
PHRT: A Model and Programmable Tool for Hardware
Reengineering Automation

Oleg Nenashev
EDA Lab, Saint Petersburg State Polytechnical University

Russian Federation
nenashev@kspt.ftk.spbstu.ru

ABSTRACT
Hardware reengineering is a highly resource-consuming pro-
cess of development cycle, so it is important to automate
reengineering in order to reduce costs and provide reusable
solutions. There are many specialized electronic design au-
tomation (EDA) tools for specific cases, but only few pro-
grammable tools supporting implementation of user-specific
reengineering operations.

This paper presents PhD research, which aims develop-
ment of such Programmable Hardware Reengineering Tool
(PHRT), which can be useful for small hardware-design com-
panies and research groups, who have specific recurrent tasks
and cannot afford development of automation tools “from
scratch”.

We propose HDL-independent “hybrid” device represen-
tation model for automated analysis and transformation,
which combines low-level structural descriptions(netlists) with
features from high-level hardware description languages(HDLs).
Such model supports parallel analysis and transformation
of multiple description layers at once. In our research we
present PHRT prototype, which is an extendable core, which
provides basic functionality for import/export, analysis, edit-
ing and transformation of hybrid models. Its functionality
can be extended by extensions and script programs.

At the current state, PHRT prototype is being success-
fully used by several Russian hardware-design companies.
Test results have proven applicability of PHRT as a good
framework for user-specific reengineering cases like testing
instrumentation and reliability assurance (memory replace-
ment, structural redundancy insertion, etc.).

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design. Design Aids; D.2.7 [Software
engineering]: Distribution, Maintenance, and Enhance-
ment. Restructuring, reverse engineering, and reengineer-
ing; I.6.5 [Computing Methodologies]: Simulation and
modeling. Model Development; J.6 [Computer Applica-
tions]: Computer-Aided Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

General Terms
Theory, Design, Algorithms

Keywords
Hardware reengineering, electronic design automation, ver-
ification platform, extensible toolkit, hybrid device model,
test insertion

1. INTRODUCTION
Existing EDA tools automate most often reengineering

tasks: refactoring, optimization, test generation, etc. On the
other hand, there are many uncovered user-specific tasks,
in case of which automation can save many resources. It
would be great to have a toolkits, which simplify automation
of such tasks by providing programmable and customizable
platform, which can be extended by user. We distinguish
following features of such tool:

• Programmability - internal programming language
• Extensibility - extension capabilities (plug-ins, etc.)
• Integrability - tool can be integrated into hardware

development environment
• HDL-independence - algorithm should be implemented

only once for different input/output formats
• Functional completeness - tool should support all stages:

analysis, transformation and verification
Most of existing tools support only one HDL language or

netlist at once. In our research we focus on HDL-independent
tools, because this tools allow to implement use-cases of
hardware reengineering, which are not supported by existing
tools. Examples:

• Parallel transformation of high-level description lan-
guages and theirs compilation(synthesis) results

• Migration between different hardware representations
(ex, reverse engineering of netlists)

Therefore, development of universal PHRT is an actual
problem, which requires specific device representation model
and methodologies. Our work is devoted to development of
model and tool for programmable hardware reengineering
that should support HDL-independent device representa-
tion. This paper provides short overview of research project.

Section 2 contains brief overview of existing tools and
device representation methodologies, which are oriented to
hardware reengineering. Section 3 defines aims, objectives
and methods of the research. We also discuss expected sci-
entific and practical results. Section 4 briefly describes cur-
rent status of research and its main results: “hybrid” device
model, PHRT’s architecture and prototyping results.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2492406

719

2. RELATED WORK
Existing hardware IDEs automate only several narrow-

specific use-cases like source codes refactoring or primitive
transformations. For example, SIGASI HDT and AMIQ
DVT support renaming of components and extraction of
component definitions [6]. AMIQ DVT supports primitive
scripting language for programming of component renaming,
but these tools still very far from universal PHRT [3].

On the other hand, we can use language-oriented tools,
which have been originated from software engineering area.
DMS Software Reengineering Toolkit provides programmable
modification of different languages like C++, Java and VHDL
[2]. This tool uses Abstract Syntax Tree (AST) as internal
model and oriented for source code reengineering. However,
it is difficult to apply such approach to hardware reengi-
neering, because HDL source codes do not provide enough
information about synthesized device.

Usage of universal modeling languages seems to be the
most perspective approach (ex, UML-based RT-UML or MARTE
tools [7]). Automation seems to be difficult because of model’s
complexity, but successful automation in one area should be
applicable to others. Anyway, UML experience in Software
Engineering area discovered many issues of this approach.

Regarding hardware representation, Wilsey et al. pro-
posed a model of VHDL for analysis and transformation
and then extended their model in further works [8]. Model
includes primitive “static” structural description and “se-
quential” part, which describes both behavioral and non-
synthesized semantics. In addition, authors proposed model
reduction and modification approaches for analysis and trans-
formation needs. This model has been partially used in
SUAVE tool [1]. Unfortunately, model is oriented to a sub-
set of single HDL, so it can’t be used at universal tool.

Existing tools work well at their application areas, but
issue with universal tool is still open.

3. RESEARCH DESCRIPTION

3.1 Aims and Objectives
Our main aim is to decrease reengineering efforts and im-

prove designs quality via automation of user-specific hard-
ware development flows. We’re going to achieve this aim
via development of extensible toolkit and its internal device
representation model.

Development of the “hybrid” device representation model
is a main objective of our research. Of course, we need to
develop methodologies for model’s import/export from ex-
isting HDLs, analysis, transformation, etc. Then, automa-
tion of reengineering use-cases provides opportunities for an
additional research.

During research we develop prototype, which could be
used for evaluation of proposed approaches and prototyp-
ing of reengineering use-cases. Regarding PHRT, we have
following objectives:

• Develop and implement PHRT architecture, which should
meet specified requirements

• Implement hybrid device model and basic functionality
for its analysis and modification

• Implement extensions for import/export of HDL and
netlist formats (EDIF,VHDL, etc.)

• Prototype PHRT-based automation for typical hard-
ware reengineering use-cases

• Cooperate with third-parties in order to get external
evaluation and feedback

3.2 Research Methods
Our topic allows to define research aims and objectives,

so we use “constructive research” during development of hy-
brid model and its methodologies. Because there is a lack
of third-party solutions to compare, we combine practical
methods (formal analysis of requirements, prototyping and
simulation) with case research and qualitative estimations.
In addition, we use exploratory research approaches for eval-
uation of reengineering use-cases.

3.3 Expected Results
We are going to achieve following scientific results:

• Hybrid device representation model, which combines
low-level descriptions(netlists) and features from high-
level HDLs

• Methodologies for hybrid model import/export from
different netlist and HDL descriptions

• Methodology for merging of netlist and HDL models
of the same device

• PHRT-driven approach for test instrumentation of the
complex Systems-on-Chip

• Approach for co-verification of software model and de-
vice prototype using PHRT

4. CURRENT STATE OF RESEARCH
At the current state, we have developed hybrid device

representation model and its transformation and analysis
methodologies. Then, we have implemented most of them
in our PHRT prototype, which has been successfully tested
against different reengineering use-cases. Prototype has suc-
cessfully passed evaluation testing. Sections below briefly
describe mentioned topics.

4.1 Hybrid Device Model
Internal device representation model is a key point for

every reengineering application, because it should provide
enough information to fundamentally different use-cases. For
example, optimization algorithms requires low-level struc-
tural descriptions, which are not accessible in HDL. On the
other hand, code refactoring requires only high-level device
descriptions.

In the our research we propose“hybrid”model, which com-
bines both low-level and high-level descriptions. Figure 1
presents main components of that model. Hybrid model ex-
tends low-level descriptions (netlists) by features from high-
level HDLs and object-oriented languages.

Hybrid model supports following HDL features: groups,
structural inheritance, static parameterization (generics), con-
ditional generation, and PHRT-specific elements like refer-
ences. At current state, we are working on the following
model limitations:

• Limited support of behavioral descriptions due to model
complexity requirements

• No support of user’s metadata at basic model compo-
nents (comments, etc.)

• Limited support of functions and macros (affects emerg-
ing languages like SystemC)

720

Figure 1: Elements of PHRT model

According to evaluation results, proposed PHRT model
supports commonly used netlist and HDL formats (EDIF,
VHDL, Verilog, SystemVerilog and SystemC). We suppose
that it is possible to reuse “hybrid” model in order to per-
form reengineering of software. Thanks to SystemC support,
model should support reduced C/C++ language subsets as
well. Evaluation of common programming languages sup-
port is an additional topic for our research, because it will
allow co-reengineering of system’s software and hardware
parts at once.

4.2 PHRT Prototype
PHRT is an extendable core, which provides basic func-

tionality for import/export, analysis, editing and transfor-
mation of hybrid models described above. User-specific reengi-
neering functions can be implemented in PHRT by plug-ins
or external Tcl scripts. PHRT can be easily integrated with
existing EDA tools from 3rd-party IC-design vendors via
extensions.

Figure 4.2 shows two-layer architecture, which allows cre-
ation of user-specific tools based on PHRT core. First layer
is internal core that provides API for custom extensions, this
level is completely provided by our tool. Internal core and
extensions together create user-specific core, which can be
used by external environment.

Figure 2: Extendable PHRT architecture

All previously implemented PHRT functions can be reused
in more complex algorithms, so users can gradually extend

functionality of their PHRT extensions in order to get au-
tomation of their reengineering processes in the future. Dur-
ing prototyping we have implemented extensions for the fol-
lowing purposes:

• Import/export of EDIF, VHDL and XML formats
• Reliability assurance: Structural redundancy insertion,

memory blocks replacement [4]
• Analysis: Specific features like clock tree tracing or

statistics about usage of library’s elements
• In-circuit testing: Generation of testing and memory

fault injection agents [5]
• Integration with QuartusII: Import/export of testing

projects, conversion of behavioral descriptions
• User interfaces: Command console, model visualiza-

tion, Eclipse IDE integration, etc.

4.3 Evaluation Results
During research we have implemented and successfully

tested PHRT extensions for different use-cases. Section 4.2
provides list of available extensions. Currently, PHRT is be-
ing used at “Sitronics Microdesign”(Russian IC-design com-
pany) for real production needs. Our contributors have de-
veloped their own extensions in order to automate functional
testing, design verification and memory fault injection (see
section 4.4).

Evaluation results prove tool’s applicability to different
hardware development areas, but we have discovered several
issues, which require modification of “hybrid” device model.
So, we have a good proof of concept, but there is a lot work
to do before public distribution of PHRT.

4.4 PHRT Use-Case Example
Below we provide short description of use-case from one

of our contributors, who use PHRT in order to automate
testing of their solutions at FPGA prototyping boards.

• Our contributors use their own tools to test designs on
prototyping boards. These tools are not compatible
with existing EDA tools.

• In order to run test, our contributors need to insert
test infrastructure into their devices (ex, test agents
and interfaces, which are specific to different tests).

• Each modification of initial design requires re-creation
of all test infrastructure => such manual operation
requires much efforts (5̃0% of overall testing time).

• PHRT completely automates generation of test infras-
tructure. It takes initial source codes, transforms de-
vice according to specified options and then outputs
instrumented source code to synthesis tools.

• Therefore, user needs only to make several clicks in our
PHRT prototype.

Described automation allows to spend much less time to
routine operations. It means that test engineers will be able
to spend more time to analysis and test coverage improve-
ments.

5. CONCLUSIONS
We are sure that programmable hardware reengineering

toolkits like PHRT could provide great assistance for de-
velopers, because they encourage development of reusable
components and extensions for PHRT by reducing costs of
component customization. Our prototype is a just first at-
tempt to implement such tool. We are going to continue
work on PHRT prototyping and its specific extensions in

721

order to expand tools’ internal model and applicability.
Future research covers support of behavioral descriptions

and software programming languages in“hybrid”model, built-
in self-tests (BIST) insertion and other automation topics,
which can be solved by PHRT in future. Current state of
PHRT allows us to use in for prototyping during research
projects in EDA and hardware development areas, so we
are ready to cooperate with potential users of PHRT.

6. ACKNOWLEDGMENTS
I would like to thank my PhD advisor, professor Alexey

Filippov from Saint-Petersburg State Polytechnical Univer-
sity, for guiding and supporting me during last years.

7. REFERENCES
[1] P. J. Ashenden, P. A. Wilsey, and D. E. Martin.

SUAVE: Object-oriented and genericity extensions to
vhdl for high-level modeling. In Electronic chips &
systems design languages, pages 57–70. Springer, 2001.

[2] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program
transformations for practical scalable software
evolution. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages
625–634, Washington, DC, USA, 2004. IEEE Computer
Society.

[3] E. Linehan and S. Clarke. An aspect-oriented,
model-driven approach to functional hardware
verification. Journal of Systems Architecture, 2011.

[4] O. Nenashev. Developing a programmable toolkit for
automated structural redundancy insertion. In Best
papers of XXXIX SPBSTU Week of Science, volume 1,
Saint Petersburg, 2011. SPBSTU.

[5] O. Nenashev. Automated test instrumentation of
reliable digital devices for in-circuit testing. In
High-tech information systems and innovations in
Russian National Research Universities, volume 3,
pages 64–68, Saint Petersburg, 2013. SPBSTU.

[6] B. Niton, K. Pozniak, and R. Romaniuk. Plug-in to
eclipse environment for VHDL source code editor with
advanced formatting of text. In Proceedings of SPIE,
volume 8008, page 80080Q, 2011.

[7] J. Vidal, F. De Lamotte, G. Gogniat, P. Soulard, and
J. Diguet. A co-design approach for embedded system
modeling and code generation with uml and marte. In
Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE’09., pages 226–231. IEEE,
2009.

[8] P. A. Wilsey, D. M. Benz, and S. L. Pandey. A model
of vhdl for the analysis, transformation, and
optimization of digital system designs. In Design
Automation Conference, 1995. Proceedings of the
ASP-DAC’95/CHDL’95/VLSI’95., IFIP International

Conference on Hardware Description Languages; IFIP
International Conference on Very Large Scale
Integration., Asian and South Pacific, pages 611–616.
IEEE, 1995.

APPENDIX
A. LIST OF PUBLICATIONS

A.1 Published
[1] O. Nenashev, “Automated test instrumentation of reli-

able digital devices for in-circuit testing” presented at
the High-tech information systems and innovations in
Russian National Research Universities, Saint Peters-
burg, 2013, vol. 3, pp. 64–68.

[2] O. Nenashev, “Concepts of programmable tool for au-
tomated analysis and transformation of digital device
architectures described by VHDL” in Ist International
Congress of PhD Students, Saint Petersburg, 2012.

[3] O. Nenashev,“Automated test instrumentation and BIST
insertion with usage of automated reengineering toolkit”
in Proceedings of XIIIth international conference “Fun-
damental and applied research in Russia” Saint Peters-
burg, 2012, vol. 2, pp. 46–49.

[4] O. Nenashev, “Developing a programmable toolkit for
automated structural redundancy insertion” in Best pa-
pers of XXXIX SPBSTU Week of Science, Saint Peters-
burg, 2011, vol. 1, pp. 72–78.

[5] O. Nenashev, “Modification of Cypress WirelessUSB
protocol in order to provide grid network topology”
in Proceedings of XXXVIII SPBSTU Week of Science,
Saint Petersburg, 2009.

[6] N. Baltrukov, O. Nenashev, A. Lavrov, and M. Kalugin,
“Programmable Systems on Chip from Cypress Semi-
conductors” Saint Petersburg: SPBSTU, 2009.

[7] O. Nenashev, “Developing an adaptive control system
for DC Motor” presented at the Proceedings of XXXVI
SPBSTU Week of Science, Saint Petersburg, 2007.

A.2 Accepted Papers
[1] O. Nenashev, “PHRT: A programmable tool for auto-

mated hardware reengineering and verification” in Pro-
ceedings of the VES2013 workshop, Saint Petersburg,
2013.

A.3 Submitted Papers
[1] RAMS20014

[2] EWDTS2013

722

