ2 Can we determine the discrepancy between a proba-
bilistic model and the real system represented by the
model?

RQ3 Can we apply an enhanced verification approach to
verify properties related to the way that uncertainty
manifests itself in ubiquitous computing?

4. APPROACH AND CHALLENGES

In this section, we describe our research approach in order
to achieve the goals mentioned above.

4.1 Perturbation Analysis in Model Checking
MDPs

To address RQ1 and RQ2 we are going to develop and
evaluate a tool based on perturbation analysis for nonde-
terministic systems. These systems will be modelled as
parametric Markov decision processes because they are use-
ful when the exact probability of a transition is not known,
or when it is know but not considered relevant [20] and they
are equipped with the norm of total variance to measure the
perturbations of their abstract parameters.

Since Perturbation Analysis has been used successfully
for Discrete Time Markov Chains (DTMCs) [21, 22] and
Markov Decision Processes (MDPs) can be seen as a gener-
alisation of DTMC, we plan to extend this approach for the
model checking of MDPs. Currently, perturbation analysis
provides perturbation bounds based on the definition of con-
dition numbers and quadratic bounds for probabilistic model
checking of perturbed stochastic models. In particular, condi-
tion numbers are intuitive and informative format to capture
the sensitivity of the parameters under uncertain events or
alterations. And, quadratic numbers provide suitable bound
predictions under perturbed parameters. In short, these per-
turbations bounds predict the maximal perturbation distance
that might occur to the verification results with respect to
the perturbation quantities in the stochastic models. This
approach has been evaluated using case studies on variant of
well know system models [22].

Because of the presence of nondeterminism in MDPs, one
must presume the existence of a scheduler that resolves the
nondeterministic choice in each state. Thus, given some
probabilistic property, the value computed for its probability
of satisfaction can vary depending on which scheduler is
used to resolve the nondeterministic choices. For this reason,
model checking of MDPs involves determining the minimum
and maximum probability of satisfaction over all possible
schedulers. And thus in order to compute these minimum
and maximum probabilities, algorithms for model checking
MDPs must efficiently determine which scheduler(s) produce
the minimum probability and which scheduler(s) produce the
maximum probability. These schedulers are usually called
optimal schedulers.



Thus, we propose to compute the minimum and maximum
probabilities using a conventional technique in probabilistic
model checking such as the value iteration method, which
computes a good enough approximation of the values and
offers better scalability than linear programming [8]. Due to
the fact that schedulers induce parametric DTMCs. Using
this finite set of parametric DTMCs, we propose to compute
asymptotic bounds by assuming that the given perturbation
is sufficiently small. The challenge of our approach is also to
consider all the possible perturbation bounds that could exist
in the model because it may be the case that the schedulers
and bounds computed by the value iteration method might
not reveal the maximum influence of the uncertainty in the
model.

Furthermore, we will extend our approach for reachabil-
ity, PCTL properties and performance properties, such as
expected reward. Finally, the expected contribution of our
approach is to provide useful information for taking strategies
in the design and refinement of the model; and to help to
the correctness of the real system.

4.2 Uncertainty in Ubiquitous Computing

We plan to address RQ3 after to provide an efficient way to
handling the uncertainty in MDP model through of Perturba-
tion Analysis. We have considered the ubiquitous computing
systems as a concrete case studies of the potential applica-
bility of our approach. The reason of focusing on ubiquitous
computing is because it is one of the perfect scenarios where
the environmental uncertainty and resource limitation are
clearly visible in the systems; and at same time, we expect
high level of predictability and robustness [13].

Consequently, there exist many challenges in the formal
verification of these systems. In addition, for modelling ubig-
uitous computing devices, we often need to include probabili-
ties, time delays and resource usage in the models. Therefore,
models in this area are inherent probabilistic. According to
Kwiatkowska et al. [14], several problems in this area can be
addressed, for example the unreliability of wireless communi-
cation technologies such as Bluetooth which use randomised
back off schemes to minimise collisions; also, embedded de-
vices are frequently powered by battery and components may
be prone to failure.

In short, this emergent area opens many research gaps
related to the study of uncertainty; and on the other hand,
it is potentially one of the best scenarios for applying the
contributions of our research in a near future.

5. RESEARCH PROGRESS

In this section, we describe our progress to date. For
addressing RQ1 and RQ2, we have developed an early pro-
totype implementation in Haskell Programming Language
to interact with PRISM. The reason for choosing Haskell is
because it is a purely-functional programming language and
it is an open-source product which allows rapid development
of robust and correct software [12].

Currently in our approach, a non deterministic system
is modelled as a Markov Decision Process which is built in
PRISM. Next, from the probabilistic model checker we export
a set of states and a transition matrix which represents all
the possible transitions in the model. These elements, plus
the set of perturbation parameters are the input of Haskell
prototype implementation.
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So far, our prototype implementation is focused on reach-
ability properties of MDPs. For example: What is the min-
imum or maximum probability of reaching a set of target
states T'?. In consequence, we have implemented the qualita-
tive and quantitative reachability of the model using value
iteration method. And from the optimal schedulers gener-
ated as output of the value iteration method, we compute
the perturbed bound as a condition number which is able to
provide suitable bound prediction in practice. Additionally,
we have explored three different methods that trade off pre-
cision for efficiency and we have computed all the possible
condition numbers in the model. In this way, we can obtain
a better understanding of the uncertainty effect in the model
and the impact over it.

We have evaluated our approach on several theory MDPs
obtained from different textbooks and handbooks. Verifica-
tion results from those models in our Haskell prototype are
same in comparison to quantitative verification in PRISM.
On the other hand, we have also confirmed that the pertur-
bation bounds have been computed correctly. Likewise, we
have included in our experiments different case studies based
on Communication Network, Self-Stabilisation Algorithm
[20] and Machine Replacement Problem [4]. They have been
perturbed simulating a failure component when a message is
sent, a noise in the transfer of a token and the decision of
taking the repairing action, respectively.

Figure 1 shows the model of machine replacement problem.
As can be seen from the figure, the problem has been modelled
using 10 states and 2 nondeterministic choices per state.
Particularly, this case study gives us an relevant hints about
the perturbation effect in the model and the importance of
considering all possible perturbation bounds. For example,
considering that the target is the maximum ageing of the
machine, which is 8 years in the model. This model has
32 optimal schedulers for the worst-case of reachability and
2 for the best-case. Their conditional numbers are 0.44
and 0, respectively. On the other hand, with respect to 1024
schedulers that this case study has in total, their perturbation
bounds as condition number are between 0 and 6.89. In other
words, it means that there exists at least one scheduler which
due to the perturbation, it drives to the maximum noise in
the model. And this scheduler is not the same who provides
the maximum probability.

For next stages in our approach, we will improve the afore-
mentioned methods and provide an optimal algorithm for
calculating the all perturbation bounds without exploring the
complete model. As well as, we plan to extend our approach
for full PCTL, including reward properties. Likewise, it is
pending for our future work, the application of our approach
in the verification of ubiquitous systems in order to address

RQ3.

6. CONCLUSIONS

Motivated by the uncertainty problem in the modelling
and quantitative verification of real systems, we plan to study
the impact and the sensitivity of constrained reachability,
PCTL and expected reward properties of those systems mod-
elled as Markov Decision Processes, to perturbations of their
distribution parameters.

Our research seeks to provide a method based on pertur-
bation analysis for the computation of asymptotic bounds
which aim to predict the maximal perturbation distance that
might occur to the verification results. Early results from
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Figure 1: Machine Replacement Problem modelled
as a Markov Decision Process

our initial prototype show some promise. Furthermore, we
plan to evaluate our contributions to the real applications
as ubiquitous systems due to they present an uncertainty
environment and resource limitations.
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